Order this document

MOTOROLA by BRS74/D
B SEMICOND U C T O R 1550

\ TECHNICAL DATA DSP96001

Technical Summary

96-BIT GENERAL-PURPOSE FLOATING-POINT
DIGITAL-SIGNAL PROCESSOR (DSP)

The DSP96001, a floating-point version of the fixed-point DSP56001, is the first member of Motorola’s
Family of single-chip HCMOS, low-power, general-purpose, IEEE floating-point DSPs. The DSP96001 fea-
tures 512 words of full-speed on-chip program random-access memory (PRAM), two preprogrammed
data ROMs, special on-chip bootstrap hardware to permit convenient loading of user programs into the
PRAM, and on-chip debug circuitry to permit access to internal resources in support of circuit emulation
(OnCE®™). The DSP96001 is an off-the-shelf part (no user-programmable ROMs on chip), which is software
compatible with the HYPERformance™ DSP56000 Family of fixed-point DSPs.

The central processing unit (CPU) consists of three 32-bit execution units operating in parallel: the data
ALU, the address generation unit {AGU), and the program controller. The DSP96001 has MCU-style on-
chip peripherals, program and data memory, and a memory expansion port, which facilitates interfacing
to page mode and video RAMs. The MPU-style programming model and instruction set allows straight-
forward generation of efficient, compact code.

The 40-million floating-point operations per second (MFLOPS) peak performance of the DSP96001
makes it well-suited for real-time DSP applications requiring IEEE floating point. These applications in-
clude high-speed control, digital audio, numeric processing, image and speech processing, spectral anal-
ysis, instrumentation, medical, and navigation. The main features facilitating this throughput are as
follows:

® Speed — At 13.33-million instructions per second, the DSP96001 can execute a 1024 point complex
fast Fourier transform (FFT) in less than 2 milliseconds. The CPU can process over 2 million inter-
rupts per second.

® Precision — The data arithmetic logic unit {ALU) provides full conformance with the IEEE 754-1985
Standard for Binary Floating-Point Arithmetic. All four rounding modes are supported: 1) round to
nearest (even), 2) round to zero, 3) round to minus infinity, and 4) round to plus infinity. Infinities,
nonnumbers, and denormalized numbers are handled according to the standard. Source and desti-
nation operands are held in a file of ten, 96-bit, extended-precision registers. The data ALU also
supports integer arithmetic including a 32 x 32 multiplication with a full, nontruncated, 64-bit prod-
uct.

® Parallelism — The data ALU, AGUs, and program controller operate in parallel within the CPU so
that an instruction prefetch, up to three floating-point operations, two data moves, and two ad-
dress pointer updates, using one of three types of arithmetic (linear, modulo, or reverse carry), can
be executed in a single instruction cycle. This parallelism allows 40 MFLOP peak performance.
Two, on-chip direct memory access (DMA) controller channels operate unobtrusively in parallel
with the CPU to provide memory-to-memory or memory-to-peripheral transfers, also using one of
three types of address update arithmetic (linear, modulo, or reverse carry).

e Integration — In addition to the three, independent execution units and two channels of DMA, the
DSP96001 has six, on-chip memories, three, on-chip, MCU-style peripherals (serial communication
interface (SCI), synchronous serial interface {SSl), and 32-bit host interface), a clock generator, and
eight, 32-bit-wide buses (three address and five data), making the overall high-performance, low-
power, compact system a good cost-performance value.

¢ Invisible Pipeline — The fetch-decode-execute instruction pipeline is essentially invisible to the
programmer, thus allowing straightforward program development in either assembly language or
a high-level language such as a full Kernighan & Ritchie C.

HYPERformance and OnCE are trademarks of Motorola Inc.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MOTOROLA R

©MOTOROLA INC., 1988 BR574/D I

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Features (Continued)

@ Instruction Set — The instruction mnemonics are

MCU-like, making the transition from programming
microprocessors to programming the DSP96001 as
easy as possible. Regular register files for data and
addresses enhance the efficiency of high-level lan-
guage compilers. The orthagonal syntax supports
controlling the parallel execution units. The no-over-
head DO instruction and the repeat (REP) instruction
make writing straightline code outdated. The pro-
gram counter (PC) relative addressing supports writ-
ing position-independent code.

DSP56000 Compatibility — The DSP96001 has the
same basic architecture as the DSP56000 Family. The
instruction set is a super set of the DSP56000 Family
mnemonics. This compatibility means the hardware
and software development tools are nearly identical
for all Motorola DSPs; therefore, investment in ex-
isting software is preserved. Applications can be eas-
ily developed on one processor and migrated across

the Motorola DSP product line to meet various cost
and performance objectives.

SIGNAL DESCRIPTION

The DSP96001 is an 163-pin integrated circuit available
in pin grid array packaging. Its input and output signals
are organized into seven functional groups listed below

and

illustrated in Figure 1.

Port A Address, Data, and Control Buses
Interrupt and Mode Control

Power and Clock

Host Interface or Peripheral 1/O

SCI or Peripheral I/O

SS1 or Peripherat /0

On-Chip Debug

Table 1 includes descriptions and mnemonic symbols
for each signal name.

[+2]
5 T
T 3 E |§
c 2R B
AO-A31 =—— 5 pCoje—— RO
DO'D% - o PORTB PC1|—/@8 XD
€ o
B < & PC2 fe——» scix
X/¥ =
[i9} PC3e——> SCO
WR PORT A PORTC
BR = PC4 je—>» SC1
% — PC5 jg———>» SC2
WT ——> DSP96001 PC6 j«——> SCK
% PC7 j&——— SRD
PENS el PC8{——> STD

Ve —>
G\ND —
XTAL <e——
SYNC <«—

MODA/IRQA —>

EXTAL —»

NMI —>

MODB/IRQB ——>

RESET —»

DMS0-3 ——>

O
S

Figure 1. DSP96001 Functional Signal Groups

MOTOROLA

2

DSP96001
BR574/D

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Table 1. Signal Summary (Sheet 1 of 3)

Signal Name Mnemonic Description
~ Port A Address, Data, and Control Buses
Address Bus A0-A31 These three-state output pins specify the address for external program and data

memory accesses. To minimize power dissipation, A0-A31 do not change state
when external memory spaces are not being accessed. A0-A31 are in the high-
impedance state when BG output is asserted or during processor reset.

Data Bus DO0-D31 These pins provide the bidirectional data bus for external program and data
memory accesses. D0-D31 are in the high-impedance state when BG output is
asserted or during processor reset.

Program Memory Select PS This three-state output is asserted only when external program memory is ref-
erenced. PS is in the high-impedance state when BG output is asserted or during
processor reset. PS has the same timing as A0-A31.

Data Memory Select DS This three-state output is asserted only when external data memory is refer-
enced. DS is in the he high-impedance state when BG output is asserted or during
processor reset. DS has the same timing as A0-A31.

X/Y Select XN This three-state output selects which external data memory space (X or Y) is
referenced by data memory select DS. X/Y is in the high-impedance state when
BG output is asserted or during processor reset. X/Y has the same timing as
A0-A31.

Read Enable RD This three-state output is asserted to read external memory from the data bus
D0-D31. RD is in the high-impedance state when BG output is asserted or during
processor reset. Therefore, RD may require an external pullup in some systems.

Write Enable WR This three-state output is asserted to write external memory to the data bus DO-
D31. WR is in the high-impedance state when BG output is asserted or during
processor reset. Therefore, WR may require an external pullup in some systems.

Bus Request BR This bidirectional pin allows another device, such as a processor or DMA con-
™ troller, to become the master of the external data bus D0-D31_and external
address bus A0-A31. When programmed as an input, asserting BR will cause
the DSP96001 to release the external data bus D0-D31, address bus A0-A31, and
bus control pins PS, DS, X/Y, RD, and WR (i.e., port A), by placing these pins in
the high-impedance state after the execution of the current instruction has been
completed. When programmed as an output, the DSP96001 can request control
of the bus by asserting BR.

Bus Grant BG This three-state bidirectional pin is asserted to acknowledge an external bus
request. When BR is programmed as an input, then BG is an output, which is
asserted after port A has been released. When BR is programmed as an output,
BG is an input, which, when asserted, signals the DSP96001 to take control of
the bus.

Bus Strobe BS This output is a strobe that indicates an active external bus cycle. BS is asserted
synchronously when either PS or DS is asserted, and is deasserted synchron-
ously when either RD or WR is deasserted. Wait states will be inserted if WT is
asserted when BS is asserted, until WT is deasserted. BS is in the high-imped-
ance state when BG is asserted or during processor reset.

Wait WT This input is used to asynchronously extend an external bus cycle an arbitrary
number of wait states. The minimum number of wait states that can be inserted
is two. WT can be asserted asynchronously with BS assertion to insert wait
states. WT must be deasserted synchronously with BS for the number of wait
states inserted to be deterministic.

DMA Request DREQ1 These inputs, used by the external system to request service from the on-chip
DREQ2 DMA controller, are ignored whenever the internal DMA channel is programmed
to work without handshake.

Page Fault PFNS This output, which facilitates interfacing with page-mode dymanic RAMs and
video RAMs, has the same timing as BS.

— Continued —

DSP96001 MOTOROLA ‘
BR574/D 3 i

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Table 1. Signal Summary (Sheet 2 of 3)

Signal Name Mnemonic Description
Interrupt and Mode Control
Mode Select A/External MODA/IRQA | These two inputs have dual functions: 1) to select the initial chip operating mode M
Interrupt Request A and 2) to receive an interrupt request from an external source. MODA and MODB !
OR are read and internally latched in the DSP when the RESET pin is deasserted.
Mode Select B/External MODB/IRQB | After the processor leaves the reset state, the MODA and MODB pins automat-
Interrupt Request B ically change to external interrupt requests IRQA and IRQB. After leaving the

reset state, the chip operating mode can be changed by software. IRQA and
IRQB may be programmed to be level sensitive or negative edge triggered. When
edge triggered, triggering occurs at a voltage level and is not directly related to
the fall time of the interrupt signal; however, the probability of noise on IRQA
or IRQB generating multiple interrupts increases with increasing fall time of the
interrupt signal. The stop state can be exited by asserting IRQA.

Nonmaskable NMI This edge-triggered input is used to request a nonmaskable interrupt. Triggering
occurs at a voltage level and is not directly related to the fall time of the interrupt
signal; however, the probability of noise on the NMI pin generating multiple
interrupts increases with increasing fall time of the interrupt signal.

Reset RESET This Schmitt trigger input is used to reset the DSP96001. When RESET is as-
serted, the DSP96001 is initialized and placed in the reset state. When RESET is
deasserted, the initial chip operating mode is latched from the MODA and MODB
pins. When coming out of reset, deassertion occurs at a voltage level and is not
directly related to the rise time of the reset signal. However, the probability of
noise on RESET generating multiple resets increases with increasing rise time
of the reset signal.

