TECHNICAL DATA DATA SHEET 4511, REV. -

POWER SCHOTTKY RECTIFIER Low Reverse Leakage

Applications:

• Switching Power Supply • Converters • Free-Wheeling Diodes • Polarity Protection Diode

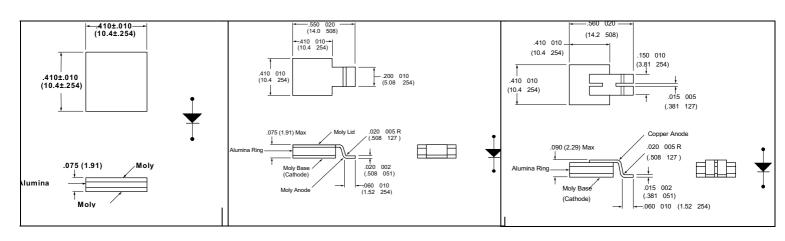
Features:

- Ultra Low Reverse Leakage Current
- Soft Reverse Recovery at Low and High Temperature
- Low Forward Voltage Drop
- Low Power Loss, High Efficiency
- High Surge Capacity
- Guard Ring for Enhanced Durability and Long Term Reliability
- Guaranteed Reverse Avalanche Characteristics

Maximum Ratings:

Characteristics	Symbol	Condition	Max.	Units
Peak Inverse Voltage	V_{RWM}	-	100	V
Max. Average Forward	I _{F(AV)}	50% duty cycle, rectangular	30	Α
Current		wave form		
Max. Peak One Cycle Non-	I _{FSM}	8.3 ms, half Sine wave	570	Α
Repetitive Surge Current		(per leg)		
Non-Repetitive Avalanche	E _{AS}	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 1.3 \text{A},$	27	mJ
Energy		L = 40mH (per leg)		
Repetitive Avalanche	I _{AR}	I _{AS} decay linearly to 0 in 1 μs	1.3	Α
Current		f limited by T _J max V _A =1.5V _R		
Thermal Resistance	R_{thJC}	Per Package	0.50	°C/W
Max. Junction Temperature	T _J	-	-65 to +200	°C
Max. Storage Temperature	T _{stg}	-	-65 to +200	°C

Electrical Characteristics:


Characteristics	Symbol	Condition	Max.	Units
Max. Forward Voltage Drop	V_{F1}	@ 30A, Pulse, T _J = 25 °C	0.84	V
		(per leg) measured at the leads		
	V_{F2}	@ 30A, Pulse, T _J = 125 °C	0.68	V
		(per leg) measured at the leads		
Max. Reverse Current	I _{R1}	@V _R = 100V, Pulse,	0.02	mA
		$T_J = 25 ^{\circ}\text{C} \text{ (per leg)}$		
	I _{R2}	@V _R = 100V, Pulse,	2.0	mA
		T _J = 125 °C (per leg)		
Max. Junction Capacitance	C _T	$@V_R = 5 \text{ V}, T_C = 25 ^{\circ}\text{C}$	1000	pF
		$f_{SIG} = 1 MHz,$		
		$V_{SIG} = 50 \text{mV (p-p) (per leg)}$		

Due to the nature of the 100V Schottky devices, some degradation in t_{rr} performance at high temperatures should be expected, unlike conventional lower voltage Schottkys.

TECHNICAL DATA DATA SHEET 4511, REV. –

Vf Curves shown are for die only.

Mechanical Dimensions: in inches / mm

SHD-3A SHD-3B

Typical Forward Characteristics Typical Reverse Characteristics 10² 200 ℃ 10¹ 175℃ Instantaneous Reverse Current - I_R (mA) 150℃ 10⁰ 125℃ 200℃ 10¹ 10⁻¹ 100℃ 175℃ nstantaneous Forward Current - I_F (A) 75℃ 10⁻² **50**℃ 10⁻³ 10⁰ 25℃ 10⁻⁴ 125℃ 0 20 100 120 40 60 Reverse Voltage - V_R (V) **Typical Junction Capacitance** 25℃ 900 Junction Capacitance - C_T (pF) 10⁻¹ 800 700 600 500 25℃ 400 300 200 10⁻² 100 0.2 0.8 0.3 0.4 0.5 0.6 0.7 0 20 100 40 60 120 Forward Voltage Drop - V_F (V) Reverse Voltage - V_R (V)

• 221 West Industry Court ☐ Deer Park, NY 11729-4681 ☐ (631) 586-7600 FAX (631) 242-9798 •

[•] World Wide Web Site - http://www.sensitron.com • E-Mail Address - sales@sensitron.com •

TECHNICAL DATA

DISCLAIMER:

- 1- The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact the Sensitron Semiconductor sales department for the latest version of the datasheet(s).
- 2- In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, medical equipment, and safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement.
- 3- In no event shall Sensitron Semiconductor be liable for any damages that may result from an accident or any other cause during operation of the user's units according to the datasheet(s). Sensitron Semiconductor assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in the datasheets.
- 4- In no event shall Sensitron Semiconductor be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.
- 5- No license is granted by the datasheet(s) under any patents or other rights of any third party or Sensitron Semiconductor.
- 6- The datasheet(s) may not be reproduced or duplicated, in any form, in whole or part, without the expressed written permission of Sensitron Semiconductor.
- 7- The products (technologies) described in the datasheet(s) are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.