

Octal 8-Bit TrimDACs with Power Shutdown

AD8801/AD8803

FEATURES
Low Cost
Replaces Eight Potentiometers
Eight Individually Programmable Outputs
Three-Wire Serial Input
Power Shutdown ≤ 25 μW Including I_{DO} and I_{REF}
Midscale Preset, AD8801
Separate V_{REFL} Range Setting, AD8803
+3 V to +5 V Single Supply Operation

APPLICATIONS Automatic Adjustment Trimmer Potentiometer Replacement Video and Audio Equipment Gain and Offset Adjustment Portable and Battery Operated Equipment

GENERAL DESCRIPTION

The AD8801/AD8803 provides eight digitally controlled devoltage outputs. This potentiometer divider TrimDAC* allows replacement of the mechanical trimmer function in new designs. The AD8801/AD8803 is ideal for devoltage adjustment applications.

Easily programmed by serial interfaced microcontroller ports, the AD8801 with its midscale preset is ideal for potentiometer replacement where adjustments start at a nominal value. Applications such as gain control of video amplifiers, voltage controlled frequencies and bandwidths in video equipment, geometric correction and automatic adjustment in CRT computer graphic displays are a few of the many applications ideally suited for these parts. The AD8803 provides independent control of both the top and bottom end of the potentiometer divider allowing a separate zero-scale voltage setting determined by the $V_{\rm REFL}$ pin. This is helpful for maximizing the resolution of devices with a limited allowable voltage control range.

Internally the AD8801/AD8803 contain eight voltage output digital-to-analog converters, sharing a common reference voltage input.

Each DAC has its own DAC register that holds its output state. These DAC registers are updated from an internal serial-to-parallel shift register that is loaded from a standard three-wire serial input digital interface. Eleven data bits make up the data word clocked into the serial input register. This data word is decoded where the first 3 bits determine the address of the DAC register to be loaded with the last 8 bits of data. The AD8801/AD8803 consumes only 5 μA from 5 V power supplies. In addition, in shutdown mode reference input current consumption is also reduced to 5 μA while saving the DAC latch settings for use after return to normal operation.

The AD8801/AD8803 is available in 16-pin plastic DIP and the 1.5 mm height SO-16 surface mount packages.

See the AD8802/AD8804 for a twelve channel version of this product. TrimDAC is a registered trademark of Analog Devices, Inc.

FUNCTIONAL BLOCK DIAGRAM

(DACs 2-7 Omitted for Clarity)

PIN CONFIGURATIONS

ORDERING GUIDE

Model	FTN	Temperature	Package Description	Package Option*
AD8801AN	RS	40°C to +85°C	P-DIP-16	N-16
AD8801AR	RS	-40°C to +85°C	SO-16	R-16A
AD8803AN	REFL	-40°C to +85°C	P-DIP-16	N-16
AD8803AR	REFL.	-40°C to +85°C	SO-16	R-16A

^{*}For outline information see Package Information section

To obtain the most recent version or complete data sheet, call our fax retrieval system at 1-800-446-6212 or visit our World Wide Web site at http://www.analog.com.

$\label{eq:AD8801AD8803} \textbf{AD8801/AD8803} - \textbf{SPECIFICATIONS} \stackrel{(V_{DD} = +3 \text{ V} \pm 10\% \text{ or } +5 \text{ V} \pm 10\%, V_{REFH} = +V_{DD}, V_{REFL} = 0 \text{ V}, -40 ^{\circ}\text{C} \\ \leq \text{T}_{A} \leq +85 ^{\circ}\text{C} \text{ unless otherwise noted)}$