Power and Clock

Power Vce There are five sets of power and ground pins: three pairs for internal logic; two
Ground GND power and five ground for port A address and control pins; two power and four
ground for port A data pins; one power and two ground for the HOST port; and
one power and two ground for peripherals.

External Clock/ Crystal Input EXTAL This input may be used to interface the internal crystal oscillator to an external ' ‘
crystal or an external clock. The maximum clock rate is 26.67 MHz. '

Crystal Output XTAL This output connects the internal crystal oscillator output to an external crystal.
If an external clock is used, XTAL should not be connected.

Synchronization Clock SYNC This output is used to synchronize bus timing and serial debug port functions
with four-phase internal clock.

Host Interface

Host Data Bus HO-H31 This bidirectional data bus is used to transfer data between the host processor
and the DSP96001. This bus is an input unless enabled by a host processor read.
HO-H31 may be programmed as general-purpose, parallel I/O pins (PB0-PB31)
when the host interface is not being used.

Host Address HAO-HA3 These inputs, which provide the address selection for each host interface reg-
ister, must be stable when HEN is asserted.

E]

Host Read/Write This input, which selects the direction of data transfer for each host processor

access, must be stable when HEN is asserted.

This input enables a data transfer on the host data bus. When HEN is asserted
and HRW is high, H0-H31 become outputs, and DSP96001 data may be read by
the host processor. When HEN is asserted and HR/W is low, HO-H31 become
inputs, and host data is latched inside the DSP when HEN is deasserted. Nor-
mally, a chip select signal, derived from host address decoding, and an enable
clock are used to generate HEN.

Host Enable

I
m
Z

I
]
m
o

Host Request This open-drain output is used by the DSP96001 host interface to request service

from the host processor, DMA controller, or simple external controller.

Host Acknowledge HACK This input has two functions: 1) to receive a host acknowledge handshake signal
for DMA transfers and 2) to receive a host interrupt acknowledge signal com-
patible with MC68000 Family processors. ‘ ‘

MOTOROLA DSP96001
4 BR574/D

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Table 1. Signal Summary (Sheet 3 of 3)
Signal Name Mnemonic Description
- Serial Communications Interface

Receive Data RXD This input receives byte-oriented serial data into the SCI receive shift register.
Input data is sampled on the positive edge of the receive clock. RXD may be
programmed as a general-purpose I/0O pin (PCO) when the SCI RXD function is
not being used.

Transmit Data TXD This output transmits serial data from the SCI transmit shift register. Data changes
on the negative edge of the transmit clock. This output is stable on the positive
edge of the transmit clock. TXD may be programmed as a general-purpose 1/0
pin (PC1) when the SCI TXD function is not being used.

SCI Serial Clock SCLK This bidirectional pin provides an input or output clock from which the transmit
and/or receive baud rate is derived in the asynchronous mode and from which
data is transferred in the synchronous mode. SCLK may be programmed as a
general-purpose I/0 pin (PC2) when the SCI SCLK function is not being used.
Synchronous Serial Interface

Serial Control Zero SCo This bidirectional pin, which is used for control by the SSI, may be programmed
as a general-purpose 1/0 pin (PC3) when the SSI SCO function is not being used.

Serial Control One SC1 This bidirectional pin is used for control by the SSI. SC1 may be programmed
as a general-purpose I/0 pin (PC4) when the SSI SC1 function is not being used.

Serial Control Two SC2 This bidirectional pin, which is used for control by the SSI, may be programmed
as a general-purpose /O pin (PC5) when the SSI SC2 function is not being used.

SSi Serial Clock SCK This bidirectional pin provides the serial bit rate clock for the SSI when oniy
one clock is used. SCK may be programmed as a general-purpose /O pin (PC6)
when the SS! is not being used.

SSI Receive Data SRD This input pin, which receives serial data into the SSI receive shift register, may
be programmed as a general-purpose 1/0 pin (PC7) when the SSI SRD function
is not being used.

~
) SSI Transmit Data STD This output pin transmits serial data from the SSI transmit shift register. STD
may be programmed as a general-purpose /O pin (PC8) when the SSI STD
function is not being used.
On-Chip Emulation (OnCE)

Debug Mode Select DMS0-DMS3 [These inputs are used to select the debug function to be executed.

Debug Data DI/O This bidirectional pin transfers serial data to/from the on-chip debug controller.

Debug Enable DEN This input is used to enable the on-chip debug controller.

BLOCK DIAGRAM DESCRIPTION Data ALU
™ . . Address Generation Unit
~ The DSP96001 archltectgre hag been dgsngned to max- X Data Memory
imize throughput in data-intensive real-time DSP appli- Y Data Memory
cations requiring floating-point arithmetic. This objective Pr
. - ogram Memory
has resulted in a dual-natured, expandable architecture
. o . ’ Program Controller
with sophisticated on-chip peripherals and general-pur-
- Bootstrap ROM
pose /0. Two independent, expandable data memory | YOutout
spaces, two address arithmetic units, and two on-chip n;éu p P
DMA controllers make the architecture dual natured. The xpansion Fort
duality of the architecture makes it easier to write soft- Dual-Channel DMA Controller
ware for DSP applications. For example, data is naturally General-Purpose I/0
partitioned into X and Y coordinates for graphics and Random-Number Generator
image-processing applications, into coefficient and data HOS"‘ Interface o
spaces for filtering and transformations, and into real and Serial Communication Interface
imaginary spaces for performing complex arithmetic. Synchronous Serial Interface
< The major components of the DSP96001 are as follows: On-Chip Debugger
Data Buses These components are depicted in Figure 2 and de-
Address Buses scribed in the following paragraphs.

DSP396001 MOTOROLA
BR574/D 5

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Data movement on the chip occurs over five, bidirec-
tional, 32-bit buses: the X bus (XDB), the Y bus (YDB),
the program bus (PDB), the DMA bus (DDB), and the
global bus (GDB). The X and Y buses may also be treated
by certain instructions as one 64-bit data bus by conca-
tenation of XDB and YDB. Data transfers between the
data ALU and the X memory and Y memory occur over

MOTOROLA
6

ADDRESS
GENERATION
UNIT (AGU)
YAB
XAB EXTERNAL | ADDRESS
ADDRESS
PAB SWITCH
DUAL CHANNEL
DMA
CONTROLLER PROGRAM X MEMORY Y MEMORY
512x32 512x32 512x32
RAM RAM RAM CONTROL
o ON-CHIP 32:32 B co?#%m
PORT PERIPHERALS: BOOTSTRAP 512x32 512x32
32-BIT HOST ROM ROM ROM
ssl, SC), PO,
RAND
DDB
DATA BUS YDB
INTERNAL XDB
SWITCH & BIT %);TTER;‘L%
MAN!PULATION PDB SWITCH
UNIT
GDB
CLOCK DEBUG
PROGRAM PROGRAM PROGRAM DATA ALU
GENERATOR ADDRESS DECODE INTERRUPT CONTROLLER
GENERATOR || CONTROLLER CONTROLLER « [EEE FLOATING POINT
- 32x32 INTEGER ALU 6 SERIAL
L X £ & DEBUG
PROGRAM CONTROLLER PORT
SYNG
MODB/IRGB
EXTAL —
MODA/IRQA
Y RESET
AL 1 ResET
NMI wssmsmsiss 32-BIT BUSES
Figure 2. DSP96001 Block Diagram
DATA BUSES XDB and YDB, respectively. XDB and YDB are kept local

on the chip to maximize speed and minimize power dis-
sipation. DMA transfers occur over the DDB; all other
data transfers, such as I/O transfers to peripherals, occur
over the GDB. Instruction word prefetches take place in
parallel over the PDB. Transfers between buses are ac-
complished in the internal bus switch. In general, when
transfers are made with registers that are not 32 bits, the
unused bits read as zero and should be written with zero

DSP96001
BR574/D

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

for future compatibility. The bit manipulation unit, which
resides in the internal bus switch, has access to all data
buses and implements the bit manipulation instructions.

ADDRESS BUSES

Addresses are specified for internal X memory and Y
memory on two, unidirectional, 32-bit buses — X address
bus (XAB) and Y address bus (YAB). Program memory
addresses are specified on the program address bus (PAB).
External memory spaces are addressed via a single, 32-
bit, unidirectional address bus driven by a three-input
mutltiplexer that can select either XAB, YAB, or PAB. There
is no speed penalty if only one external memory space
is accessed in an instruction. If two or three external
memory spaces are accessed in a single instruction, there
will be a one- or two-instruction-cycle execution delay,
respectively. A bus arbitrator prioritizes and schedules
external access requests by the CPU and DMA controller.
On-chip peripherals and the DMA controller are memory
mapped in the internal X memory space. The XAB, YAB,
and PAB are used twice in each instruction cycle to allow
concurrent access to memory by the CPU and DMA con-
troller.

DATA ALV

All the arithmetic (both fixed point and floating point)
and logical operations are performed on data operands
in the data ALU. Both signed and unsigned fixed-point
arithmetic is implemented in a single cycle, which sup-
ports high-level language operations such as program
flow constructs and arithmetic using integer data types.
Single-cycle add, subtract, and multiply operations con-
form to the IEEE 754-1985 Standard for Binary Floating
Point Arithmetic. Calculations are made to infinite pre-
cision and then rounded to single-precision (SP) or sin-
gle-extended-precision (SEP) formats in hardware or
double-precision (DP) and double-extended-precision
(DEP) formats in software. Hardware is provided to sup-
port all four rounding modes: round to nearest (even),
round to zero, round to plus infinity, and round to minus
infinity. Plus and minus infinity, not-a-number (NaN), and
denormalized numbers are also supported. When de-
normalized numbers are detected in the default mode,
extra instruction cycles are inserted for normalization. In
the flush-to-zero (FLUSH) mode, denormalized numbers
are treated as zero and extra cycles are never required.
A complete set of 32-bit logical operations is provided to
support high-level language and controller applications.

The data ALU hardware consists of four blocks: a gen-
eral-purpose register file, a floating-point multiplier, a
floating-point adder/subtracter, and a 32-bit barrel shifter.
The register file consists of 10 registers, each 96 bits long.
These registers support extended-precision formats,
DSP56000 compatibility, and 32- or 64-bit data transfers
over XDB and YDB. ALU results are always stored in one
of the general-purpose registers; floating-point ALU re-
sults are always 96 bits; integer (fixed-point) ALU results
are either 32 or 64 bits. The multiplier supports SP or
SEP floating-point formats with up to 32-bit mantissas
and 11-bit exponents and 32 x 32 integer multiplication
with a full 64-bit product. The IEEE floating-point adder/

DSPS6001
BR574/D

subtracter supports SP, SEP in a single cycle and will
generate the sum and difference of the same two oper-
ands in one cycie. This capability is particularly useful for
calculating FFTs. The adder/subtracter also supports the
fixed-point operations. The 32-bit barrel shifter provides
the necessary shifting for normalizing floating-point
numbers and scaling integers.

