

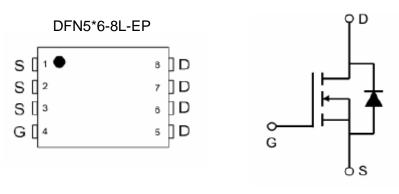
ACE6428B N-Channel Enhancement Mode Field Effect Transistor

Description

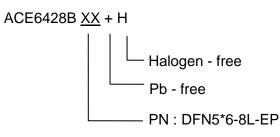
The ACE6428B uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge. This device is suitable for use as a high side switch in SMPS and general purpose applications.

Features

- V_{DS}(V)=30V
- I_D=43A (V_{GS}=10V)
- $R_{DS(ON)} < 10m\Omega (V_{GS}=10V)$
- R_{DS(ON)} < 14.5mΩ (V_{GS}=4.5V)
- 100% Delta Vsd Tested
- 100% Rg Tested


Absolute Maximum Ratings

Parameter	Symbol	Max	Unit		
Drain-Source Voltage		V_{DSS}	30	V	
Gate-Source Voltage	V_{GSS}	±20	V		
Drain Current (Continuous)	T _A =25 °C		43		
	T _A =100 °C	I _D	27	А	
Drain Current (Pulse)	I _{DM}	80			
Drain Current (Continuous)	T _A =25 °C		11	А	
	T _A =70 °C	I _{DSM}	8	А	
Power Dissipation ^B	T _A =25 °C	PD	30	W	
	T _A =100 °C	ГD	12		
Power Dissipation ^A	T _A =25 °C	D	2	W	
	T _A =70 °C	P _{DSM}	1.3		
Operating and Storage Temperation	$T_{\text{J},}T_{\text{STG}}$	-55 to 150	°C		

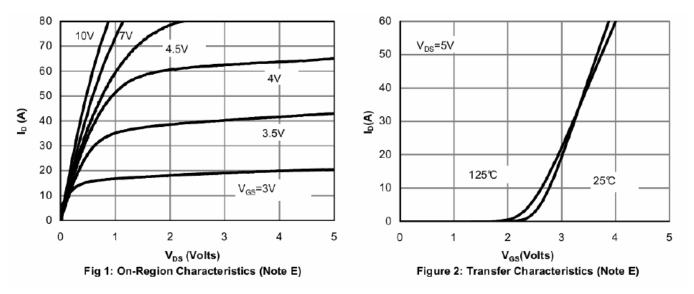

Thermal Characteristics						
Parameter	Symbol	Тур	Max	Units		
Maximum Junction-to-Ambient ^A	t≦10s	Р	21	25	°C/W	
Maximum Junction-to-Ambient AD	Steady-State	R _{θJA}	50	60	°C/W	
Maximum Junction-to-Case	Steady-State	$R_{ extsf{ heta}JC}$	3.5	4.2	°C/W	

Packaging Type

Ordering information

Electrical Characteristics $T_A=25$ °C unless otherwise noted

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Static							
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =250uA	30			V	
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} =30V, V_{GS} =0V			1	uA	
Gate Leakage Current	I _{GSS}	V_{GS} =±20V, V_{DS} =0V			100	nA	
Static Drain-Source On-Resistance		V_{GS} =10V, I_{D} =20A		5.7	10		
	R _{DS(ON)}	V _{GS} =4.5V, I _D =20A		7.9	14.5	mΩ	
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{DS}=250$ uA	1.2	1.9	2.5	V	
Forward Transconductance	g fs	V _{DS} =5V, I _D =15A		25		S	
Diode Forward Voltage	V_{SD}	I _{SD} =2A, V _{GS} =0V		0.71	1.0	V	
Maximum Body-Diode Continuous					2	А	
Current	I _S				2		
Switching							
Total Gate Charge	Qg			16	20.8		
Gate-Source Charge	Q_{gs}	V _{DS} =15V, I _D =20A V _{GS} =5V		5	6.5	nC	
Gate-Drain Charge	Q_gd	V GS-J V		3	3.9		
Turn-On Delay Time	T _{d(on)}			17	34		
Turn-On Rise Time	t _f	V _{DS} =15V, V _{GS} =10V		5	10		
Turn-Off Delay Time	t _{d(off)}	$R_{GEN}=6\Omega, R_{L}=15\Omega$		50	100	ns	
Turn-Off Fall Time	t _f			10	20		

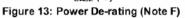

ACE6428B

N-Channel Enhancement Mode Field Effect Transistor

Dynamic						
Input Capacitance	C _{iss}		24	70		
Output Capacitance	C _{oss}	V _{DS} =15V, V _{GS} =0V f=1MHz	32	5	pF	
Reverse Transfer Capacitance	C _{rss}		18	5		

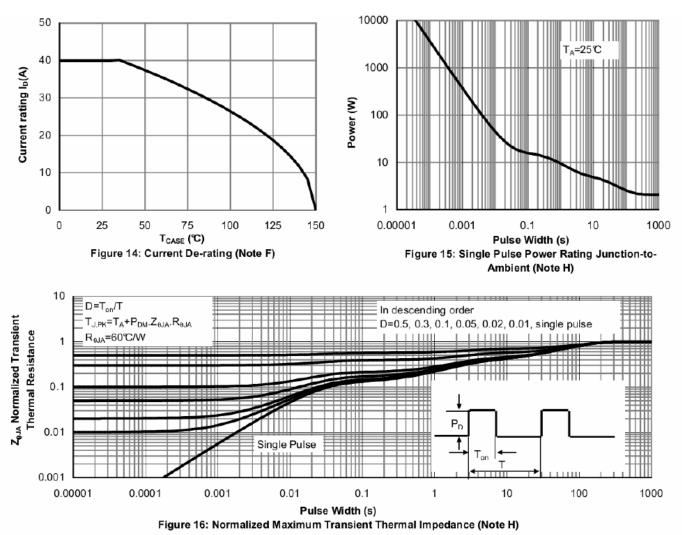
Note:

