

STM32F051x4 STM32F051x6 STM32F051x8

Low- and medium-density advanced ARM[™]-based 32-bit MCU with 16 to 64 Kbytes Flash, timers, ADC, DAC and comm. interfaces

Features

- Operating conditions:
 - Voltage range: 2.0 V to 3.6 V
- ARM 32-bit Cortex®-M0 CPU (48 MHz max)
- Memories
 - 16 to 64 Kbytes of Flash memory
 - 8 Kbytes of SRAM with HW parity checking
- CRC calculation unit
- Clock management
 - 4 to 32 MHz crystal oscillator
 - 32 kHz oscillator for RTC with calibration
 - Internal 8 MHz RC with x6 PLL option
 - Internal 40 kHz RC oscillator
- Calendar RTC with alarm and periodic wakeup from Stop/Standby
- Reset and supply management
 - Power-on/Power down reset (POR/PDR)
 - Programmable voltage detector (PVD)
- Low power Sleep, Stop, and Standby modes
- V_{BAT} supply for RTC and backup registers
- 5-channel DMA controller
- 1×12 -bit, 1.0 µs ADC (up to 16 channels)
 - Conversion range: 0 to 3.6V
 - Separate analog supply from 2.4 up to 3.6
- Two fast low-power analog comparators with programmable input and output
- One 12-bit D/A converter
- Up to 55 fast I/Os
 - All mappable on external interrupt vectors
 - Up to 36 I/Os with 5 V tolerant capability
- Up to 18 capacitive sensing channels supporting touchkey, linear and rotary touch sensors
- 96-bit unique ID
- Serial wire debug (SWD)

■ Up to 11 timers

- One 16-bit 7-channel advanced-control timer for 6 channels PWM output, with deadtime generation and emergency stop
- One 32-bit and one 16-bit timer, with up to 4 IC/OC, usable for IR control decoding
- One 16-bit timer, with 2 IC/OC, 1 OCN, deadtime generation and emergency stop
- Two 16-bit timers, each with IC/OC and OCN, deadtime generation, emergency stop and modulator gate for IR control
- One 16-bit timer with 1 IC/OC
- Independent and system watchdog timers
- SysTick timer: 24-bit downcounter
- One 16-bit basic timer to drive the DAC

■ Communication interfaces

- Up to two I²C interfaces; one supporting Fast Mode Plus (1 Mbit/s) with 20 mA current sink, SMBus/PMBus, and wakeup from STOP
- Up to two USARTs supporting master synchronous SPI and modem control; one with ISO7816 interface, LIN, IrDA capability, auto baud rate detection and wakeup feature
- Up to two SPIs (18 Mbit/s) with 4 to 16 programmable bit frame, 1 with I²S interface multiplexed
- HDMI CEC interface, wakeup on header reception

Table 1. Device summary

Reference	Part number
STM32F051x4	STM32F051K4, STM32F051C4, STM32F051R4
STM32F051x6	STM32F051K6, STM32F051C6, STM32F051R6
STM32F051x8	STM32F051C8, STM32F051R8, STM32F051K8

Contents STM32F051x

Contents

1	Desc	iption	6
2	Devid	e overview	8
3	Func	ional overview1	0
	3.1	ARM® CortexTM-M0 core with embedded Flash and SRAM 1	0
	3.2	Memories	0
	3.3	Cyclic redundancy check calculation unit (CRC) 1	0
	3.4	Direct memory access controller (DMA)	1
	3.5	Nested vectored interrupt controller (NVIC)	1
	3.6	Extended interrupt/event controller (EXTI)	1
	3.7	Clocks and startup 1	2
	3.8	Boot modes	2
	3.9	Power management	2
		3.9.1 Power supply schemes	2
		3.9.2 Power supply supervisors	2
		3.9.3 Voltage regulator	3
	3.10	Low-power modes	3
	3.11	Real-time clock (RTC) and backup registers	4
	3.12	Timers and watchdogs 1	5
		3.12.1 Advanced-control timer (TIM1)	5
		3.12.2 General-purpose timers (TIM23, TIM1417)	6
		3.12.3 Basic timer TIM6	
		3.12.4 Independent window watchdog (IWWDG)	
		3.12.5 System window watchdog (WWDG)	
		3.12.6 SysTick timer	
	3.13	Inter-integrated circuit interfaces (I ² C)	
	3.14	Universal synchronous/asynchronous receiver transmitters (USART) 1	
	3.15	Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I ² S) . 1	
	3.16	High-definition multimedia interface (HDMI) - consumer electronics control (CEC) 20	
	3.17	General-purpose inputs/outputs (GPIOs)	:0
	3.18	Touch sensing controller (TSC)	0:

STM32F051x	Conf	tents
STRISE USTA	COI	ш

	3.19	Analog t	to digital converter (ADC)	21
		3.19.1	Temperature sensor	21
		3.19.2	V _{BAT} battery voltage monitoring	21
	3.20	Digital-to	o-analog converter (DAC)	22
	3.21	Fast low	power comparators and reference voltage	22
		3.21.1	Serial wire debug port (SW-DP)	22
4	Pinou	ıts and _l	pin description	23
5	Memo	ory map	ping	31
6	Packa	age chai	racteristics	34
	6.1	Package	e mechanical data	34
7	Order	ing info	rmation scheme	38
8	Revis	ion hist	orv	39

List of tables STM32F051x

List of tables

Table 1.	Device summary	1
Table 2.	STM32F051xx family device features and peripheral counts	7
Table 3.	Timer feature comparison	15
Table 4.	Comparison of I2C analog and digital filters	17
Table 5.	STM32F051xx I ² C implementation	18
Table 6.	STM32F051xx USART implementation	19
Table 7.	STM32F051x SPI/I2S implementation	19
Table 8.	Capacitive sensing GPIOs available on STM32F051x devices	20
Table 9.	No. of capacitive sensing channels available on STM32F051xx devices	21
Table 10.	Legend/abbreviations used in the pinout table	25
Table 11.	Pin definitions	25
Table 12.	Alternate functions selected through GPIOA_AFR registers for port A	29
Table 13.	Alternate functions selected through GPIOB_AFR registers for port B	30
Table 14.	STM32F051x peripheral register boundary addresses	32
Table 15.	LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data	35
Table 16.	LQFP48 – 7 x 7mm, 48-pin low-profile quad flat package mechanical data	36
Table 17.	UFQFPN32 - 32-lead ultra thin fine pitch quad flat no-lead package (5 x 5),	
	package mechanical data	37
Table 18	Document revision history	39