ADDRESS GENERATION UNIT

The AGU performs all of the address storage and ef-
fective address calculations necessary to address data
operands in memory. The AGU implements three types
of arithmetic (linear, modulo, and reverse carry) and op-
erates in parallel with other chip resources to minimize
address generation overhead. The AGU contains eight
address registers (R0-R7), eight offset registers (NO-N7),
and eight modifier registers (M0-M7). The Rn are 32-bit
registers usually containing an address pointer. Each Rn
register may be accessed for output to the XAB, YAB,
and PAB address buses. The Nn and Mn registers are 32-
bit registers, which are normally used to control updating
of the Rn registers. Additional hardware provides the ca-
pability of doing PC relative and immediate offset ad-
dressing. Rn, Nn, and Mn registers can also be used for
general-purpose storage.

AGU registers may be read or written via the global
data bus as 32-bit operands. The AGU has two modulo
arithmetic units, which can generate two, independent,
32-bit addresses for any two of the XAB, YAB, or PAB
every instruction cycle. The AGU can directly address
4,294,967,296 locations on the XAB; 4,294,967,296 loca-
tions on the YAB; and 4,294,967,296 locations on the PAB
— a total capability of 12,884,901,888, 32-bit data words.

MEMORIES

Three independent memory spaces of the DSP96001
(X, Y, and program) are shown in Figure 3. The memory
spaces are configured by control bits MA, MB, and DE in
the operating mode register. MA and MB control the pro-
gram memory map and select the reset vector address.
DE controls the X and Y memory maps, enabling the
internal X and Y ROMs. The on-chip X and Y ROMs are
disabled upon reset.

X Memory

On-chip X data RAM is a 32-bit-wide internal memory
that occupies the lowest 512 locations in X memory space.
The on-chip X ROM occupies locations 512 through 1023
in X memory space when enabled by setting DE = 1 in
the operating mode register. The X ROM is factory pro-
grammed with a positive, two-quadrant cosine table use-
ful for FFTs, discrete Fourier transforms (DFTs), and
waveform generation. The on-chip peripheral registers
occupy the top 128 locations of X memory. A special /0
short addressing mode provides efficient access to these
locations. Addresses are received from the XAB, and data
transfers occur on the XDB. Internal X memory may be
accessed twice during a cycle — once by the CPU and
once by the DMA controtler. X memory may be expanded
to four gigawords off-chip.

MOTOROLA
7

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

4)
(" $FFFFFFFF) $FFFFFFFF
PROGRAM “'
MEMORY X Y
SPACE MEMORY MEMORY
SPACE SPACE
$00000040
INTERRUPT
VECTORS
$00000000 $00000000
N O D = DE BIT IN THE OMR DETERMINES
RESET STARTING ADDRESS THE X AND Y MEMORY MAPS
_ _ J
MODE 0 MODE 2 MODE 3
MB=0 MB=1 MB=1
MA=0 MA=0 MA=1 DE=0 DE=1
$FFFFFFFF ON-CHIP ON-CHIP $FFFFFFFF
$E0000000 fﬁflPHERALS PERIPHERALS $FFFFFF80
$00000400 m
INTERNAL INTERNAL
$00000200 X ROM Y ROM $00000200
INTERNAL INTERNAL
RAM RAM INTERNAL || INTERNAL INTERNAL || INTERNAL
X RAM Y RAM X RAM Y RAM
$00000000 RESET $00000000
PRAM PRAM NO PRAM DATA ROMS DISABLED DATA ROMS ENABLED
INTERNAL EXTERNAL EXTERNAL
RESET RESET RESET
Figure 3. DSP96001 Memory Map
Y Memory Program Memory

On-chip Y RAM is a 32-bit-wide internal memory that
occupies the lowest 512 locations in Y memory space.
The on-chip Y ROM occupies locations 512 through 1023
in Y memory space when enabled by setting DE = 1 in
the operating mode register. The Y ROM is factory pro-
grammed with a positive, two-quadrant sine table useful
for FFTs, DFTs, and waveform generation. External 1/0
devices should be mapped into the top 128 locations of
Y memory. A special I/0 short addressing mode provides
efficient access to these locations. Addresses are re-
ceived from the YAB, and data transfers occur on the
YDB. Internal Y memory may be accessed twice during
a cycle — once by the CPU and once by the DMA con-
troller. Y memory may be expanded to four gigawords
off-chip.

On-chip PRAM consists of a 512 x 32-bit, high-speed
RAM, which is enabled by the MA and MB bits in the
operating mode register. Addresses are received from
the program control (usually the PC) over the PAB. Pro-
gram memory may be written using MOVEM instructions
or the DMA controller. The interrupt vector addresses are
located in the bottom 64 locations of program memory.
Program memory may be accessed twice during an in-
struction cycle — once by the CPU and once by the DMA
controller. Program memory may be expanded to four
gigawords off-chip.

PRAM has many advantages; it provides the user a
means to develop code efficiently. The programs can be
changed dynamically using the on-chip DMA to effi-
ciently overlay DSP software algorithms, and interrupt

MOTOROLA
8

DSP96001
BR574/D

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

routines can be located on-chip for maximum efficiency,
especially with fast interrupts. In this way, the on-chip
PRAM operates as a fixed cache, thereby minimizing con-
tention with accesses to external data memory spaces.

The bootstrap mode provides a convenient, low-cost
method to load the DSP96001 PRAM with the user’s pro-
gram after poweron reset. The PRAM may be loaded from
a single, inexpensive, external byte-wide EPROM or via
the host interface from a host processor.

Bootstrap ROM

Bootstrap ROM is a 32 x 32-bit, factory-programmed
ROM used only in the bootstrap mode, operating mode
1. The bootstrap mode may be selected with the external
mode pins during processor reset or by writing the op-
erating mode register at any time. The bootstrap ROM is
not accessible by the user and is disabled in normal op-
erating modes.

PROGRAM CONTROLLER

The program controlier performs instruction prefetch,
instruction decoding, hardware DO loop control, and ex-
ception processing. It consists of a program address con-
troller (PAC), program decode controller (PDC), and the
program interrupt controller (PIC).

Program Address Controller

The PAC provides the instruction prefetch address.
Normal sequential addressing is modified by program
flow control instructions, hardware DO loop processing,
and interrupts.

Program Decode Controller

The PDC decodes instructions and provides control sig-
nals to the on-chip resources.

Program Interrupt Controlier

The PIC prioritizes all pending interrupt requests and
generates the interrupt vector addresses. Two interrupt
types are provided: long interrupts and fast interrupts.

PROGRAM MEMORY
INTERRUPT MAP

$0000003F
HOST
COMMANDS

$00000026

HOST INTERRUPTS
SCI INTERRUPTS
SSI INTERRUPTS

EXTERNAL INTERRUPTS
SW! INTERRUPT

TRACE INTERRUPT

STACK INTERRUPT
DMA INTERRUPTS

RESET

$00000000

All interrupts start as long interrupts where the standard
context switch is performed. There is no context switch
performed for fast interrupts; instead, the two interrupt
routine words are jammed into the instruction pipeline,
and a context switch is not performed.

INPUT/OUTPUT

The 1/0 capability of the DSP96001 is extensive and
advanced. The on-chip peripherals facilitate interfacing
into a variety of system configurations, including multiple
DSP96001 systems (with or without a host processor),
global bus systems with bus arbitration, external mem-
ory, and many serial configurations, all with minimal glue
logic. Each peripheral has its own control, status, and
data registers and is treated as memory-mapped /O by
the DSP96001. Dedicated I/O interfaces have several in-
terrupt vector addresses and control bits to enable/dis-
able interrupts, which minimizes the overhead associated
with servicing the device since each interrupt source can
have its own service routine (Figure 4). The interrupt vec-
tors can be programmed to one of three maskable priority
levels.

Specifically, the /O structure consists of an extremely
flexible memory expansion port (port A), two channels
of DMA, a random-number generator (RAND), 41 addi-
tional 1/0 pins, and two general-purpose interrupt pins,
IRQA and IRQB. The 41 pins may be used as general-
purpose /O pins (port B and port C}, or allocated to an
on-chip peripheral under software control. Three dedi-
cated interfaces are provided on the DSP96001: a 32-bit
parallel host MPU/DMA interface (HOST), an SCI, and an
SSI. Port B is a 32-bit 1/O interface that may be used as
general-purpose IO pins or as host-interface pins. Port
C is a 9-bit /O interface that may be used as general-
purpose I/O pins or as SCI and SSI pins.

Expansion Port (Port A)

The DSP96001 expansion port is designed to synchron-
ously interface over a common, 32-bit data bus with a
wide variety of memory and memory-mapped peripheral
devices, which include high-speed static RAMs, slower

X MEMORY
ON-CHIP
PERIPHERAL MAP

$FFFFFFFF
INTERRUPT PRIORITY
BUS CONTROL
SCI
SS|
HOST INTERFACE
PI/O INTERFACE
DMA CONTROLLER
RAND GENERATOR

$FFFFFFCO
RESERVED

$FFFFFF80

Figure 4. Interrupt and Peripheral Register Memory Maps

DSP96001
BR574/D

MOTOROLA
9

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

memory devices such as dynamic RAMs, and other DSPs
and MPUs in a variety of bus configurations. This variety
is possible because the expansion bus timing is pro-
grammable. The expansion bus timing is controlled by a
bus control register (BCR), and the BS and WT pins. The
BCR controls the timing of the bus interface signals, RD
and WR, and the data lines. Each of four memory spaces,
X, Y, program, and I/0O, has its own 4-bit BCR, which can
be programmed for up to 15 wait states (one wait state
is equal to a clock period or equivalently one-half of an
instruction cycle). In this way, external bus timing can be
tailored to match the speed requirements of the different
memory spaces. When the number of wait states is not
deterministic (e.g., due to external bus arbitration) wait
states can be inserted on request by an external arbitrator
asserting the WT pin. The PFNS pin facilitates interfacing
with specialized low-cost memories such as video RAMs.
After the page size has been selected, PFNS will be as-
serted when the address on the expansion bus crosses
the page boundary. Typically, the assertion of PFNS will
signal external logic to insert wait states until the next
base address in the video RAM is selected. Similarly, if
the address generated is not sequential, the PFNS pin
will be asserted. The BR pin can be programmed to be
either an input or an output. As an input, the DSP96001
acts as a slave and relinquishes the bus after completing
the current bus cycle when the BR pin is asserted. When
the BR pin is programmed as an output, the DSP96001
can request the bus mastership. This flexibility facilitates
using the DSP96001 in shared memory systems as well
as multiprocessor systems.