Parameter	Symbol	Conditions	Min	Typ¹	Max	Units
STATIC ACCURACY Specifications Apply to All DACs						
Resolution	l _N		8			Bits
Integral Nonlinearity Error	INL		- 1.5	± 1/2	+1.5	LSB
Differential Nonlinearity	DNL	Guaranteed Monotonic	-1	± 1/4	+1	LSB
Full-Scale Error	G _{ESE}	Guaranteed Monotonic	4	2.8	+0.5	LSB
Zero-Code Error	V _{ZSE}		0.5	±0.1	+0.5	LSB
DAC Output Resistance	R _{OUT}		3	5	8	kΩ
Output Resistance Match	$\Delta R/R_{O}$			ĺ		%
REFERENCE INPUT						
Voltage Range ²	$V_{REI:H}$		0		$V_{\rm DD}$	l v
	V _{REFL}	Pin Available on AD8803 Only	0		$V_{\rm DD}$	l v
Input Resistance	R _{REFH}	Digital Inputs = 55_H , $V_{REFH} = V_{DD}$		2		kΩ
Reference Input Capacitance	CREFO	Digital Inputs All Zeros	ĺ	25		pF
	C _{REFI}	Digital Inputs All Ones		25		pF
DIGITAL INPUTS						
Logic High	VIII	$V_{DD} = +5 \text{ V}$	2.4			V
Logic Low	v _{ii.}	$V_{DD} = +5 \text{ V}$			0.8	v
Logic High	VIII	$V_{DD} = +3 \text{ V}$	2.1			V
Logic Low	V _{11.}	$V_{DD} = +3 \text{ V}$			0.6	V
Input Current	I _{II} .	$V_{IN} = 0 \text{ V or } +5 \text{ V}$			± 1	μA
Input Capacitance ¹	C _{IL}			5		pF
POWER SUPPLIES ⁴						
Power Supply Range	V _{DD} Range		2.7		5.5	V
Supply Current (CMOS)	I _{DD}	$V_{IH} = V_{DD}$ or $V_{IL} = 0$ V		0.01	5	μA
Supply Current (TTL)	I_{DD}	$V_{IH} = 2.4 \text{ V or } V_{IL} = 0.8 \text{ V}, V_{DD} = +5.5 \text{ V}$	-	1	4	mA
Shutdown Current	IREFH	$\overline{SHDN} = 0$		0.01	5	μA
Power Dissipation	P _{DISS}	$V_{IH} = V_{DD}$ or $V_{IL} = 0 \text{ V}, V_{DD} = +5.5 \text{ V}$			27.5	μW
Power Supply Sensitivity	PSRR	$V_{\rm DD} = 5 \text{ V} \pm 10\%, V_{\rm REFH} = +4.5 \text{ V}$		0.001	0.002	%/%
Power Supply Sensitivity	PSRR	$V_{DD} = 3 \text{ V} \pm 10\%, V_{REFH} = +2.7 \text{ V}$		0.01		%/%
DYNAMIC PERFORMANCE ³						
V _{OUT} Settling Time (Positive or Negative)	t _S	±1/2 LSB Error Band		0.6		μs
Crosstalk	CT	See Note 5, f = 100 kHz		50		dB
SWITCHING CHARACTERISTICS 1, 6						
Input Clock Pulse Width	$t_{\mathrm{CH}},t_{\mathrm{CL}}$	Clock Level High or Low	15			ns
Data Setup Time	t _{DS}		5			ns
Data Hold Time	t _{DH}		5			ns
CS Setup Time	t _{CSS}		10			ns
CS High Pulse Width	t _{CSW}		10			ns
Reset Pulse Width	t _{RS}		60			ns
CLK Rise to CS Rise Hold Time	t _{CSH}		15			ns
CS Rise to Next Rising Clock	t _{CS1}		10			ns

NOTES

 $^{^{1}}$ Typical values represent average readings measured at +25°C. 2 V_{REFH} can be any value between GND and V_{DD}, for the AD8803 V_{REFI} can be any value between GND and V_{DD}.

^{&#}x27;Guaranteed by design and not subject to production test.

⁴Digital Input voltages V_{IN} = 0 V or V_{DD} for CMOS condition. DAC outputs unloaded. P_{DISS} is calculated from $(I_{DD} \times V_{DD})$.

Measured at a VOLT pin where an adjacent VOLT pin is making a full-scale voltage change.

[&]quot;See timing diagram for location of measured values. All input control voltages are specified with t_R = t_L = 2 ns (10% to 90% of V_{DD}) and timed from a voltage level of 1.6 V.

Specifications subject to change without notice.