STM32F051x List of figures

List of figures

Figure 1.	Block diagram	8
Figure 2.	Clock tree	9
Figure 3.	LQFP64 64-pin package pinout	. 23
Figure 4.	LQFP48 48-pin package pinout	
Figure 5.	UFQFPN32 32-pin package pinout	. 24
Figure 6.	STM32F051x memory map	
Figure 7.	LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline	. 35
Figure 8.	Recommended footprint ⁽¹⁾	
Figure 9.	LQFP48 – 7 x 7mm, 48-pin low-profile quad flat	
J	package outline	. 36
Figure 10.	Recommended footprint ⁽¹⁾	. 36
Figure 11.	UFQFPN32 - 32-lead ultra thin fine pitch quad flat no-lead package outline (5 x 5)	
	UFQFPN32 recommended footprint ⁽¹⁾	

Description STM32F051x

1 Description

The STM32F051xx family incorporates the high-performance ARM Cortex™-M0 32-bit RISC core operating at a 48 MHz frequency, high-speed embedded memories (Flash memory up to 64 Kbytes and SRAM up to 8 Kbytes), and an extensive range of enhanced peripherals and I/Os. All devices offer standard communication interfaces (up to two I²Cs, two SPIs, one I2S, one HDMI CEC, and up to two USARTs), one 12-bit ADC, one 12-bit DAC, up to five general-purpose 16-bit timers, a 32-bit timer and an advanced-control PWM timer.

The STM32F051xx family operates in the -40 to +85 °C and -40 to +105 °C temperature ranges, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications.

The STM32F051xx family includes devices in three different packages ranging from 32 pins to 64 pins. Depending on the device chosen, different sets of peripherals are included. The description below provides an overview of the complete range of peripherals proposed in this family.

These features make the STM32F051xx microcontroller family suitable for a wide range of applications such as application control and user interfaces, handheld equipment, A/V receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms, and HVACs.

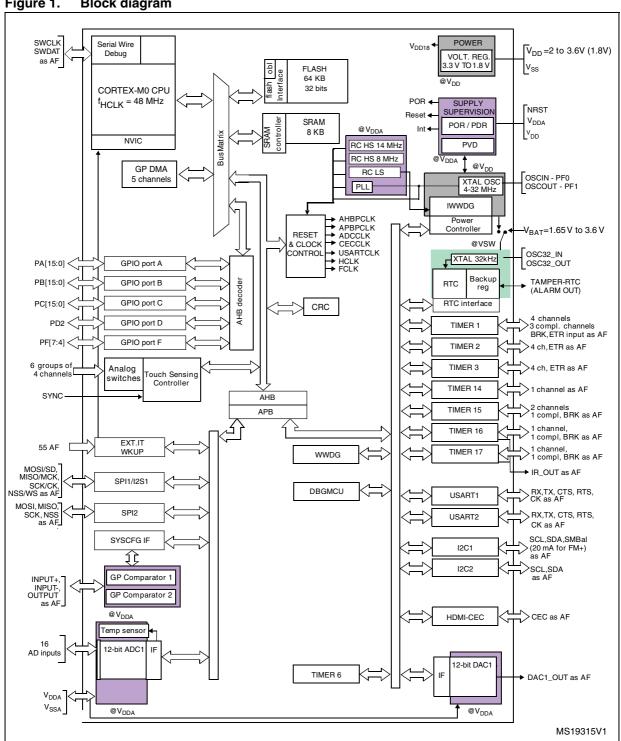
STM32F051x Description

Table 2. STM32F051xx family device features and peripheral counts

Peripheral		STM32F051Kx			ST	STM32F051Cx			STM32F051Rx		
Flash (Kbyt	es)	16	32	64	16	32	64	16	32	64	
SRAM (Kby	rtes)	4	4	8	4	4	8	4	4	8	
	Advanced control					1 (16-bit)					
Timers	General purpose					5 (16-bit) 1 (32-bit)					
	Basic					1 (16-bit)					
	SPI (I2S) ⁽¹⁾	1(1) (2)	2(1)	1(1) (2)	2(1)	1(1) (2)	2(1)	
Comm.	I ² C	1	(3)	2	1	(3)	2	1'	(3)	2	
interfaces	USART	1 ⁽⁴⁾		2	1 ⁽⁴⁾	2	2	1 ⁽⁴⁾	2	2	
	CEC					1		•	•		
12-bit synchronized ADC (number of channels)		1 1 (10 ext. + 3 int.) (16 ext. + 3 int.)						nt.)			
GPIOs		27				39		55			
Capacitive s	sensing	14 17					18				
12-bit DAC (number of	channels)	1 (1)									
Analog com	parator	2									
Max. CPU f	requency	48 MHz									
Operating v	oltage	2.0 to 3.6 V									
Operating to	emperature	Ambient operating temperature: -40 °C to 85 °C / -40 °C to 105 °C Junction temperature: -40 °C to 125 °C									
Packages		Į	JFQFPN3	2		LQFP48			LQFP64		

^{1.} The SPI1 interface can be used either in SPI mode or in I2S audio mode.

^{2.} SPI2 is not present


^{3.} I2C2 is not present

^{4.} USART2 is not present

STM32F051x **Device overview**

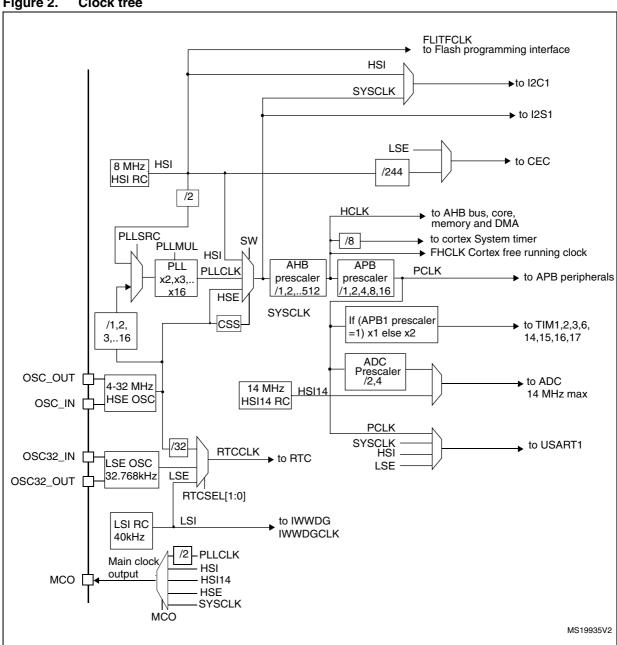

2 **Device overview**

Figure 1. **Block diagram**

STM32F051x **Device overview**

Figure 2. **Clock tree**

3 Functional overview

3.1 ARM® CortexTM-M0 core with embedded Flash and SRAM

The ARM CortexTM-M0 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

The ARM Cortex[™]-M0 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The STM32F051xx family has an embedded ARM core and is therefore compatible with all ARM tools and software.

Figure 1 shows the general block diagram of the device family.