Direct Memory Access

The dual-channel DMA controller performs all the ad-
dress storage and effective address calculations neces-
sary to address the DMA source and destination memory
locations for two channels. Typically, one channel will be
used to DMA through the expansion port; the other chan-
net is used to DMA through the HOST. Generic memory-
to-memory, memory-to-peripheral, and peripherai-to-
memory transfers can be executed. The DMA controller
operates in parallel with other chip resources to minimize
overhead due to data or program transfers. Eight regis-
ters control each channel: one address, offset, and mod-
ifier register for both the source and destination memory
locations, a transfer count register, and a channel control/
status register. These 16 registers are memory mapped
into the X memory space. The programmer’s model for
each DMA channel is similar to that of the AGU. In fact,
the DMA controller unobtrusively shares the same mod-
ulo arithmetic units for calculating addresses, which per-
mits the calcuiations to be done using either linear,
modulo, or reverse-carry arithmetic.

General-Purpose /0O {Port B, Port C)

Each port B and C pin may be programmed as a gen-
eral-purpose I/0 pin or as a dedicated, on-chip peripheral
pin under software control. A 9-bit port control register
is associated with port C and allows each port pin to be
programmed individualily for one of these two functions.
The port control register associated with port B contains

four bits that program each byte of port B. Also associ-
ated with each general-purpose port is a data direction
register, which programs the direction of each pin, and
a data register for data I/Q. These registers are read/write,
making the use of bit manipulation instructions ex-
tremely effective for accessing the ports.

Host Interface

The HOST is a 32-bit, full-duplex, paralle! port, which
may be connected directly to the data bus of a host pro-
cessor. The host processor may be any of a number of
industry-standard microcomputers or microprocessors,
another DSP, or DMA hardware. The DSP96001 HOST
has a 32-bit, bidirectional data bus H0-H31 (PB0-PB31)
and eight, dedicated control lines (HAO, HA1, HA2, HA3,
HR/W, HEN, HREQ, and HACK) to control data transfers.
The HOST appears to the host processor as a memory-
mapped peripheral occupying 16 bytes in the host-pro-
cessor address space. Separate transmit and receive data
registers are double buffered to allow the DSP96001 and
host processor to transfer data efficiently at high speed.
Host-processor communication with the HOST is accom-
plished using the standard data move instructions and
addressing modes of the host processor. Handshake flags
are provided for polled or interrupt-driven data transfers
with the host processor. DMA hardware may be used
with only the HREQ and HACK lines to transfer data with-
out host-processor intervention.

One of the most innovative features of the HOST is the
host-command feature. With this feature, the host pro-
cessor can issue vectored interrupt requests to the
DSP96001. The host may select any one of 32 DSP96001
interrupt routines to be executed by writing a vector ad-
dress register in the HOST. This flexibility allows the host
programmer to execute up to 32 functions prepro-
grammed in the DSP36001. For example, if the appro-
priate interrupt routines are implemented in the DSP96001,
HOST interrupts allow the host processor to read or write
DSP96001 registers, X, Y, or program memory locations,
force exceptions for SSI, SCi, IRQA, and IRQB interrupt
routines, and perform control and debugging operations
to aid program development.

Serial Communications Interface

The SCI provides a full-duplex port for serial commu-
nication to other DSPs, microprocessors, or peripherals
such as modems. The communication can be either direct
or via R§232C-type lines. This interface uses three ded-
icated pins: transmit data (TXD), receive data {RXD), and
SCl serial clock (SCLK). The SCI supports industry-stand-
ard asynchronous bit rates and protocols as well as high-
speed (up to 3.33 Mbits/sec), synchronous data trans-
mission. The asynchronous protocols include a multidrop
mode for master/slave operation. The SCl consists of sep-
arate transmit and receive sections whose operations can
be asynchronous with respect to each other. A pro-
grammable baud-rate generator is included to generate
the transmit and/or receive clocks. An enable bit and in-
terrupt vector have been included so that the baud-rate
generator can function as a general-purpose timer when
it is not being used by the SCI peripheral.

¢

—

MOTOROLA
10

DSP96001
BR574/D

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

i

Synchronous Serial Interface

The SSI is an extremely flexible, full-duplex serial in-
terface, which allows the DSP96001 to communicate with
a variety of serial devices at high speed (up to 6.67 Mbits/
sec). These devices include one or more industry-stand-
ard codecs, other DSPs, microprocessors, and periph-
erals. The following characteristics of the SSI can be
independently defined by the user: the number of bits
per word, the protocol or mode, the clock, and the trans-
mit/receive synchronization. Three modes can be se-
lected: normal, network, and on-demand. The normal
mode is typically used to interface with devices on a
regular or periodic basis. In this mode, the SSl functions
with one data word of I/O per frame. The network mode
provides time slots, a bit clock, and frame synchroniza-
tion pulse. The SSi functions with from two to 32 words
of 1/0 per frame in the network mode. This mode is typ-
ically used in star or ring time-division-multiplex net-
works with other DSP96001s and/or codecs. The on-
demand mode is a data-driven mode; no timeslots are
defined. This mode is intended to be used to interface
with devices on a nonperiodic basis.

The clock can be programmed to be continuous or gated.
Since the transmitter and receiver sections of the SS| are
independent, they may be programmed to be synchron-
ous (use a common clock) or asynchronous with respect
to each other. The SSI supports a subset of the Motorola
SPI interface in the on-demand mode. The SSI requires
three to six pins, depending on the operating mode se-
lected. For example, the six pins can be defined as trans-
mit data, receive data, clock, frame sync, and two select
pins so that four codecs can be addressed. A matrix of
SSI operating modes versus typical applications is pro-
vided in Table 2.

Random-Number Generator

The RAND consists of three, 32-bit read/write registers:
a random-number shift register, a bit mask register, and
a control/status register. These registers are memory
mapped in X memory space. This combination of reg-
isters allows the user to define a pseudorandom-number
sequence polynomial and a seed. The hardware imple-
ments a linear feedback shift register. The output is a 32-
bit integer that can be converted to a floating-point num-
ber if desired. Random numbers are useful for adding a

dither signal to data or for providing a uniformly distrib-
uted random variable for statistically based applications.

On-Chip Emulation

OnCE hardware provides a dedicated serial port for
software debugging and production diagnostics. Hard-
ware is provided on-chip to freeze instruction execution,
single step, set breakpoints on X:, Y:, and P: addresses,
and read data on the system data buses and program-
ming model registers. A history buffer has also been added
to read the last five instructions executed. This hardware
eliminates the need for cumbersome multiline, high-speed
cables that cannot meet the speed requirements for em-
ulating today’s high-speed processors. For RAM-based
systems using the DSP96001, OnCE makes in-the-field
diagnosis and repair a reality.

PROGRAMMING MODEL DESCRIPTION

The DSP96001 programming model is virtually iden-
tical to that of the DSP56001 except for the data ALU,
which has been enhanced with additional, wider regis-
ters. Programming the DSP96001 is therefore a natural
extension to programming the DSP56001; a new archi-
tecture does not have to be learned. The programmer
can view the DSP96001 architecture as three execution
units operating in parallel. The three execution units are
the data ALU, the AGU, and program controller. The pro-
gramming model, like that of conventional MPUs, elim-
inates the need to refer to the detailed chip architecture
when programming the DSP96001, because the parallel
execution units make the instruction execution pipeline
virtually invisible. The programming model is shown in
Figure 5 and is described in the following paragraphs.

DATA ALV

The data ALU appears to the programmer as a general-
purpose register file consisting of ten, 96-bit, floating-
point data registers, which may be alternatively accessed
as 30, independent, 32-bit read/write registers. The 96-
bit registers, D0-D9 (Dn), are developed by the concaten-
ation of the high, middie, and low registers,
Dn.h:Dn.m:Dn.l. The size of the 96-bit register supports

Table 2. SSI Operating Modes

(Pm:::on f:fc:::: TX-RRe)I(a':'Ii‘r’:ing Typical Applications
Normal Continuous Asynchronous/Synchronous Asynchronous/Synchronous Codec
Normal Gated Asynchronous Periodic DSP-to-DSP
Normal Gated Synchronous Periodic DSP-to-A/D and DSP-to-D/A
On-Demand Continuous Asynchronous DPS-to-MCU
On-Demand Continuous Synchronous P-to-S and S-to-P Conversion
On-Demand Gated Asynchronous DSP-to-DSP
On-Demand Gated Synchronous DSP-to-SPI Peripherals
Network Continuous Asynchronous/Synchronous TDM Codecs/DSP Networks

DSP96001
BR574/D

MOTOROLA
1

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

95 0
DATA ALU D9 D9.h Da.m D9l

DSP56000
MAPPING
31 0 31 0 31 0
FLOATING-POINT OR INTEGER REGISTERS
95 0
ADDRESS 7
GENERATION N7 R7
UNIT M6 NG R6
M5 N5 RS
M4 N4 Ra
M3 e A3
M2 N2 R2
M1 Nt R1 "
MO NO RO
0 31 0 3 0
MODIFIER OFFSET ADDRESS
REGISTERS REGISTERS REGISTERS
31 0 31 0 31 87 0
PROGRAM :
CONTROLLER PC | SR OMR
PROGRAM STATUS OPERATING
COUNTER REGISTER MODE |
REGISTER |
31 0 31 0]
LA “ Lc |
LOOP LooP !
ADDRESS COUNTER ‘
31 SSH 031 SSL 0 31 65 0 ’
! < . P
—_— STACK
POINTER
15 * Reads as zero; should be writlen
SYSTEM STACK with zero for future compatibility.

Figure 5. User Programming Model

MOTOROLA DSP96001
12 BR574/D

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

extended-precision and mixed-precision arithmetic and
allows extra accuracy for intermediate calculations and
transcendental functions. For example, when the Dn reg-
isters are the destination of floating-point instructions, a
conversion is automatically and invisibly done to repre-
sent the data in double-extended-precision format. When
the Dn registers are the destination of nonfloating-point
instructions, the Dn.| registers are written if the result is
32 bits, and Dn.m:Dn.I registers are written if the result
is 64 bits. The remaining registers are not affected. Com-
patibility with the DSP56001 data ALU registers is achieved
as shown in Figure 5.

Registers D0-D7 are considered as general-purpose
registers. These registers can be used as source or des-
tinations in general or as source and destination oper-
ands in the same instruction: i.e., source for the current
instruction and destination for loading the source oper-
ands for the next instruction. They may also be read back
to the appropriate data bus to implement memory delay
operations and save/restore operations for interrupt serv-
ice routines.

D8 and D9 are special-purpose registers that can be
read or written over XDB or YDB. These registers can be
used to hold source operands for data ALU operations,
act as data pipeline registers, or as registers for holding
temporary variables or constants that are frequently used
for implementing high-level languages. D8 and D9 are
not used to hold the results of data ALU operations.

ADDRESS GENERATION UNIT

The programmer’s model for the AGU consists of three
sets of 32-bit read/write registers called address registers,
offset registers, and modifier registers. They provide all
the registers necessary to generate address-register in-
direct effective addresses.

