BOURNS®

- 5 A Continuous On-State Current
- 30 A Surge-Current
- Glass Passivated Wafer
- 400 V to 800 V Off-State Voltage
- Max I_{GT} of 200 μA

This series is currently available, but not recommended for new designs.

Pin 2 is in electrical contact with the mounting base.

MDC1ACA

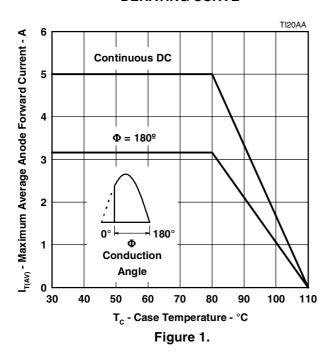
absolute maximum ratings over operating case temperature (unless otherwise noted)

RATING		SYMBOL	VALUE	UNIT	
	TIC106D		400		
Repetitive peak off-state voltage (see Note 1)	TIC106M	V	600	V	
	TIC106S	V _{DRM}	700		
	TIC106N		800		
Repetitive peak reverse voltage	TIC106D		400	V	
	TIC106M	V_{RRM}	600		
	TIC106S		700		
	TIC106N		800		
Continuous on-state current at (or below) 80°C case temperature (see Note 2)			5	Α	
Average on-state current (180° conduction angle) at (or below) 80°C case temperature		L	3.2	Α	
(see Note 3)		I _{T(AV)}	0.2		
Surge on-state current at (or below) 25°C (see Note 4)		I _{TSM}	30	Α	
Peak positive gate current (pulse width ≤ 300 μs)		I _{GM}	0.2	Α	
Peak gate power dissipation (pulse width ≤ 300 μs)		P_{GM}	1.3	W	
Average gate power dissipation (see Note 5)		$P_{G(AV)}$	0.3	W	
Operating case temperature range		T _C	-40 to +110	°C	
Storage temperature range		T _{stg}	-40 to +125	°C	
Lead temperature 1.6 mm from case for 10 seconds		T _L	230	°C	

- NOTES: 1. These values apply when the gate-cathode resistance R_{GK} = 1 $k\Omega$
 - 2. These values apply for continuous dc operation with resistive load. Above 80°C derate linearly to zero at 110°C.
 - 3. This value may be applied continuously under single phase 50 Hz half-sine-wave operation with resistive load. Above 80°C derate linearly to zero at 110°C.
 - 4. This value applies for one 50 Hz half-sine-wave when the device is operating at (or below) the rated value of peak reverse voltage and on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.
 - 5. This value applies for a maximum averaging time of 20 ms.

electrical characteristics at 25°C case temperature (unless otherwise noted)

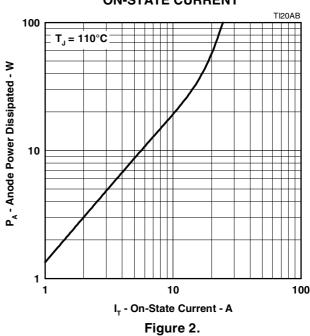
	PARAMETER		TEST CONDITION	ONS	MIN	TYP	MAX	UNIT
I _{DRM}	Repetitive peak off-state current	V _D = rated V _{DRM}	R _{GK} = 1 kΩ	T _C = 110°C			400	μА
I _{RRM}	Repetitive peak reverse current	V _R = rated V _{RRM}	I _G = 0	T _C = 110°C			1	mA
I _{GT}	Gate trigger current	V _{AA} = 12 V	$R_L = 100 \Omega$	t _{p(g)} ≥ 20 μs		5	200	μΑ
V _{GT} Gate trigger voltage	$V_{AA} = 12 \text{ V}$ $t_{p(g)} \ge 20 \mu\text{s}$	$R_L = 100 \Omega$ $R_{GK} = 1 k\Omega$	T _C = - 40°C			1.2		
	$V_{AA} = 12 \text{ V}$ $t_{p(g)} \ge 20 \mu\text{s}$	$R_L = 100 \Omega$ $R_{GK} = 1 k\Omega$		0.4	0.6	1	V	
	$V_{AA} = 12 \text{ V}$ $t_{p(g)} \ge 20 \mu\text{s}$	$R_L = 100 \Omega$ $R_{GK} = 1 k\Omega$	T _C = 110°C	0.2				
I _H Holding current	Holding current	$V_{AA} = 12 \text{ V}$ Initiating $I_T = 10 \text{ mA}$	$R_{GK} = 1 k\Omega$	T _C = - 40°C			8	mA
	Troiding current	$V_{AA} = 12 \text{ V}$ Initiating $I_T = 10 \text{ mA}$	$R_{GK} = 1 k\Omega$				5	
V _T	Peak on-state voltage	I _T = 5 A	(See Note 6)				1.7	V
dv/dt	Critical rate of rise of off-state voltage	V _D = rated V _D	R _{GK} = 1 kΩ	T _C = 110°C		10		V/µs


NOTE 6: This parameter must be measured using pulse techniques, $t_p = 300 \mu s$, duty cycle $\leq 2 \%$. Voltage sensing-contacts, separate from the current carrying contacts, are located within 3.2 mm from the device body.

thermal characteristics

PARAMETER		MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			3.5	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance			62.5	°C/W

THERMAL INFORMATION


AVERAGE ANODE ON-STATE CURRENT DERATING CURVE

SURGE ON-STATE CURRENT vs

CYCLES OF CURRENT DURATION TIZOAC TO SENT TO

ANODE POWER DISSIPATED vs ON-STATE CURRENT

TRANSIENT THERMAL RESISTANCE vs

CYCLES OF CURRENT DURATION

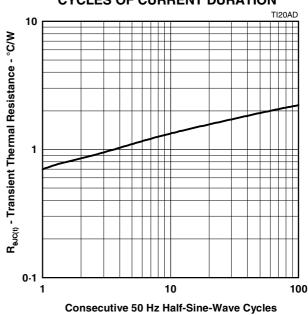
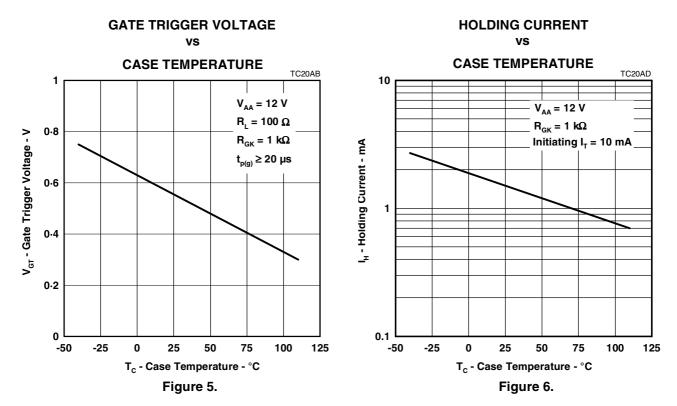
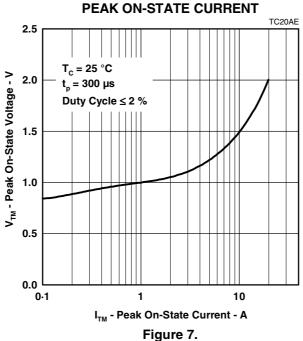




Figure 4.

TYPICAL CHARACTERISTICS

PEAK ON-STATE VOLTAGE VS PEAK ON STATE CURRENT