3.2 Memories

The device has the following features:

- Up to 8 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states and featuring embedded parity checking with exception generation for failcritical applications.
- The non-volatile memory is divided into two arrays:
 - 16 to 64 Kbytes of embedded Flash memory for programs and data
 - Option bytes

The option bytes are used to write-protect the memory (with 4 KB granularity) and/or readout-protect the whole memory with the following options:

- Level 0: no readout protection
- Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected
- Level 2: chip readout protection, debug features (Cortex-M0 serial wire) and boot in RAM selection disabled

3.3 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 96-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

STM32F051x Functional overview

3.4 Direct memory access controller (DMA)

The 5-channel general-purpose DMAs manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers.

The DMA supports circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

DMA can be used with the main peripherals: SPI, I2S, I2C, USART, all TIMx timers (except TIM14), DAC and ADC.

3.5 Nested vectored interrupt controller (NVIC)

The STM32F051xx family embeds a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels (not including the 16 interrupt lines of Cortex[™]-M0) and 16 priority levels.

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

3.6 Extended interrupt/event controller (EXTI)

The external interrupt/event controller consists of 24 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 55 GPIOs can be connected to the 16 external interrupt lines.

3.7 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator).

Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and the APB domains is 48 MHz.

3.8 Boot modes

At startup, the boot pin and boot selector option bit are used to select one of three boot options:

- Boot from User Flash
- Boot from System Memory
- Boot from embedded SRAM

The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART1.

3.9 Power management

3.9.1 Power supply schemes

- $V_{DD} = 2.0$ to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{DDA} = 2.0 to 3.6 V: external analog power supply for ADC, Reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 2.4 V when the ADC and DAC are used).
 The V_{DDA} voltage level must be always greater or equal to the V_{DD} voltage level and must be provided first.
- V_{BAT} = 1.6 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

For more details on how to connect power pins, refer to Figure 9: Power supply scheme.

3.9.2 Power supply supervisors

The device has integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit.

- The POR monitors only the V_{DD} supply voltage. During the startup phase it is required that V_{DDA} should arrive first and be greater than or equal to V_{DD}.
- The PDR monitors both the V_{DD} and V_{DDA} supply voltages, however the V_{DDA} power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that V_{DDA} is higher than or equal to V_{DD}.

STM32F051x Functional overview

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD} drops below the V_{PVD} threshold and/or when V_{DD} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.9.3 Voltage regulator

The regulator has three operating modes: main (MR), low power (LPR) and power down.

- MR is used in normal operating mode (Run)
- LPR can be used in Stop mode where the power demand is reduced
- Power down is used in Standby mode: the regulator output is in high impedance: the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost)

This regulator is always enabled after reset. It is disabled in Standby mode, providing high impedance output.

3.10 Low-power modes

The STM32F051xx family supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

Stop mode achieves very low power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode.

The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line source can be one of the 16 external lines, the PVD output, RTC alarm, COMPx, I2C1, USART1 or the CFC

The I2C1, USART1 and the CEC can be configured to enable the HSI RC oscillator for processing incoming data. If this is used, the voltage regulator should not be put in the low-power mode but kept in normal mode.

Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), a IWDG reset, a rising edge on the WKUP pins, or an RTC alarm occurs.

The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode.

Note:

3.11 Real-time clock (RTC) and backup registers

The RTC and the 5 backup registers are supplied through a switch that takes power either on V_{DD} supply when present or through the V_{BAT} pin. The backup registers are five 32-bit registers used to store 20 bytes of user application data when V_{DD} power is not present. They are not reset by a system or power reset, or when the device wakes up from Standby mode.

The RTC is an independent BCD timer/counter. Its main features are the following:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Automatically correction for 28, 29 (leap year), 30, and 31 day of the month.
- Programmable alarm with wake up from Stop and Standby mode capability.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy.
- 2 anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection.
- Timestamp feature which can be used to save the calendar content. This function can triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection.

The RTC clock sources can be:

- A 32.768 kHz external crystal
- A resonator or oscillator
- The internal low-power RC oscillator (typical frequency of 40 kHz)
- The high-speed external clock divided by 32.

STM32F051x Functional overview

3.12 Timers and watchdogs

The STM32F051xx family devices include up to six general-purpose timers, one basic timer and an advanced control timer.

Table 3 compares the features of the advanced-control, general-purpose and basic timers.

Table 3. Timer feature comparison

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
Advanced control	TIM1	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	Yes
	TIM2	32-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
	TIM3	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
General purpose	TIM14	16-bit	Up	Any integer between 1 and 65536	No	1	No
	TIM15	16-bit	Up	Any integer between 1 and 65536	Yes	2	Yes
	TIM16, TIM17	16-bit	Up	Any integer between 1 and 65536	Yes	1	Yes
Basic	TIM6	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

3.12.1 Advanced-control timer (TIM1)

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable inserted dead times. It can also be seen as a complete general-purpose timer. The 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes)
- One-pulse mode output

If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

The counter can be frozen in debug mode.

Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers via the Timer Link feature for synchronization or event chaining.

3.12.2 General-purpose timers (TIM2..3, TIM14..17)

There are six synchronizable general-purpose timers embedded in the STM32F051xx devices (see *Table 3* for differences). Each general-purpose timer can be used to generate PWM outputs, or as simple time base.

TIM2, TIM3

STM32F051xx devices feature two synchronizable 4-channel general-purpose timers. TIM2 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advanced-control timer via the Timer Link feature for synchronization or event chaining.

TIM2 and TIM3 both have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

Their counters can be frozen in debug mode.

TIM14

This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output.

Its counter can be frozen in debug mode.

TIM15, TIM16 and TIM17

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single channel for input capture/output compare, PWM or one-pulse mode output.

The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate with TIM1 via the Timer Link feature for synchronization or event chaining.

TIM15 can be synchronized with TIM16 and TIM17.

TIM15, TIM16, and TIM17 have a complementary output with dead-time generation and independent DMA request generation

Their counters can be frozen in debug mode.

3.12.3 Basic timer TIM6

This timer is mainly used for DAC trigger generation. It can also be used as a generic 16-bit time base.

STM32F051x Functional overview

3.12.4 Independent window watchdog (IWWDG)

The independent window watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.12.5 System window watchdog (WWDG)

The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB clock (PCLK). It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.12.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0.
- Programmable clock source (HCLK or HCLK/8)

3.13 Inter-integrated circuit interfaces (I²C)

Up to two I²C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both can support Standard mode (up to 100 kbit/s) or Fast mode (up to 400 kbit/s) and I2C1 supports also Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive.

Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask). They also include programmable analog and digital noise filters.

Table 4. Comparison of I2C analog and digital filters

	Analog filter	Digital filter
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2C peripheral clocks
Benefits	Available in Stop mode	Extra filtering capability vs. standard requirements. Stable length
Drawbacks	Variations depending on temperature, voltage, process	Disabled when Wakeup from Stop mode is enabled

In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. I2C1 also has a clock domain independent from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match.