Address-Register Files {R0-R3 and R4-R7)

The eight address registers, R0-R7, are 32 bits wide and
may contain addresses or general-purpose data. The 32-
bit address in a selected address register is used in the
calculation of the effective address of an operand. When
supporting concurrent, paraliel X and Y memory moves,
the address registers must be viewed as two separate
files, RO-R3 and R4-R7, one file for each bus. The content
of an Rn may point to data directly and/or may be pre-
or post-updated according to the selected addressing
mode. Modifier registers are always used to specify the
type of arithmetic to be used if the associated Rn is up-
dated. Offset registers are used if the update by offset
addressing mode is specified. The address-register mod-
ification is performed by one of the two modulo arith-
metic units.

Offset-Register Files (NO-N3 and N4-N7)

The eight offset registers, NO-N7, are 32 bits wide and
may contain offset values used to increment and dec-
rement address registers in indexed, address-register up-
date calculations, or they may be used for 32-bit, general-
purpose storage. For example, the contents of an offset
register may be used to step through a table at some rate
(e.g., five locations per step for waveform generation),

DSP96001
BR574/D

or may specify the offset into a table or the base of a
table for indexed addressing. Each Rn has its own Nn
associated with it.

Modifier-Register Files (M0-M3 and M4-M7)

The eight modifier registers, M0-M7, are 32 bits wide.
The content of Mn defines the type of address arithmetic
to be performed for address update calculations. The
AGUs support linear, modulo, and reverse-carry arith-
metic types for all address-register indirect addressing
modes. For the case of modulo arithmetic, the content of
Mn also specifies the modulus. Each Rn has its own Mn
associated with it. Each modifier register is set to
$FFFFFFFF on processor reset, which specifies linear
arithmetic as the defauit type for address-register update
calculations.

PROGRAM CONTROLLER

The program controller has the standard program flow
resources such as the PC, status register (SR), operating
mode register (OMR), stack pointer (SP), and a 15-level
by 64-bit system stack memory. The DSP96001 program
controller also features a loop address (LA) register and
a loop counter (LC) register, which are dedicated to sup-
porting the hardware DO loop and repeat instructions.
With the exception of the PC, all registers are read/write
to facilitate system debug.

Program Counter

The 32-bit PC register contains the address of the next
location to be fetched from program memory space. This
special-purpose address register is pushed on the stack
when program looping is initiated, during long interrupts,
or when a jump-to-subroutine instruction is performed.
The PC can address 4,294,967,296 locations in program
memory space.

Status Register

The SR is a 32-bit register consisting of an 8-bit con-
dition code register (CCR), an 8-bit exception register (ER),
an 8-bit IEEE exception register (IER), and an 8-bit mode
register (MR). SR is pushed on the stack when program
looping is initialized, during long interrupts, or when a
jump-to-subroutine instruction is performed (see Figure
6).

The contents of CCR reflect the status produced by each
data ALU instruction. The CCR bits are affected by data
ALU operations and by instructions that directly refer-
ence the CCR register — namely, ORIl and ANDI. The CCR
bits are not affected by transfers over the XDB and YDB.

The contents of ER reflect the exceptions produced as
a result of the execution of the last instruction. The ER
bits are affected by processor reset, by instructions which
directly reference the ER register (namely, ORl and ANDI),
and by the data ALU floating-point operations.

The IER contains the five IEEE exception flags and
rounding mode control. The IER bits are affected by pro-
cessor reset, by instructions directly referencing the IER
register (namely, ORI and ANDI), and by the data ALU
floating-point operations. The {EEE exception bits are
sticky in that they remain set until cleared by the user.

I

MOTOROLA
13

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

7 6 5 4 3 2 1 0
. . NAN | | N Z v c CCR

@ © © © © (0

| L—— CARRY ‘
OVERFLOW :
ZERO |

NEGATIVE
INFINITY
NOT-A-NUMBER
RESERVED

15 14 13 12 1 10 9 8

> OF
+ |UNCC|nan | ERR OVF |UNF | DZ |INX ER

@ © © @© @© (@ (©

| L— INEXACT
DIVIDE-BY-ZERO
UNDERFLOW

OVERFLOW

OPERAND ERROR
SIGNALING NAN
UNORDERED CONDITION
RESERVED

23 22 21 20 19 18 17 16
. R1 RO | loP | OVF| UNF | Dz |INX IER

@ ©@ @© © @© (© (©

L INEXACT
L= DIVIDE-BY-ZERO
UNDERFLOW '

OVERFLOW

INVALID OPERATION
ROUNDING MODE
RESERVED

31 30 29 28 27 26 25 24
LF *) 10 FZ |RP | P Po MR

(0) Mm @ © © © (0 '
‘ I I L1 PRECISION CONTROL
ROUNDING PRECISION

|
FLUSH TO ZERO |
INTERRUPT MASK [
!
|

RESERVED
LOOP FLAG

NOTE: Number in parentheses indicates status after poweron reset.

Figure 6. Status Register Format

MR is a special-purpose control register that defines Loop Counter
the current system state of the processor. The MR bits
are affected by processor reset, exception processing, the The LC is a special-purpose 32-bit counter used to spec-
DO, ENDDO, RTI, ILLEGAL, and SWI instructions, and by ify the number of times a hardware program loop is to
instructions directly referencing the MR register — namely, be repeated. This register is stacked by a DO instruction ‘
OR! and ANDIL. and unstacked by end-of-loop processing or by execution

MOTOROLA DSP96001
14 BR574/D

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

of an ENDDO instruction. The LC is decremented each
time the loop is executed and may be read under program
control, which allows the number of times a loop has
been executed to be monitored during execution. The LC
is also used in the REP instruction.

Loop Address Register

The content of the 32-bit LA register indicates the lo-
cation of the last instruction word in a program loop. This
register is stacked by a DO instruction and unstacked by
end-of-loop processing or by execution of an ENDDO
instruction.

System Stack

The SS is a separate internal memory, which stores
the PC and SR for subroutine calls and long interrupts.
The SS will also store the LC and LA registers in addition
to the PC and SR registers for program looping. The SS
is in stack memory space, and its address is always in-
herent and implied by the current instruction. The SS
memory is 64 bits wide and 15 locations deep. The SS
is divided into two separately addressable banks: system
stack high (SSH) and system stack low (SSL), each 32
bits wide. SSH stores the PC or LA contents; SSL stores
the SR or LC contents. Being able to address SSL and
SSH facilitates setting up software stacks in memory.

When a subroutine call or long interrupt occurs, the
contents of the PC and SR are pushed on the location in
the SS. When a return from subroutine occurs, the con-
tents of the top location in the SS are pulled to the PC,
but not to the SR. When a return from interrupt occurs,
the contents of the top location in the SS are pulled to
both the PC and SR.

The interrupt subsystem of the DSP96001 is vector based
and prioritized. Interrupt vectors point to two consecutive
locations in program memory. if one of the two words
fetched by the interrupt controller is a jump-to-subroutine
instruction, a long interrupt routine is formed, and a con-
text switch is performed using the stack. If neither inter-
rupt instruction word causes a change of control flow,

then the two interrupt instruction words fetched consti-
tute a fast interrupt routine; the two instruction words
are executed in line without a context switch being per-
formed. The fast interrupt routine provides exception
processing with no context switching averhead. This
mechanism is commonly used to move data between
memory and an 1/O device. Up to 2.2 million interrupts
per second can be processed using this mechanism.
The SS is also used to implement no-overhead, nested
hardware DO loops. When the DO instruction is executed,
the address of the first instruction in the loop and the
contents of SR, LA, and LC prior to the start of the loop
are saved on the stack, which allows nesting of DO loops.

Stack Pointer

The SP register is a 32-bit register that indicates the
location of the top of the SS and the status of the stack
(underflow, empty, full, and overflow conditions). The SP
is referenced implicitly by some instructions (DO, REP,
JSR, RTI, etc.) or directly by the MOVEC instruction. The
SP register format is shown in Figure 7.

Operating Mode Register

The OMR is a 32-bit register that defines the current
operating mode of the processor: i.e., the memory maps
for program and data memories as well as the startup
procedure. The OMR bits are only affected by processor
reset and by instructions directly referencing the OMR.
During processor reset, the chip operating mode bits, MA
and MB, will be loaded from the external mode select
pins, MODA and MODB. The data ROM enable bit is
cleared, disabling the X and Y on-chip lookup table ROMs.
The external clock bit is set if an external clock oscillator
is used. When the external clock bit is set, exit from the
stop state takes only 25 clock cycles. Figure 3 shows the
effect of the OMR on the DSP96001 memory maps. The
operating mode register format is shown in Figure 8.
Table 3 summarizes the DSP96001 operating modes. Ta-
bles 4 and 5 show the program and data memory spaces.

31 6 5 4 3 2 0
. UF | sE | P3 | P2 PO SP
I L1 1 | STACK POINTER
STACK ERROR FLAG
UNDERFLOW FLAG
RESERVED
Figure 7. Stack Pointer Format
31 7 6 5 4 3 2 1 0
* EC | + . . DE | MB | MA OMR

OPERATING MODE
DATA ROM ENABLE
RESERVED

EXTERNAL CLOCK

RESERVED

Figure 8. Operating Mode Register Format

DSP96001
BR574/D

I

MOTOROLA
15

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Table 3. Operating Mode Summary

Operating
Mode

0 0 0

MB MA Description

PRAM enabled; reset at
$00000000 (internal).

Special bootstrap mode, after
PRAM loading mode 2 is au-
tomatically selected.

PRAM enabled; reset at
$E0000000 (external).

PRAM disabled; reset at
$00000000 {external).

Table 4. Program Memory Space

Operating —
Mode ms MA Description
0 and 2 X 0 Internal RAM:
$00000000-$000001FF
External:
$00000200-$FFFFFFFF
3 1 1 External:
$00000000-$FFFFFFFF

Table 5. Program Memory Space

RDS;: X Memory Space Y Memory Space
Enable Map Map
0 Internal RAM: Internal RAM:
$00000000-$000001FF | $00000000-$000001FF
External: External:
$00000200-$FFFFFF7F | $00000200-$FFFFFFFF
On-chip peripherals:
$FFFFFF80-$FFFFFFFF
1 Internal RAM: Internal RAM:
$00000000-$000001FF | $00000000-$000001FF
Internal ROM: Internat ROM:
$00000200-$000003FF | $00000200-$000003FF
External: External:
$00000400-$FFFFFF7F | $00000400-$FFFFFFFF
On-chip peripherals:
$FFFFFF80-$FFFFFFFF

INSTRUCTION SET SUMMARY

The DSP96001 instruction set has been designed to be
as orthogonal as possible to allow flexible, independent,
concurrent control of the data ALU, AGU, and program
controller execution units during each instruction cycle.
This instruction-set design maximizes throughput, min-
imizes program storage requirements, and enhances the
efficiency of high-level language compilers. The instruc-
tion set is divided into the following groups:

Floating-Point Arithmetic
Fixed-Point Arithmetic

MOTOROLA
16

Logical

Bit Manipulation
Loop

Move

Program Control

INSTRUCTION FORMAT

Instructions are one or two words in length. The in-
struction and its length are specified by the first word of
the instruction. The second word may contain an abso-
lute address or immediate data. When an instruction is
more than one word in length, an additional instruction
execution cycle may be required. The assembly language
source code for a floating-point FMPY//FADD one-word
instruction is shown below. The source code is organized
into six fields:

Opcode
FMPY

Operands
D4, D5, DO

Opcode
FADD

Operands
DO, D1

Parallel Data Move
X: (R0O)+,D4

Parallel Data Move
Y: (R4)+,D5

The opcode fields typically indicate the data ALU op-
eration to be performed; it may also specify a move,
address generation, or program control operation. At least
one opcode field must always be included in the source
code. The operand fields specify the operands to be used
by the opcode immediately to the left. Up to two parallel
data moves are defined in many instructions. The mem-
ory space qualifiers, X:, Y:, P:, and L: {long memory space),
indicate which memory space is being referenced. Par-
allel move operations are important because they allow
new operands to be prefetched for use in the next in-
struction and allow results from the previous instruction
to be saved.