- A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^{\circ}$ C. The Power dissipation P_{DSM} is based on $R_{\theta JA}$ and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design.
- B. The power dissipation P_D is based on T_{J(MAX)}=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
- C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}=150$ °C. Ratings are based on low frequency and duty cycles to keep initial $T_J = 25$ °C.
- D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to case $R_{\theta JC}$ and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}=150$ °C. The SOA curve provides a single pulse rating.
- G. The maximum current rating is package limited.
- H. These tests are performed with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^{\circ}C$



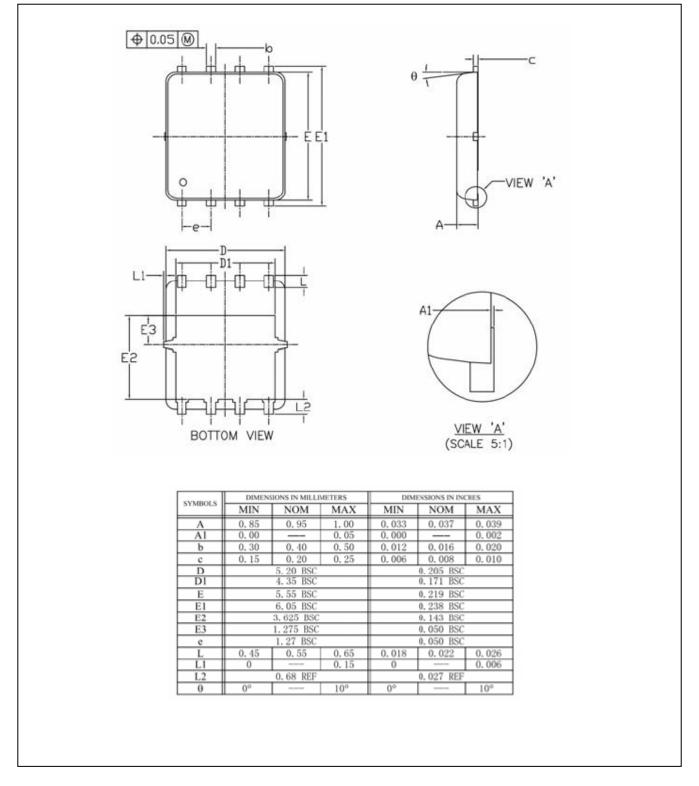
ACE6428B N-Channel Enhancement Mode Field Effect Transistor

16 1.8 14 Normalized On-Resistance 1.6 V_{GS}=10V 12 I_D=20A $R_{DS(ON)}$ (m Ω) 1.4 10 V_{GS}=4.5V 8 1.2 6 V_{GS}=4.5V 1 I_D=20A 4 V_{GS}=10V 2 0.8 5 25 30 0 25 50 75 100 125 150 175 10 20 0 15 I_D (A) Temperature (°C) Figure 3: On-Resistance vs. Drain Current and Figure 4: On-Resistance vs. Junction Temperature (Note E) Gate Voltage (Note E) 1.0E+02 35 1.0E+01 30 I_D=20A 25 1.0E+00 $R_{DS(ON)}$ (m Ω) 125°C 20 Is (A) 1.0E-01 1.0E-02 15 125°C 25°C 10 1.0E-03 1.0E-04 5 25°C 1.0E-05 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 2 4 6 8 10 V_{SD} (Volts) V_{GS} (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage Figure 6: Body-Diode Characteristics (Note E) (Note E) 40**0**0 10 V_{DS}=15V I_D=20A 3200 8 Ciss Capacitance (pF) 2400 6 V_{GS} (Volts) 16**0**0 4 Coss 800 2 Crss 0 0 5 10 15 20 0 25 30 16 Q_g (nC) 20 24 28 32 0 8 4 12 V_{DS} (Volts) Figure 8: Capacitance Characteristics Figure 7: Gate-Charge Characteristics



200 1000.0 100.0 160 T_{J(Max)}=150℃ 10µs T_c=25℃ R_{DS(ON)} limited l_D (Amps) 10.0 Power (w) 120 <u>100u</u>s 1ms 1.0 DC 80 10 m T_{J(Max)}=150℃ 0.1 Tc=25℃ 40 0.0 0 0.01 0.1 10 100 1 0.0001 0.001 0.01 0.1 1 10 V_{DS} (Volts) Pulse Width (s) Figure 9: Maximum Forward Biased Safe Figure 10: Single Pulse Power Rating Junction-to-**Operating Area (Note F)** Case (Note F) 10 In descending order D=T_{on}/T Ħ Z_{euc} Normalized Transient D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse $T_{J,PK} = T_C + P_{DM} \cdot Z_{\theta JC} \cdot R_{\theta JC}$ Т Thermal Resistance R_{9JC}=4.2℃/W 1 P_D 0.1 Single Pulse 0.01 0.01 0.00001 0.0001 0.001 0.1 10 100 1 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) 100 40 T_A=25℃ Power Dissipation (W) 80 30 l_{AR} (A) Peak Avalanche Current T_A=100℃ 111 T_A=150℃ 60 20 40 10 T_A=125℃ 20 0 0 0 25 50 75 100 125 150 0.000 Time in avalancher t_A (s) 0.000001 0.001 T_{CASE} (℃) Figure12:SinglePulseAvalanche capability(Note (

ACE6428B N-Channel Enhancement Mode Field Effect Transistor



ACE6428B N-Channel Enhancement Mode Field Effect Transistor

Packing Information

DFN5*6-8L-EP

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/