The I2C interfaces can be served by the DMA controller.

Refer to *Table 5* for the differences between I2C1 and I2C2.

Table 5. STM32F051xx I²C implementation

I2C features ⁽¹⁾	I2C1	I2C2
7-bit addressing mode	Х	Х
10-bit addressing mode	Х	Х
Standard mode (up to 100 kbit/s)	Х	Х
Fast mode (up to 400 kbit/s)	Х	Х
Fast Mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)	Х	
Independent clock	Х	
SMBus	Х	
Wakeup from STOP	Х	

^{1.} X = supported.

3.14 Universal synchronous/asynchronous receiver transmitters (USART)

The device embeds up to two universal synchronous/asynchronous receiver transmitters (USART1 and USART2), which communicate at speeds of up to 6 Mbit/s.

They provide hardware management of the CTS, RTS and RS485 DE signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. The USART1 supports also SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability, auto baud rate feature and has a clock domain independent from the CPU clock, allowing the USART1 to wake up the MCU from Stop mode.

The USART interfaces can be served by the DMA controller. Serial peripheral interface (SPI).

Refer to *Table 6* for the differences between USART1 and USART2.

STM32F051x Functional overview

Table 6. STM32F051xx USART implementation

USART modes/features ⁽¹⁾	USART1	USART2
Hardware flow control for modem	Х	Х
Continuous communication using DMA	Х	Х
Multiprocessor communication	Х	Х
Synchronous mode	Х	Х
Smartcard mode	Х	
Single-wire half-duplex communication	Х	Х
IrDA SIR ENDEC block	Х	
LIN mode	Х	
Dual clock domain and wakeup from Stop mode	Х	
Receiver timeout interrupt	Х	
Modbus communication	Х	
Auto baud rate detection	Х	
Driver Enable	Х	Х

^{1.} X = supported.

3.15 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I²S)

Up to two SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits.

One standard I²S interface (multiplexed with SPI1) supporting four different audio standards can operate as master or slave at simplex communication mode. It can be configured to transfer 16 and 24 or 32 bits with16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by 8-bit programmable linear prescaler. When operating in master mode it can output a clock for an external audio component at 256 times the sampling frequency.

Refer to *Table 7* for the differences between SPI1 and SPI2.

Table 7. STM32F051x SPI/I2S implementation

SPI features ⁽¹⁾	SPI1	SPI2
Hardware CRC calculation	Х	Х
Rx/Tx FIFO	X	Х
NSS pulse mode	X	Х
I2S mode	X	
TI mode	Х	Х

^{1.} X = supported.

3.16 High-definition multimedia interface (HDMI) - consumer electronics control (CEC)

The device embeds a HDMI-CEC controller that provides hardware support for the Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).

This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead. It has a clock domain independent from the CPU clock, allowing the HDMI_CEC controller to wakeup the MCU from Stop mode on data reception.

3.17 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions.

The I/O configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.18 Touch sensing controller (TSC)

The device has an embedded independent hardware controller (TSC) for controlling touch sensing acquisitions on the I/Os.

Up to 18 touch sensing electrodes can be controlled by the TSC. The touch sensing I/Os are organized in 6 acquisition groups, with up to 4 I/Os in each group.

Table 8. Capacitive sensing GPIOs available on STM32F051x devices

Group	Capacitive sensing signal name	Pin name
	TSC_G1_IO1	PA0
1	TSC_G1_IO2	PA1
'	TSC_G1_IO3	PA2
	TSC_G1_IO4	PA3
	TSC_G2_IO1	PA4
2	TSC_G2_IO2	PA5
2	TSC_G2_IO3	PA6
	TSC_G2_IO4	PA7
	TSC_G3_IO1	PB0
3	TSC_G3_IO2	PB1
3	TSC_G3_IO3	PB2
	TSC_G3_IO4	PC5

Group	Capacitive sensing signal name	Pin name
	TSC_G4_IO1	PA9
4	TSC_G4_IO2	PA10
4	TSC_G4_IO3	PA11
	TSC_G4_IO4	PA12
	TSC_G5_IO1	PB3
5	TSC_G5_IO2	PB4
3	TSC_G5_IO3	PB6
	TSC_G5_IO4	PB7
	TSC_G6_IO1	PB11
6	TSC_G6_IO2	PB12
	TSC_G6_IO3	PB13
	TSC_G6_IO4	PB14

STM32F051x Functional overview

Number of capacitive sensing channels Analog I/O group STM32F051Kx STM32F051Rx STM32F051Cx 3 G1 3 3 G2 3 3 3 3 2 2 G3 3 G4 3 3 G5 3 3 3 3 3 O G6 Number of capacitive 17 18 14 sensing channels

Table 9. No. of capacitive sensing channels available on STM32F051xx devices

3.19 Analog to digital converter (ADC)

The 12-bit analog to digital converter has up to 16 external and 3 internal (temperature sensor, voltage reference, VBAT voltage measurement) channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

3.19.1 Temperature sensor

The temperature sensor generates a voltage that varies linearly with temperature. The conversion range is between 2 V < V_{DDA} < 3.6 V. The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

3.19.2 V_{BAT} battery voltage monitoring

This embedded hardware feature allows the application to measure the V_{BAT} battery voltage using the internal ADC channel ADC_IN18. As the V_{BAT} voltage may be higher than V_{DDA} , and thus outside the ADC input range, the V_{BAT} pin is internally connected to a bridge divider by 2. As a consequence, the converted digital value is half the V_{BAT} voltage.

3.20 Digital-to-analog converter (DAC)

The 12-bit buffered DAC channel can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration.

This digital Interface supports the following features:

- Left or right data alignment in 12-bit mode
- Synchronized update capability
- DMA capability
- External triggers for conversion

Five DAC trigger inputs are used in the device. The DAC is triggered through the timer trigger outputs and the DAC interface is generating it's own DMA requests.

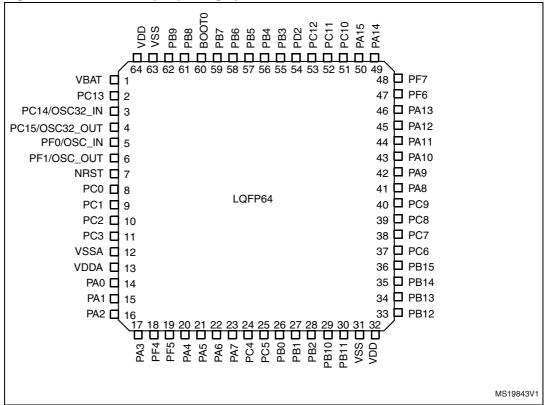
3.21 Fast low power comparators and reference voltage

The device embeds two fast rail-to-rail comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low power) and with selectable output polarity.