The DSP96001 allows parallel processing by the data
ALU, AGU, and program controller. For example, in the
previous instruction word, the DSP96001 will perform the
designated ALU operations (data ALU), the data transfers
specified with address register updates (AGU), and will
also decode the next instruction and fetch an instruction
word from program memory (program controller), all in
one instruction cycle. In addition, the program controller
may be processing an active hardware DO loop.

Floating-Point Arithmetic Instructions

All floating-point arithmetic instructions operate on the
96-bit data ALU registers, which means the on-chip data
buses are free for parallel move operations. If the floating-
point instruction specifies one parallel move, either float-
ing-point or fixed-point data types can be moved. If a
floating-point instruction specifies two parallel moves,

DSP96001
BR574/D

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

only floating-point data can be moved. Floating-point in-
structions affect the condition codes in the IER and ER
registers with the exception of the transfer conditionally
instruction, FTce, which does not affect any condition
codes. Floating-point instructions execute in a single cycle
in the default mode except when denormalized numbers
are detected. Floating-point instructions always execute
in a single cycle in the flush-to-zero mode with the pos-
sible exception of the FMAC instruction. The FMAC in-
struction takes two cycles if the contents of the destination
are used in the following instruction, regardless of the
mode.

Multi-operand floating-point instructions are as follows:
FADD Float Add

FADDR Float Add and Round
FADDSUB Float Add, Float Subtract
FADDSUBR Float Add and Round, Float

Subtract and Round
FCMP Float Compare
FCMPM Float Compare Magnitude
FCOPYS Float Copy Sign
FDIVI Float Divide lteration*
FGETEXP Float Extract Exponent
FGETMAN Float Extract Mantissa
FINT Float Extract Integer with
Default Round

FLOOR Float Extract Integer with
Round to Minus Infinity
FMAC Float Multiply with Accumulation
FMACR Float Multiply with Accumulation
and Round
FMPY Float Multiply
FMPYR Float Multiply and Round
FMPY//FADD Float Multiply, Float Add
FMPY//FADDR Float Multiply, Float Add

and Round

FMPY//FADDSUB Float Muiltiply, Float Add,
Float Subtract

FMPY//FADDSUBR Float Multiply, Float Add and Round,
Float Subtract and Round

FMPY//FSUB Float Multiply, Float Subtract
FMPY//FSUBR Float Multiply, Float Subtract
’ and Round
FSCALE Float Scale
FSCALER Float Scale and Round
FSUB Float Subtract
FSUBR Float Subtract and Round
FTFR Float Transfer Data ALU Register
FTcc Float Transfer Data ALU Register

Conditionally*
*These instructions do not allow parallel moves.

Single-operand floating-point instructions are as follows:

FABS Float Absolute Value
FCLR Float Clear
FLOAT Integer to Float Convert

FLOATU Unsigned Integer to Float Convert
FNEG Float Negate

FSGL Float Convert to Single Precision
FTST Float Test

INT Float to Integer Convert

INTRZ Float to Integer Convert with

Round to Zero
The IEEE 754 standard divide, remainder, square root, and con-
vert binary to/from decimal operations are provided by Motorola
in the form of IEEE conformant software.

DSP96001
BR574/D

Fixed-Point Arithmetic Instructions

These arithmetic instructions perform all of the fixed-
point arithmetic operations within the data ALU. With the
exception of the TFR and Tcc instructions (which do not
affect any condition codes), fixed-point instructions may
affect the condition codes in the CCR. Fixed-point arith-
metic instructions are register based so that the data ALU
operation indicated by the instruction does not use the
X bus, Y bus, or G bus. Parallel data movement over these
on-chip buses is allowed during most data ALU opera-
tions. The data format for two paraliel moves is fixed
point; if only one parallel move is specified, either float-
ing-point or fixed-point data can be moved as specified
by the destination register. DO.m,I-D7.m,| are the desti-
nation register alternatives for these instructions. Fixed-
point arithmetic instructions execute in one instruction
cycle.

Multi-operand fixed-point instructions are as follows:

ADC Add with Carry

ADD Add

ASL Arithmetic Shift Left (Multiple)
ASR Arithmetic Shift Right (Multiple)
CMP Compare

CMPA Compare Address*

CMPM Compare Magnitude

MPY Signed Multiply

MPYU Unsigned Multiply*

SUB Subtract

SBC Subtract with Carry

Tec Transfer Conditionally*
TFR Transfer Data ALU Register

*These instructions do not allow parallel moves.

The CMPM affects the condition code bits according to
the results of the subtraction of the absolute values of
two operands. This instruction, together with Tcc, is use-
ful in determining maximum and minimum values in
blocks of data.

Single-operand fixed-point instructions are as follows:

ABS Absolute Value

ASL Arithmetic Shift Left
ASR Arithmetic Shift Right
CLR Clear

DEC Decrement

INC Increment

NEG Negate

TST Test

TSTA Test Address*

*These instructions do not allow parallel moves.

Logical Instructions

The logical instructions use only the resources internal
to the data ALU to perform all logical operations affecting
the CCR bits. Logical instructions are data ALU register
based. Optional data transfers may be specified with most
logical instructions, which allows for parallel data move-
ment over the on-chip buses during a data ALU logical
operation. New data can be prefetched for use in the
following instructions, and results calculated in previous
instructions can be stored. For logical instructions, the
data format for parallel moves is fixed point if two moves

MOTOROLA
17

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

are specified; if a single paratlel move is specified, either
fixed-point or floating-point data may be moved, de-
pending on the destination address specified. These in-
structions execute in one instruction cycle. The destination
is one of DO0.I-D7.1, except for ANDI or ORI, whose des-
tination is one of the status registers.

AND Logical AND

ANDI AND Immediate with Control Register*
EOR Logical Exclusive OR

LSL Logical Shift Left

LSR Logical Shift Right

NOT Logical Complement

OR Logical Inclusive OR

ORI OR immediate with Control Register*
ROL Rotate Left

ROR Rotate Right

*These instructions do not allow paraliel moves.

Bit Manipulation Instructions

The bit manipulation instructions test the state of any
single bitin a memory location or program model register
and then optionally sets, clears, or inverts the bit. The
carry bit of the CCR will contain the result of the bit test.
Parallel moves are not allowed with any of these instruc-
tions.

BCLR Bit Test and Clear
BSET Bit Test and Set
BCHG Bit Test and Change
BTST Bit Test on Memory

Loop Instructions

The DO and ENDDQO instructions make writing straight-
line code practically unnecessary. The DO instruction sets
up a hardware loop by initiating a program loop, setting
up looping parameters, and then cleans up the SS when
terminating a loop. Initialization includes saving registers
LA and LC on the SS so that program loops can be nested.
The address of the first instruction in a program loop is
also saved on the stack to allow no-overhead looping.
Single-instruction DO loops can be implemented. DO
loops are interruptible. An indirect address can be used
to specify a dynamic loop count in the DO instruction,
which facilitates parameter passing. The ENDDO instruc-
tion is used to prematurely terminate the current DO loop
and to clean up the stack. To maximize throughput, the
REP instruction repeats the next instruction without re-
fetching the instruction. Because the instruction repeated
is not refetched, a REP operation is not interruptible. An
interruptible repeat instruction can be implemented us-
ing a single-instruction DO loop. These instructions do
not allow parallel moves.

DO Start Hardware Loop
ENDO End Current DO Loop
REP Repeat Next Instruction

Move Instructions

The MOVE instructions perform data movement over
XDB, YDB, GDB, and PDB. MOVE instructions do not af-
fect the status registers. The FMOVE and MOVE instruc-
tions provide all the floating-point and fixed-point,

MOTOROLA
18

respectively, parallel move operations and can be con-
sidered to be data ALU No Ops with parallel moves.

FMOVE Float Move

LEA Load Effective Address
MOVE Move Data

MOVEC Move Control Register
MOVEI Move Immediate
MOVEM Move Program Memory
MOVEP Move Peripheral Data

Program Control Instructions

The program control instructions include jumps, con-
ditional jJumps, branches, conditional branches, and other
instructions affecting the PC and SS. Branch instructions
allow PC relative offsets needed for writing position-in-
dependent code. Program control instructions may affect
the CCR bits as specified in the instruction. Optional par-
allel data transfers over the on-chip buses are not allowed
during the execution of program control instructions. Ex-
ecution of the STOP and WAIT instructions place the
DSP96001 in low-power states. All processor activity is
suspended, and the oscillator is gated off after a STOP
instruction has been executed. When the WAIT instruc-
tion is executed, internal processing is halted; however,
the on-chip peripherals and oscillator remain active. The
processor waits for an interrupt or processor reset to exit
the stop or wait states. The following are the program
control instructions.

BBSET Branch if Bit Set

BBCLR Branch if Bit Clear

BRA Branch Always

BRcc Branch Conditionally

BScc Branch to Subroutine Conditionally
BSR Branch to Subroutine

BSCLR Branch to Subroutine if Bit Clear
BSSET Branch to Subroutine if Bit Set

FBcc Float Branch Conditionally

FBScc Float Branch to Subroutine Conditionally
ILLEGAL lllegal Instruction Interrupt

Jee Jump Conditionally

JCLR Jump if Bit Clear

JMP Jump

JScc Jump to Subroutine Conditionally
JSCLR Jump to Subroutine if Bit Clear

JSET Jump if Bit Set

JSR Jump to Subroutine

JSSET Jump to Subroutine if Bit Set

NOP No Operation

RESET Reset On-Chip Peripheral Devices

RTI Return from Interrupt

RTS Return from Subroutine

STOP Stop Processing (Low Power Standby)
Swi Software Interrupt

WAIT Wait for interrupt (Low Power Standby)

ADDRESSING MODES

The addressing modes are grouped into three cate-
gories: register direct, register indirect, and special. These
addressing modes are summarized in Table 6. All address
calculations are performed in the AGU to minimize ex-
ecution time and loop overhead. Addressing modes spec-
ify whether the operand is in a register, memory, or
encoded in the instruction (as immediate data).

