

Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Part Number: 2952776101

Frequency Range: Higher Frequencies 250-1000 MHz (52 material)

Description: 52 PC BEAD

Application: Suppression Components

Where Used: Board Component

Part Type: PC Beads (Through Hole)

Preferred Part:

Mechanical Specifications

Weight: 2.600 (g)

Part Type Information

Multiple single turn or multi-turn printed circuit EMI suppression beads are available in two Fair-Rite materials. The broadband 44 material and in the high frequency 52 material grade.

- -PC Beads can be supplied with lower component heights 'C'. Also, the wire length 'F' can be modified to specific requirements.
- -Wires are oxygen free high conductivity copper with a lead-free tin coating. Wires on top of the beads are covered with a layer of epoxy.
- -PC Beads are controlled for impedance only. The impedances listed are typical values. Minimum impedance values are specified for the + marked frequencies. The minimum guaranteed impedance is the listed impedance less 20%.
- -The PC Beads in 44 material are measured on the 4193A Vector Impedance Analyzer. The 52 PC Beads are tested for impedance on the 4191A RF Impedance Analyzer.
- -Recommended operating and storage temperature for the PC Beads is -55°C to +125°C.
- -Explanation of Part Numbers: Digits 1&2 = product class, 3&4 = material grade and last digit 1 = standard wire length 2.4 mm (.095") minimum.

Mechanical Specifications

Dim	mm	mm	nominal	inch
		tol	inch	misc.
Α	8.00	-0.35	0.308	-
В	7.60	-0.50	0.290	-
С	11.80	Max	0.464	Max
D	2.54	±0.10	0.100	-
Е	2.54	±0.10	0.100	-
F	2.40	Min	0.095	Min
G	0.65	-	-	22 AWG
Н	-	-	-	-
J	-	-	-	-
К	-	-	-	-

Electrical Specifications

Typical Impedance (Ω)		
100 MHz	270	
250 MHz+	380	
500 MHz+	345	
1000 MHz	250	

Electrical Properties	

Land Patterns

V	W	Х	Υ	Z
-	-	-		-

Winding Information

Turns	Wire	1st Wire	2nd Wire
Tested	Size	Length	Length
-	-	-	-

Reel Information

Tape Width	Pitch	Parts 7 "	Parts 13 "	Parts 14 "
mm	mm	Reel	Reel	Reel
-	-	-	-	-

Package Size

Pkg Size
-
(-)

Connector Plate

# Holes	# Rows	
-	-	

Legend

+ Test frequency

Preferred parts, the suggested choice for new designs, have shorter lead times and are more readily available.

The column H(Oe) gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of H times the actual NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note How to choose Ferrite Components for EMI Suppression.

A ½ turn is defined as a single pass through a hole.

∠I/A - Core Constant

A_e: Effective Cross-Sectional Area

 A_{I} - Inductance Factor $\left(\frac{L}{N^{2}}\right)$

I e: Effective Path Length

Ve: Effective Core Volume

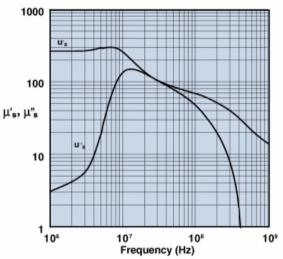
NI - Value of dc Ampere-turns

N/AWG - Number of Turns/Wire Size for Test Coil

Ferrite Material Constants

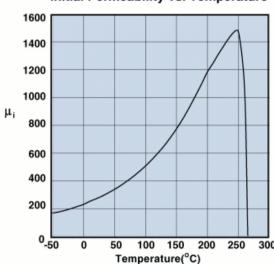
0.25 cal/g/°C Specific Heat Thermal Conductivity 10x10⁻³ cal/sec/cm/°C Coefficient of Linear Expansion 8 - 10x10-6/°C Tensile Strength 4.9 kgf/mm² Compressive Strength 42 kgf/mm² 15x103 kgf/mm2 Young's Modulus Hardness (Knoop)..... 650 Specific Gravity $\approx 4.7 \text{ g/cm}^3$ The above quoted properties are typical for Fair-Rite MnZn and NiZn ferrites.

See next page for further material specifications.



Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

A new high frequency NiZn ferrite material, that combines a high saturation flux density and a high Curie temperature.


SM beads, PC beads and a range of rod cores are available in this material.

Complex Permeability vs. Frequency

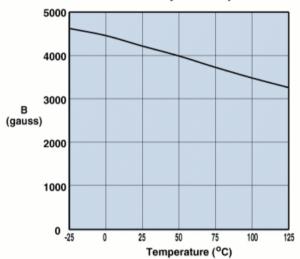
Measured on a 17/10/6mm toroid using the HP 4284A and the HP 4291A.

Initial Permeability vs. Temperature

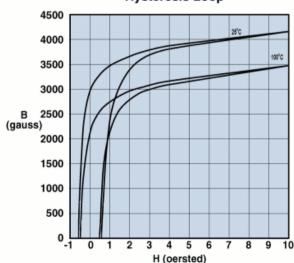
Measured on a 17/10/6mm toroid at 100kHz.

Fair-Rite Product's Catalog Part Data Sheet, 2952776101

Printed: 2010-11-09



52 Material Specifications:

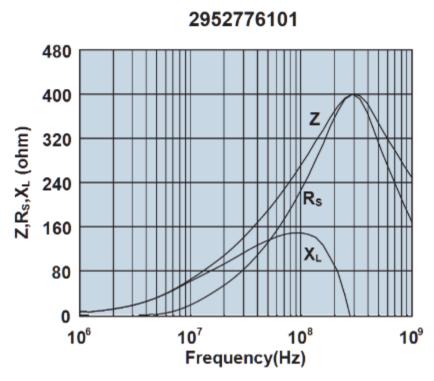

Property	Unit	Symbol	Value
Initial Permeability ® B < 10 gauss		μ_{i}	250
Flux Density	gauss	В	4200
@ Field Strength	oersted	н	10
Residual Flux Density	gauss	B,	2900
Coercive Force	oersted	н。	0.60
Loss Factor	10-6	tan δ/μ;	45
@ Frequency	MHz		1.0
Temperature Coefficient of Initial Permeability (20 -70°C)	%/°C		1.0
Curie Temperature	°C	Te	>250
Resistivity	Ωcm	ρ	1x10 ⁹

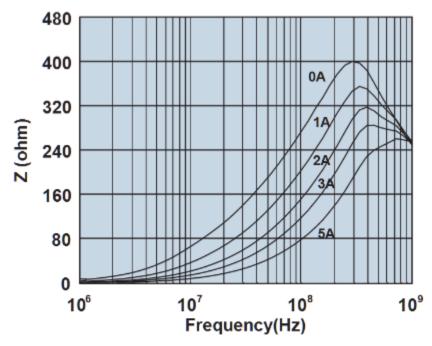
Flux Density vs. Temperature

Measured on a 17/10/6mm toroid at 10kHz. and H=10 oersted.

Hysteresis Loop

Measured on a 17/10/6mm toroid at 10kHz.





Impedance, reactance, and resistance vs. frequency.

Impedance vs. frequency with dc bias.