The reference voltage can be one of the following:

- External I/O
- DAC output pin
- Internal reference voltage or submultiple (1/4, 1/2, 3/4). Refer to Table 21: Embedded internal reference voltage for the value and precision of the internal reference voltage.

Both comparators can wake up from STOP mode, generate interrupts and breaks for the timers and can be also combined into a window comparator.


The internal voltage reference is also connected to ADC_IN17 input channel of the ADC.

3.21.1 Serial wire debug port (SW-DP)

An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU.

4 Pinouts and pin description

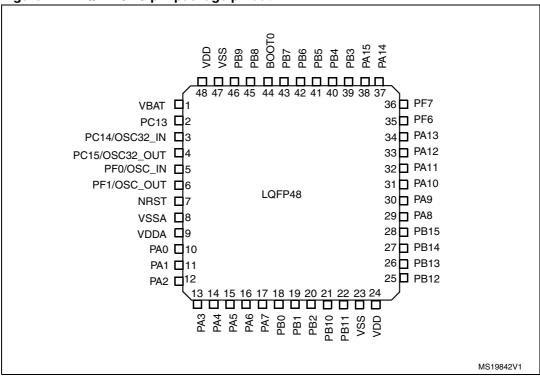
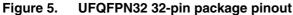
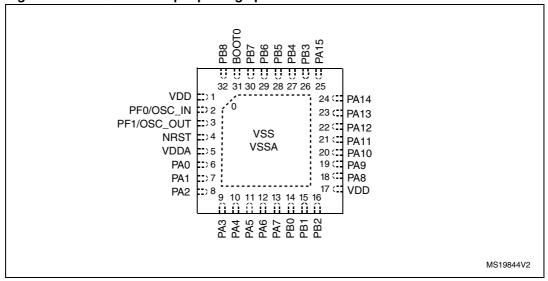




Figure 4. LQFP48 48-pin package pinout

24/30 Doc ID 018746 Rev 2

Table 10. Legend/abbreviations used in the pinout table

Na	me	Abbreviation	Definition		
Pin r	name		e specified in brackets below the pin name, the pin function reset is the same as the actual pin name		
		S	Supply pin		
Pin	type	I	Input only pin		
		I/O	Input / output pin		
		FT	5 V tolerant I/O		
		FTf 5 V tolerant I/O, FM+ capable			
I/O etr	ucture	TTa 3.3 V tolerant I/O directly connected to ADC			
1/0 511	ucture	TC Standard 3.3V I/O			
		В	Dedicated BOOT0 pin		
		RST	Bidirectional reset pin with embedded weak pull-up resistor		
No	tes	Unless otherwis and after reset	e specified by a note, all I/Os are set as floating inputs during		
Alternate functions		Functions selected through GPIOx_AFR registers			
Pin functions	Additional functions	Functions direct	ly selected/enabled through peripheral registers		

Table 11. Pin definitions

Pin	num	ber			re		Pin functions	
LQFP64	LQFP48	UFQFPN32	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
1	1		VBAT	S			Backup power	supply
2	2		PC13	I/O	тс	(1)(2)		RTC_TAMP1, RTC_TS, RTC_OUT, WKUP2
3	3		PC14-OSC32_IN (PC14)	I/O	TC	(1)(2)		OSC32_IN
4	4		PC15- OSC32_OUT (PC15)	I/O	тс	(1)(2)		OSC32_OUT
5	5	2	PF0-OSC_IN (PF0)	I/O	FT			OSC_IN
6	6	3	PF1-OSC_OUT (PF1)	I/O	FT			OSC_OUT
7	7	4	NRST	I/O	RST	-	Device reset input / internal res	set output (active low)

577

Table 11. Pin definitions (continued)

Pin	num	ber		<u> </u>			Pin function	ons
LQFP64	LQFP48	UFQFPN32	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
8			PC0	I/O	TTa		EVENTOUT	ADC_IN10
9			PC1	I/O	TTa		EVENTOUT	ADC_IN11
10			PC2	I/O	TTa		EVENTOUT	ADC_IN12
11			PC3	I/O	TTa		EVENTOUT	ADC_IN13
12	8	0	VSSA	S			Analog grou	ınd
13	9	5	VDDA	S			Analog power	supply
14	10	6	PA0	I/O	TTa		USART2_CTS, TIM2_CH1_ETR, COMP1_OUT, TSC_G1_IO1	ADC_IN0, COMP1_INM6, RTC_TAMP2, WKUP1
15	11	7	PA1	I/O	TTa		USART2_RTS, TIM2_CH2, TSC_G1_IO2, EVENTOUT	ADC_IN1, COMP1_INP
16	12	8	PA2	I/O	ТТа		USART2_TX, TIM2_CH3, TIM15_CH1, COMP2_OUT, TSC_G1_IO3	ADC_IN2, COMP2_INM6
17	13	9	PA3	I/O	ТТа		USART2_RX, TIM2_CH4, TIM15_CH2, TSC_G1_IO4	ADC_IN3, COMP2_INP
18			PF4	I/O	FT		EVENTOUT	
19			PF5	I/O	FT		EVENTOUT	
20	14	10	PA4	I/O	ТТа		SPI1_NSS/I2S1_WS, USART2_CK, TIM14_CH1, TSC_G2_IO1	ADC_IN4, COMP1_INM4, COMP2_INM4, DAC1_OUT
21	15	11	PA5	I/O	TTa		SPI1_SCK/I2S1_CK, CEC, TIM2_CH_ETR, TSC_G2_IO2	ADC_IN5, COMP1_INM5, COMP2_INM5
22	16	12	PA6	I/O	TTa		SPI1_MISO/I2S1_MCK, TIM3_CH1, TIM1_BKIN, TIM16_CH1, COMP1_OUT, TSC_G2_IO3, EVENTOUT	ADC_IN6
23	17	13	PA7	I/O	TTa		SPI1_MOSI/I2S1_SD, TIM3_CH2, TIM14_CH1, TIM1_CH1N, TIM17_CH1, COMP2_OUT, TSC_G2_IO4, EVENTOUT	ADC_IN7
24			PC4	I/O	TTa		EVENTOUT	ADC_IN14
25			PC5	I/O	TTa		TSC_G3_IO1	ADC_IN15
26	18	14	PB0	I/O	TTa		TIM3_CH3, TIM1_CH2N, TSC_G3_IO2, EVENTOUT	ADC_IN8