—

DSP96001
BR574/D

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

Table 6. Address Modes Summary

Add ina Mod Modifier Memory/Registers Referenced
ressing Wode MMMM c D | A P X Y L | Xy
Register Direct
Data or Control Register No X X
Address Register No X
Address Modifier Register No X
Address Offset Register No X
Address Register Indirect
No Update Yes X X X X X
Postincrement by 1 Yes X X X X X
Postdecrement by 1 Yes X X X X X
Postincrement by Offset Nn Yes X X X X X
Postdecrement by Offset Nn Yes X X X X
Indexed by Offset Mn Yes X X X X
Indexed by Displacement Yes X X X
Predecement by 1 Yes X X X X
Special
Immediate Data No X
Absolute Address No X X X X
Immediate Short Data No X
Short Jump Address No X
PC Relative No X
/0 Short Address No X X
Implicit No X X
Where:
MMMM = Address Modifier
S = Stack Reference
C = Program Controller Register Reference
D = Data ALU Register Reference
A = Address ALU Register Reference
P = Program Memory Reference
X = X Memory Reference
Y = Y Memory Reference
L = L Memory Reference
XY = XY Memory Reference

The register direct addressing mode can be subclas-
sified according to the specific register addressed. The
data registers include D0-D9. The control registers in-
clude SR, OMR, SP, SSH, SSL, LA, LC, CCR, IER, ER, and
MR.

Address register indirect modes use an address reg-
ister (Rn) to point to locations in memory. Except in the
indexed-by-offset or displacement modes, the content of
Rn forms the effective address for address indirect ad-
dressing and can be predecremented or postincre-
mented. For indexed modes, the effective address is
Rn+ Nn if an offset is used, or Rn+ $xxxxxxxx if a dis-
placement is used and the content of Rn is not changed.
In all cases, the update is done according to one of three
types of arithmetic selected by the corresponding Mn
register. If a mode using an offset is specified, an offset
register (Nn) is also used for the update. The Nn and Mn
registers are assigned to the Rn with the same n. Thus,
the assigned register sets are the triplets — MO;NO;RO,
M1;N1;R1, M2;N2;R2, M3;N3;R3, M4;N4;R4, M5;N5;R5,
M6:N6:R6, and M7;N7;R7. This structure is unigque and
extremely powerful in general, and particularly powerful
in setting up DSP-oriented data structures. All address
register indirect modes use at least one triplet, and the

DSP96001
BR574/D

X/Y memory reference uses two triplets, one for X mem-
ory space and one for Y memory space.

The special addressing modes include immediate and
absolute modes, PC relative for P: space, and implied
references to the PC, SS, and program memory. PC rel-
ative modes are indexed by absolute and by Rn.

Although the indexed-by-displacement indirect ad-
dressing mode is only directly available for X:, Y:, and
XY: memory spaces, it can be used indirectly for P: space
by using the LEA instruction to load a pointer. Similarly,
PC relative addressing can be used to address operands
in X:, Y:, and XY: spaces by using the LEA instruction to
load a pointer.

Address Modifiers (Mn}

The address modifiers allow the AGU to support linear,
modulo, and reverse-carry address arithmetic for all ad-
dress register indirect modes. These special address
arithmetic types allow the creation of data structures in
memory for FIFOs (queues), delay lines, circular buffers,
stacks, and bit-reversed FFT buffers. Data is manipulated
by updating address registers rather than moving large
blocks of data. The content of the address modifier reg-
ister, Mn, defines the type of address arithmetic to be

1

MOTOROLA
19

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

i

performed for addressing mode calculations. For the case
of modulo arithmetic, the content of Mn also specifies
the modulus. The three types of arithmetic are discussed
below.

Linear Arithmetic (Mn = $FFFFFFFF)

The address calculation is performed using normal 32-
bit, twos complement linear arithmetic. A 32-bit offset,
Nn, may be used in the address calculations. The range
of values may be considered as signed (Nn from
—2,147,483,648 to +2,147,483,647) or unsigned (Nn from
0 to +4,294,967,296).

Modulo Arithmetic (Mn=modulus — 1}

The address calculation is performed modulo M, where
M ranges from 2 to + 16,777,216 (i.e., 24 bits). Modulo
M arithmetic causes the address register value to remain
within an address range of size M defined by a lower and
upper address boundary. The value M —1 is stored in the
modifier register, Mn. The lower boundary (base address)
value must have zeros in the k LSBs, where 2k> =M, and
therefore must be a multiple of 2k. The minimum value
of 2K, which meets this criteria, is called the block size.
The upper boundary is the lower boundary plus the mod-
ulus size minus one {base address plus Mn). For example,
to create a circular buffer of 21 locations, M is 21 and the
lower address boundary must have its five least signifi-
cant bits equal to zero (2K>=21, thus k> =5). The Mn
register is loaded with the value M -1 (i.e., 20). The lower
boundary may be chosen as 0, 32, 64, 96, 128, 160, etc.
since these addresses all have at least five least signifi-
cant zeros. The upper boundary of the buffer is then the
lower boundary plus 20. The address pointer is not re-
quired to start at the lower address boundary nor to end
on the upper address boundary; however, it mustinitially
point anywhere within the defined modulo address range.
Neither the lower nor the upper boundary of the modulo
region is stored; only the size of the modulo region is
stored in Mn. Assuming the (Rn)+ indirect addressing
mode, if the address register pointer increments past the
upper boundary of the buffer (base address plus M—1),
it will wrap around to the lower boundary (base address).
Alternatively, assuming the (Rn)- indirect addressing
mode, if the address decrements past the lower boundary
(base address), it will wrap around to the upper boundary
(base address plus M—1).

If the (Rn) + Nn addressing mode is used in the address
calculations, the 32-bit value |Nn| must be less than or
equal to M for proper modulo addressing because a sin-
gle modulo wraparound is detected. If {INn|>M, the result
is data dependent and unpredictable, except for the spe-
cial case where Nn=L*2k, a multiple of the block size,
2k, where L is a positive integer. The offset Nn must be
a positive twos complement integer. For this case, the
pointer Rn will be incremented using linear arithmetic to
the same relative address L blocks forward in memory.
Similarly, for the (Rn) — Nn addressing mode, the pointer

IBM is a trademark of International Business Machines
Macintosh is a trademark of Apple Computer, Inc.
VAX is a trademark of Digital Equipment Corportation
SUN-3 is a trademark of Sun Microsystems, Inc.

20

Rn will be decremented, using linear arithmetic, L blocks
in memory. For the normal case where |Nn|</=M, the
modulo arithmetic unit will automatically wrap the ad-
dress pointer around by the required amount. This type
of address modification is useful in creating circular buff-
ers for FIFOs (queues), delay lines, and sample buffers
up to 16,777,216 words long; it is also useful for deci-
mation, interpolation, and waveform generation. The
special case of (Rn)= Nn with Nn=L*2K is useful for per-
forming the same algorithm on multiple buffers — for
example, implementing a bank of parallel filters.

Reverse-Carry Arithmetic (Mn=$00000000)

This arithmetic is a special case of modulo addressing
in that a buffer is established with boundary conditions.
Within the buffer, the address update arithmetic is per-
formed by propagating the carry in the reverse direction
— that is, from the most significant bit to the least sig-
nificant bit. This method is equivalent to bit-reversing
(i.e., redefining the most significant bit as the least sig-
nificant bit and the next most significnt bit as bit 1, etc.)
the content of Rn and the offset value, Nn, adding nor-
mally, and then bit-reversing the resuit. If the (Rn)+Nn
addressing mode is used with this address modifier type,
and if Nn contains the value 2K 1, then postincrementing
by + Nn is equivalent to bit-reversing the k LSBs of Rn,
incrementing Rn by 1, and bit-reversing the k LSBs of Rn.
This address arithmetic is useful for performing 2K point
FFTs, which allows bit-reversed addressing for FFTs hav-
ing up to 4,294,967,296 points.

As an example, consider a 1,024 point complex FFT
(k=10) with real data stored in X memory and imaginary
data stored in Y memory. Then Nn would contain the
value 512 and postincrementing by +Nn would generate
the address sequence 0, 512, 256, 768, 128, 640, This
sequence is the scrambled FFT data order for sequential
frequency points from 0 to 2 pi. The lower boundary (base
address) of the reverse carry buffer must have at least k
zeros. Therefore, the reverse-carry modifier works when
the base address of the FFT data buffer is a multiple of
2K, such as 0, 1024, 2048, 3072, in our example. The use
of addressing modes other than postincrement by +Nn
is possible, but it may not provide a useful result.

APPLICATION DEVELOPMENT TOOLS

The application development tools include a macro
cross assembler, a linker/librarian, a C compiler, an ap-
plication development system, and the DSP electronic
bulletin board.

SOFTWARE

Development software support products run on any of
the following platforms: IBM® PC, Macintosh® |, VAX®,
SUN-3® workstations. The software, written in C, con-
sists of an assembler, linker, and simulator, which are

MOTOROLA DSP96001

BR574/D

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

marketed as an integrated product, labeled
DSP96000CLASXx, and a full Kernighan and Richie C com-
piler, labeled DSP96KCCx. The ordering information is as
foliows:

edited and reassembled to aid program porting. The
DSP96000 assembler options are summarized in Table 7.

Table 7. DSP96000 Assembler Options

Macro Cross Assembler

The full-featured macro cross assembler translates one
or more source fields containing DSP instruction mne-
monics, operands, and assembler directives into relo-
catable object modules that are relocated and linked by
the DSP96000 linker operating in the relocatable mode.
In the absolute mode, the assembler will generate ab-
solute load files. The assembler recognizes the full in-
struction set and all addressing modes of the DSP96000
Family, which includes support for separate X and Y
memory spaces and data transfer operations in parallel
with the data ALU operations.

Because the DSP96001 floating-point data ALU is sub-
stantially different from the DSP56001 fixed-point data
ALU, several assembler options are provided to allow
source-code compatibility across both families. These
options provide the ability to assemble and execute the
same source code in fixed point on the DSP56001 and in
floating point on the DSP96001. During normal assembly,
the DSP96000 assembler accepts DSP96000 instruction
mnemonics and register names. The emulation option,
- E<outfil>, assembles DSP56000 source code to
DSP96000 source code, which emulates the DSP56000
on a bit-for-bit basis. For example, a DSP56000 instruc-
tion ASL will be assembled so that bit 23 is actually shifted
into the carry bit instead of bit 31, as on the DSP96000.
In this mode, the DSP96000 assembler will accept the
same DSP56000 source code as the DSP56000 assembler
but will not accept any DSP96000 source code. This op-
tion is useful when the target machine is the fixed-point
DSP56000 but it is desired to first develop the algorithm
using floating-point arithmetic. The <outfil> option will
generate a DSP96000 source-code file generated by the
emulation option. The floating-point option F<outfil>,
assembies DSP56000 source code to DSP96000 source
code in order to run the routine in floating point. In this
option, the target machine is the DSP96000, and the
DSP96000 assembler accepts both DSP56000 and
DSP96000 source code. In this case, the DSP56000 in-
struction ASL will be assembled to the DSP96000 instruc-
tion ASL where bit 31 is shifted into the carry bit. The
<outfil> option will generate a DSP96000 source-code
file before the assembly. This source-code file may be

DSP96001
BR574/D

Host Platform Operating System Order Number Accepts Accepts Target
IBM PC DOS 2.x, 3.x DSP96000CLASA Option DSP56000 DSP96000 Word
DSP96KCCA Source Source Size
Macintosh il MAC 0OS 4.1 DSP96000CLASB None No Yes 32
DSP96KCCB _E Yes No 24
SUN-3 BSD 4.2 DSP96000CLASC
DSP9EKCCC -F Yes Yes 32
VAX VMS 4.5 DSP96000CLASD .
This assembler program offers the usual complement
DSP96KCCD .
of features found in modern assemblers, such as con-
VAX BSD 4.2 gggggﬁ%%%ASE ditional assembly, file inclusion, nested macros with sup-
port for macro libraries (via the MACLIB directive), and

modular programming constructs ordinarily found only
in higher level languages.

The unique architecture and parallel operation of the
DSP96000 Family demands special-purpose facilities and
programming aids that this assembler readily provides.
These aids include built-in functions for common tran-
scendental math computations such as sine, cosine, log,
and square root functions; arbitrary expressions and
modulo operations; and directives to define modulo and
bit-reversed data buffers. Moreover, the assembler in-
corporates extensive error checking and reporting to in-
dicate programming violations peculiar to the DSP
environment or stemming from the advanced features of
the DSP96001. These offenses include errors for im-
proper nesting of hardware DO loops, improper address
boundaries for modulo and bit-reversed buffers, and vi-
olations of instruction pipeline restrictions.

The assembler program also generates source-code
listings including numbered source lines, optional titles
and subtitles, optional instruction cycle counts, symbol
table and cross-reference listings, and memory-use re-
ports.

Features of the macro cross assembler program are as
follows:

® Produces relocatable modules compatible with the
linker program (LNK96000} in the relocatable mode

e Produces absolute load files compatible with the
simulator program (SIM96000) in the absolute
mode

e Supports porting DSP56000 code to the DSP96000

® Supports the full instruction set, memory spaces,
and paraliel data transfer fields of the DSP96000
Family

® Modular programming features including local la-
bels, sections, and external definition/reference di-
rectives

® Nested macro processing capability with support
for macro libraries

® Complex expression evaluation including boolean
operators
® Built-in functions for data conversion, string com-

parison, and common transcendental math oper-
ations

MOTOROLA
21

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

e Directives to define modulo and bit-reversed buff-
ers

® Extensive error checking and reporting

Linker/Librarian

The linker relocates and links relocatable object mod-
ules from the macro cross assembler to create an ab-
solute load file, which can be loaded directly into the
DSP96000 simulator or converted to Motoroia S-record
format for PROM burning.

The librarian utility will merge separate, relocatable
object modules into a single file, which allows common
or frequently used modules to be grouped for convenient
linking and storing.

Simulator

The simulator program is a software tool for devel-
oping programs and algorithms for the DSP96000 Family.
This program exactly emulates the functions of the part,
including all on-chip peripheral operations, the entire in-
ternal and external memory spaces, all memory and reg-
ister updates associated with program code execution,
and all exception processing activity. This emulation en-
ables the simulator program to provide the user with an
accurate measurement of code execution time, which is
so critical in DSP applications.

The simulator program executes DSP object code, which
has been generated using either the linker or the simu-
lator’s internal, single-line assembler. The object code is
loaded into the simulated DSP memory map. Instruction
execution can proceed until a user-defined breakpoint is
encountered, or in single-step mode, stopping after each
instruction has been executed. During program debug,
the user may display and change any of the registers or
memory locations.

The simulator package includes three, linkable, object-
code libraries of simulator functions that were used to
create the simulator. The libraries allow the user to build
his own customized simulator and to integrate it with his
unique C language system simulation. Source code for
some of the functions, such as the terminal I/O functions
and external memory accesses, is provided to aliow the
user to simulate the particular application.

Features of the simulator program are as follows:

® Simulates single or multiple DSP96001s

® Single-stepping through object programs

e Conditional or unconditional breakpoints

® Program patching using a resident, single-line as-
sembler/disassembler

Instruction and cycle timing counters

e Session and/or command logging for later refer-
ence

e ASCIl input/output files for peripherals

® Help file and help line display of simulator com-
mands

® Loading and saving of files to/from simulator
memory

e Macro command definition and execution

MOTOROLA
22

e Display enable/disable of registers and memory
¢ Hexadecimal/decimal/binary calculator

e Linkable object-code libraries
— Object library entry points
— External memory
— Screen management

e Nondisplay simulator

C Compiler

The DSP96KCCx is a full Kernighan and Ritchie imple-
mentation of the C programming language and supports
development of DSP96000 Family applications.

The product will consist of the following software: 1)
C compiler program {(CC96000), 2) macro cross assembler
program (ASM96000), and 3} linker/librarian program
(LNK96000/LiB9600).

In summary, the C compiler supports:

e Full IEEE floating point

e Structures and unions

e In-line assembly language code compatibility
L

Full function preprocessor

— Macro definition/expansion
— File inclusion

— Conditional compilation

e Low compiler overhead
e Full error detection and reporting

HARDWARE: APPLICATION DEVELOPMENT SYSTEM

The DSP96001-based application development system
(ADS) is a development tool for designing, debugging,
and evaluating DSP96001 target system equipment. In-
ternal and external DSP96001 operations can be moni-
tored through the OnCE serial interface to the on-chip
debug controlier. The ADS is fully compatible with the
DSP96000CLASX design-in software package and may act
as an accelerator for testing simulated DSP96001 algo-
rithms.

An IBM PC, Macintosh ll, or Sun-3, using a parallel
interface card, can act as the host platform between the
user and the DSP96000ADS hardware. The ADS com-
ponents are an application development module (ADM)
board, a simple control/interface card, two cables, and a
user interface program {see Figure 9).

Jumper options allow changing clock inputs, DSP96001
operating mode on reset, reconfiguration of RAM parti-
tioning between program, X, or Y memory spaces, and
address relocation of RAM and/or ROM.

The hardware features of the DSP96001ADS include:

e Full-speed operation at 26.67 MHz

e Multiple ADS support with programmable ADS ad-
dressing

e Configurable RAM for DSP96001 code develop-
ment

e Standalone operation of ADM after initial devel-
opment

e Interface card supports DSP56000 or DSP96000
Family ADMs

e

DSP96001
BR574/D

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

COMMAND
CONVERTER

IBM PC-XT-AT,
MACINTOSH I, gigﬁs
SUN 3/160

PARALLEL

/ INTERFACE

INTERFACE BOARD

DSP96001 ADM

IEC 297-3
96-PIN EUROCARD CONNECTORS
FOR EXPANDING PORTS A, B, C

USER PROTOTYPE BOARD

32K
RAM

« AD, D/A

- BUFFERS
« EXPANSION

 DSP96001

-

Il|||u"/7"mm-""""“l|

OnCE™ CABLE

Figure 9. Application Development System Components

The features of the DSP96001ADS user interface pro-
gram are as follows:

e Single/multiple stepping through DSP96001 object
programs

e Up to 99 conditional or unconditional breakpoints

® Program patching using a single-line assembler/
disassembler

® Session and/or command logging for later refer-
ence

Loading and saving of files to/from ADM memory
Macro command definition and execution
Display enable/disable of registers and memory

Debug commands that support multiple (up to 8)
ADMs

Hexadecimal/decimal/binary calculator

® System commands from within ADS user interface
program
e Multiple input/output file access from DSP96001
object programs
e Fully compatible with the DSP9600CLASA design-
in software package
The order number is DSP96001ADS.

DSP ELECTRONIC BULLETIN BOARD — DR. BuB

Dr. BuB is the name of the electronic bulletin board
dedicated to DSP at Motorola. This bulletin board offers
the following information on Motorola’s DSP products:

® Current documentation

— New products
— Improvements to existing products

DSP96001
BR574/D

® Application notes
— New
— Updates to existing notes

® Question and answer forum
o Confidential mail service

How to Make an Appointment:

You can access Dr. BuB from anywhere in the world.
To make an appointment with Dr. BuB the following
equipment is needed:

1200-baud modem (Bell 212A or V.22)

Terminal or personal computer

Telephone line

This minimum configuration will enable the user to
read Motorola DSP information and post questions and
comments. However, a file transfer program such as
XMODEM, YMODEM, or KERMIT will allow downloading
of documentation. (XMODEM programs are generally
bundled together with the purchase of personal com-
puter modems.)

After obtaining the hardware and ensuring that it is
operating properly, use the following procedure to log
on:

1. Dial (512) 440-DSP1 (440-3771) to access Bell 212A
modems, {512) 440-DSP3 (440-3773) to access 2400
baud modems, or (512) 440-DSP2 (440-3772) to
access V.22 modems. Be sure to set the character
format to 7 data, even parity, 1 stop bit.

2. Once the connection has been established, the
computer will respond with “Dr. BuB login:”. Type
guest in lowercase, followed by a carriage return.
If GUEST (uppercase) is entered, extraneous char-
acters may appear on the screen.

MOTOROLA
23

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

3. Do not be confused if “‘password:” appears on terminal emulation software, or 2) the type of ter-

the screen. Simply hit a carriage return and wait minal being emulated in software on your per-
for “Dr. BuB login:"" to reappear. sonal computer. A brief list of the most common
terminals emulated is displayed to assist in word-
4. Finally, identify your terminal type. Terminal type ing your entry. fr
is one of two things: 1) dumb, if you have no 5. Make the appropriate menu selections.

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does
not assume any liability arising out of the application or use ot any product or circuit described herein; neither does it convey any license under its
patent rights nor the rights of others. Motorola and @are registered trademarks of Motorola, Inc. Motorola. inc. is an Equal Employment Opportunity/

Affirmative Action Employer.

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive, Blakelands Milton Keynes, MK145BP, England.

i
!
}
i
Literature Distribution Centers: J
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; P.O. Box 80300; Cheung Sha Wan Post Office; Kowloon Hong Kong. J

— @ MOTOROLA B ¢ t-%
DSP96001 l

A23002-3 PRINTED IN USA 12/68 IMPERTAL LITHO C61295 30,000 YGAVAA 2 ‘/ BR574/D

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