Table 11. Pin definitions (continued)

	e II. num		in definitions (co		<u> </u>		Pin function	ons
LQFP64	LQFP48	UFQFPN32	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
27	19	15	PB1	I/O	TTa		TIM3_CH4, TIM14_CH1, TIM1_CH3N, TSC_G3_IO3	ADC_IN9
28	20	16	PB2	I/O	FT		TSC_G3_IO4	
29	21		PB10	I/O	FT		I2C2_SCL, CEC, TIM2_CH3, TSC_SYNC	
30	22		PB11	I/O	FT		I2C2_SDA, TIM2_CH4, TSC_G6_IO1, EVENTOUT	
31	23	0	VSS	S			Digital grou	ind
32	24	17	VDD	S			Digital power s	supply
33	25		PB12	I/O	FT		SPI2_NSS, TIM1_BKIN, TSC_G6_IO2, EVENTOUT	
34	26		PB13	I/O	FT		SPI2_SCK, TIM1_CH1N, TSC_G6_IO3	
35	27		PB14	I/O	FT		SPI2_MISO, TIM1_CH2N, TIM15_CH1, TSC_G6_IO4	
36	28		PB15	I/O	FT		SPI2_MOSI, TIM1_CH3N, TIM15_CH1N, TIM15_CH2	RTC_REFIN
37			PC6	I/O	FT		TIM3_CH1	
38			PC7	I/O	FT		TIM3_CH2	
39			PC8	I/O	FT		TIM3_CH3	
40			PC9	I/O	FT		TIM3_CH4	
41	29	18	PA8	I/O	FT		USART1_CK, TIM1_CH1, EVENTOUT, MCO	
42	30	19	PA9	I/O	FT		USART1_TX, TIM1_CH2, TIM15_BKIN, TSC_G4_IO1	
43	31	20	PA10	I/O	FT		USART1_RX, TIM1_CH3, TIM17_BKIN, TSC_G4_IO2	
44	32	21	PA11	I/O	FT		USART1_CTS, TIM1_CH4, COMP1_OUT, TSC_G4_IO3, EVENTOUT	
45	33	22	PA12	I/O	FT		USART1_RTS, TIM1_ETR, COMP2_OUT, TSC_G4_IO4, EVENTOUT	
46	34	23	PA13 (SWDAT)	I/O	FT	(3)	IR_OUT, SWDAT	
47	35		PF6	I/O	FT		I2C2_SCL	
48	36		PF7	I/O	FT		I2C2_SDA	

Table 11. Pin definitions (continued)

	num		in deminions (co		,		Pin function	ons
LQFP64	LQFP48	UFQFPN32	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
49	37	24	PA14 (SWCLK)	I/O	FT	(3)	USART2_TX, SWCLK	
50	38	25	PA15	I/O	FT		SPI1_NSS/I2S1_WS, USART2_RX, TIM2_CH_ETR, EVENTOUT	
51			PC10	I/O	FT			
52			PC11	I/O	FT			
53			PC12	I/O	FT			
54			PD2	I/O	FT		TIM3_ETR	
55	39	26	PB3	I/O	FT		SPI1_SCK/I2S1_CK, TIM2_CH2, TSC_G5_IO1, EVENTOUT	
56	40	27	PB4	I/O	FT		SPI1_MISO/I2S1_MCK, TIM3_CH1, TSC_G5_IO2, EVENTOUT	
57	41	28	PB5	I/O	FT		SPI1_MOSI/I2S1_SD, I2C1_SMBA, TIM16_BKIN, TIM3_CH2	
58	42	29	PB6	I/O	FTf		I2C1_SCL, USART1_TX, TIM16_CH1N, TSC_G5_IO3	
59	43	30	PB7	I/O	FTf		I2C1_SDA, USART1_RX, TIM17_CH1N, TSC_G5_IO4	
60	44	31	BOOT0	I	В		Boot memory se	election
61	45	32	PB8	I/O	FTf		I2C1_SCL, CEC, TIM16_CH1, TSC_SYNC	
62	46		PB9	I/O	FTf		I2C1_SDA, IR_OUT, TIM17_CH1, EVENTOUT	
63	47	0	VSS	S			Digital grou	nd
64	48	1	VDD	S			Digital power s	supply

PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIO PC13 to PC15 in output mode is limited:

- The speed should not exceed 2 MHz with a maximum load of 30 pF

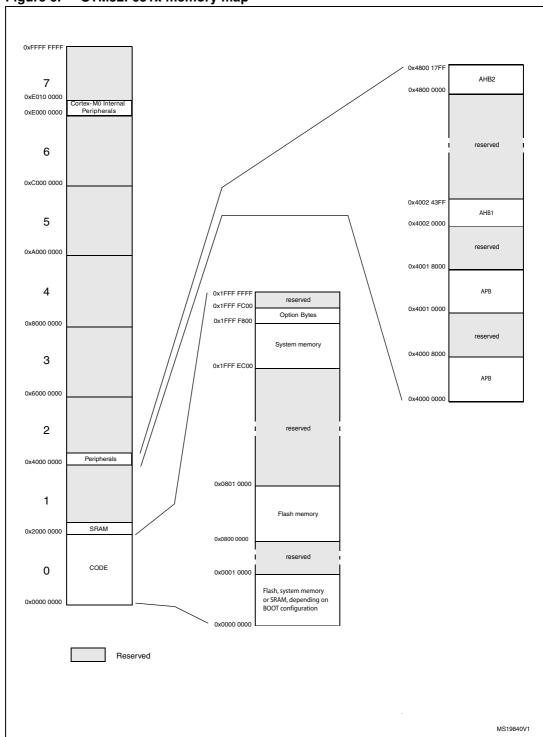
- these GPIOs must not be used as a current sources (e.g. to drive an LED).

^{2.} After the first backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the Backup registers which is not reset by the main reset. For details on how to manage these GPIOs, refer to the Battery backup domain and BKP register description sections in the reference manual.

^{3.} After reset, these pins are configured as SWDAT and SWCLK alternate functions, and the internal pull-up on SWDAT pin and internal pull-down on SWCLK pin are activated.

Table 12. Alternate functions selected through GPIOA_AFR registers for port A

Pin name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA0		USART2_CTS	TIM2_CH1_ ETR	TSC_G1_IO1				COMP1_OUT
PA1	EVENTOUT	USART2_RTS	TIM2_CH2	TSC_G1_IO2				
PA2	TIM15_CH1	USART2_TX	TIM2_CH3	TSC_G1_IO3				COMP2_OUT
PA3	TIM15_CH2	USART2_RX	TIM2_CH4	TSC_G1_IO4				
PA4	SPI1_NSS/ I2S1_WS	USART2_CK		TSC_G2_IO1	TIM14_CH1			
PA5	SPI1_SCK/ I2S1_CK	CEC	TIM2_CH1_ ETR	TSC_G2_IO2				
PA6	SPI1_MISO/ I2S1_MCK	TIM3_CH1	TIM1_BKIN	TSC_G2_IO3		TIM16_CH1	EVENTOUT	COMP1_OUT
PA7	SPI1_MOSI/ I2S1_SD	TIM3_CH2	TIM1_CH1N	TSC_G2_IO4	TIM14_CH1	TIM17_CH1	EVENTOUT	COMP2_OUT
PA8	MCO	USART1_CK	TIM1_CH1	EVENTOUT				
PA9	TIM15_BKIN	USART1_TX	TIM1_CH2	TSC_G4_IO1				
PA10	TIM17_BKIN	USART1_RX	TIM1_CH3	TSC_G4_IO2				
PA11	EVENTOUT	USART1_CTS	TIM1_CH4	TSC_G4_IO3				COMP1_OUT
PA12	EVENTOUT	USART1_RTS	TIM1_ETR	TSC_G4_IO4				COMP2_OUT
PA13	SWDAT	IR_OUT						
PA14	SWCLK	USART2_TX						
PA15	SPI1_NSS/ I2S1_WS	USART2_RX	TIM2_CH1_ ETR	EVENTOUT				


Table 13. Alternate functions selected through GPIOB AFR registers for port B

Pin name	AF0	AF1	AF2	AF3
PB0	EVENTOUT	TIM3_CH3	TIM1_CH2N	TSC_G3_IO2
PB1	TIM14_CH1	TIM3_CH4	TIM1_CH3N	TSC_G3_IO3
PB2				TSC_G3_IO4
PB3	SPI1_SCK/I2S1_CK	EVENTOUT	TIM2_CH2	TSC_G5_IO1
PB4	SPI1_MISO/I2S1_MCK	TIM3_CH1	EVENTOUT	TSC_G5_IO2
PB5	SPI1_MOSI/I2S1_SD	TIM3_CH2	TIM16_BKIN	I2C1_SMBA
PB6	USART1_TX	I2C1_SCL	TIM16_CH1N	TSC_G5_IO3
PB7	USART1_RX	I2C1_SDA	TIM17_CH1N	TSC_G5_IO4
PB8	CEC	I2C1_SCL	TIM16_CH1	TSC_SYNC
PB9	IR_OUT	I2C1_SDA	TIM17_CH1	EVENTOUT
PB10	CEC	I2C2_SCL	TIM2_CH3	TSC_SYNC
PB11	EVENTOUT	I2C2_SDA	TIM2_CH4	TSC_G6_IO1
PB12	SPI2_NSS	EVENTOUT	TIM1_BKIN	TSC_G6_IO2
PB13	SPI2_SCK		TIM1_CH1N	TSC_G6_IO3
PB14	SPI2_MISO	TIM15_CH1	TIM1_CH2N	TSC_G6_IO4
PB15	SPI2_MOSI	TIM15_CH2	TIM1_CH3N	TIM15_CH1N

STM32F051x Memory mapping

5 Memory mapping

Memory mapping STM32F051x

Table 14. STM32F051x peripheral register boundary addresses

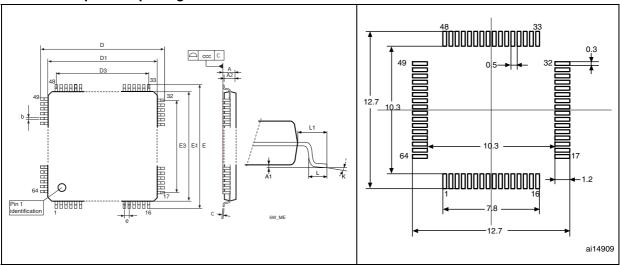
Bus	Boundary address	Size	Peripheral
	0x4800 1800 - 0x5FFF FFFF	~384 MB	Reserved
	0x4800 1400 - 0x4800 17FF	1KB	GPIOF
	0x4800 1000 - 0x4800 13FF	1KB	Reserved
AHB2	0x4800 0C00 - 0x4800 0FFF	1KB	GPIOD
AUD7	0x4800 0800 - 0x4800 0BFF	1KB	GPIOC
	0x4800 0400 - 0x4800 07FF	1KB	GPIOB
	0x4800 0000 - 0x4800 03FF	1KB	GPIOA
	0x4002 4400 - 0x47FF FFFF	~128 MB	Reserved
	0x4002 4000 - 0x4002 43FF	1KB	TSC
	0x4002 3400 - 0x4002 3FFF	ЗКВ	Reserved
	0x4002 3000 - 0x4002 33FF	1KB	CRC
	0x4002 2400 - 0x4002 2FFF	3KB	Reserved
AHB1	0x4002 2000 - 0x4002 23FF	1KB	FLASH Interface
	0x4002 1400 - 0x4002 1FFF	ЗКВ	Reserved
	0x4002 1000 - 0x4002 13FF	1KB	RCC
	0x4002 0400 - 0x4002 0FFF	3KB	Reserved
	0x4002 0000 - 0x4002 03FF	1KB	DMA
	0x4001 8000 - 0x4001 FFFF	32KB	Reserved
	0x4001 5C00 - 0x4001 7FFF	9KB	Reserved
	0x4001 5800 - 0x4001 5BFF	1KB	DBGMCU
	0x4001 4C00 - 0x4001 57FF	3KB	Reserved
	0x4001 4800 - 0x4001 4BFF	1KB	TIM17
	0x4001 4400 - 0x4001 47FF	1KB	TIM16
	0x4001 4000 - 0x4001 43FF	1KB	TIM15
	0x4001 3C00 - 0x4001 3FFF	1KB	Reserved
APB	0x4001 3800 - 0x4001 3BFF	1KB	USART1
APB	0x4001 3400 - 0x4001 37FF	1KB	Reserved
	0x4001 3000 - 0x4001 33FF	1KB	SPI1/I2S1
	0x4001 2C00 - 0x4001 2FFF	1KB	TIM1
	0x4001 2800 - 0x4001 2BFF	1KB	Reserved
	0x4001 2400 - 0x4001 27FF	1KB	ADC
	0x4001 0800 - 0x4001 23FF	7KB	Reserved
	0x4001 0400 - 0x4001 07FF	1KB	EXTI
	0x4001 0000 - 0x4001 03FF	1KB	SYSCFG + COMP
	0x4000 8000 - 0x4000 FFFF	32KB	Reserved

STM32F051x Memory mapping

Table 14. STM32F051x peripheral register boundary addresses (continued)

Bus	Boundary address	Size	Peripheral
	0x4000 7C00 - 0x4000 7FFF	1KB	Reserved
	0x4000 7800 - 0x4000 7BFF	1KB	CEC
	0x4000 7400 - 0x4000 77FF	1KB	DAC
	0x4000 7000 - 0x4000 73FF	1KB	PWR
	0x4000 5C00 - 0x4000 6FFF	5KB	Reserved
	0x4000 5800 - 0x4000 5BFF	1KB	I2C2
	0x4000 5400 - 0x4000 57FF	1KB	I2C1
	0x4000 4800 - 0x4000 53FF	3 KB	Reserved
	0x4000 4400 - 0x4000 47FF	1KB	USART2
	0x4000 3C00 - 0x4000 43FF	2KB	Reserved
APB	0x4000 3800 - 0x4000 3BFF	1KB	SPI2
AFD	0x4000 3400 - 0x4000 37FF	1KB	Reserved
	0x4000 3000 - 0x4000 33FF	1KB	IWWDG
	0x4000 2C00 - 0x4000 2FFF	1KB	WWDG
	0x4000 2800 - 0x4000 2BFF	1KB	RTC
	0x4000 2400 - 0x4000 27FF	1KB	Reserved
	0x4000 2000 - 0x4000 23FF	1KB	TIM14
	0x4000 1400 - 0x4000 1FFF	3KB	Reserved
	0x4000 1000 - 0x4000 13FF	1KB	TIM6
	0x4000 0800 - 0x4000 0FFF	2KB	Reserved
	0x4000 0400 - 0x4000 07FF	1KB	TIM3
	0x4000 0000 - 0x4000 03FF	1KB	TIM2

6 Package characteristics


6.1 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

34/37 Doc ID 018746 Rev 2

Figure 7. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline⁽¹⁾

Figure 8. Recommended footprint⁽¹⁾⁽²⁾

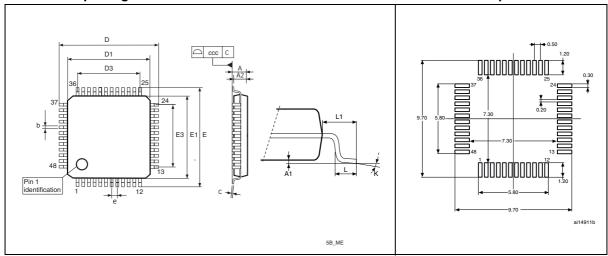

- 1. Drawing is not to scale.
- 2. Dimensions are in millimeters.

Table 15. LQFP64 - 10 x 10 mm 64 pin low-profile quad flat package mechanical data

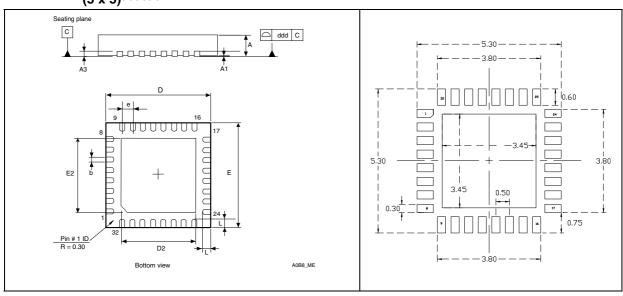
0		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
Α			1.600			0.0630
A1	0.050		0.150	0.0020		0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090		0.200	0.0035		0.0079
D	11.800	12.000	12.200	0.4646	0.4724	0.4803
D1	9.800	10.000	10.200	0.3858	0.3937	0.4016
D.		7.500				
E	11.800	12.000	12.200	0.4646	0.4724	0.4803
E1	9.800	10.00	10.200	0.3858	0.3937	0.4016
е		0.500			0.0197	
k	0°	3.5°	7°	0°	3.5°	7°
L	0.450	0.600	0.75	0.0177	0.0236	0.0295
L1		1.000			0.0394	
ccc		0.080			0.0031	•
N			Number	r of pins		
1,			6	64		

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 9. LQFP48 – 7 x 7mm, 48-pin low-profile quad flat Figure 10. Recommended package outline⁽¹⁾ footprint⁽¹⁾⁽²⁾

- 1. Drawing is not to scale.
- 2. Dimensions are in millimeters.

Table 16. LQFP48 – 7 x 7mm, 48-pin low-profile quad flat package mechanical data


Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
А			1.600			0.0630
A1	0.050		0.150	0.0020		0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090		0.200	0.0035		0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3		5.500			0.2165	
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3		5.500			0.2165	
е		0.500			0.0197	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1		1.000			0.0394	
k	0°	3.5°	7°	0°	3.5°	7°
CCC	0.080			0.0031		

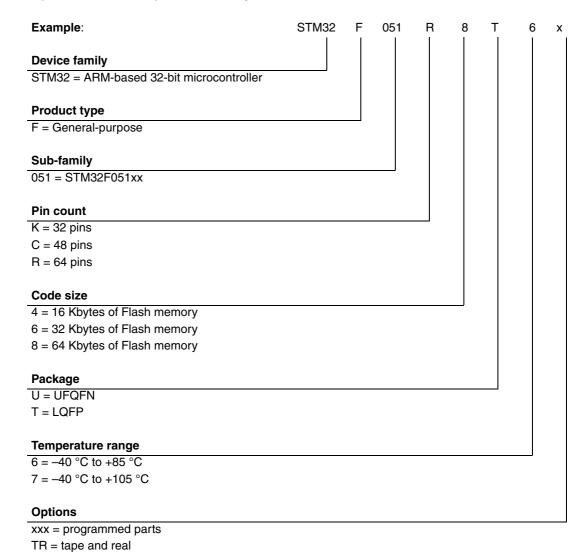
^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

36/37 Doc ID 018746 Rev 2

Figure 11. UFQFPN32 - 32-lead ultra thin fine pitch quad flat no-lead package outline (5 x 5)⁽¹⁾⁽²⁾⁽³⁾

Figure 12. UFQFPN32 recommended footprint⁽¹⁾⁽⁴⁾

- 1. Drawing is not to scale.
- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. This pad is used for the device ground and must be connected. It is referred to as pin 0 in *Table 11: Pin definitions*.
- 4. Dimensions are in millimeters.


Table 17. UFQFPN32 - 32-lead ultra thin fine pitch quad flat no-lead package (5 x 5), package mechanical data

Dim.	mm			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
Α	0.5	0.55	0.6	0.0197	0.0217	0.0236
A1	0.00	0.02	0.05	0	0.0008	0.0020
A3		0.152			0.006	
b	0.18	0.23	0.28	0.0071	0.0091	0.0110
D	4.90	5.00	5.10	0.1929	0.1969	0.2008
D2		3.50			0.1378	
Е	4.90	5.00	5.10	0.1929	0.1969	0.2008
E2	3.40	3.50	3.60	0.1339	0.1378	0.1417
е		0.500			0.0197	
L	0.30	0.40	0.50	0.0118	0.0157	0.0197
ddd	0.08			0.0031		
	Number of pins					
N	32					

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

7 Ordering information scheme

For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office.

STM32F051x Revision history

8 Revision history

Table 18. Document revision history

Date	Revision	Changes
09-Feb-2012	1	Initial release
14-Feb-2012	2	Added Table 2: STM32F051xx family device features and peripheral counts Updated Table 7: STM32F051x SPI/I2S implementation

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

40/40 Doc ID 018746 Rev 2

