+5 Volt, Parallel Input Complete Dual 12-Bit DAC AD8582 #### **FEATURES** Complete Dual 12-Bit DAC No External Components Single +5 Volt Operation 1 mV/Bit with 4.095 V Full Scale True Voltage Output, ±5 mA Drive Very Low Power: 5 mW APPLICATIONS Digitally Controlled Calibration Portable Equipment Servo Controls Process Control Equipment PC Peripherals #### GENERAL DESCRIPTION The AD8582 is a complete, parallel input, dual 12-bit, voltage output DAC designed to operate from a single +5 volt supply. Built using a CBCMOS process, this monolithic DAC offers the user low cost, and ease-of-use in +5 volt only systems. Included on the chip, in addition to the DACs, are a rail-to-rail amplifier, latch and reference. The reference $(V_{\rm REP})$ is trimmed to 2.5 volts output, and the on-chip amplifier gains up the DAC output to 4.095 volts full scale. The user needs only supply a ± 5 volt supply. The AD8582 is coded natural binary. The op amp output swings from 0 volt to ± 4.095 volts for a one-millivolt-per-bit resolution, and is capable of driving ± 5 mA. Operation down to 4.3 V is possible with output load currents less than 1 mA. Figure 1. Minimum Supply Voltage vs. Load #### FUNCTIONAL BLOCK DIAGRAM The high speed parallel data interface connects to the fastest processors without wait states. The double-buffered input structure allows the user to load the input registers one at a time, then a single load strobe tied to both LDA + LDB inputs will update both DAC outputs simultaneously. LDA and LDB can also be activated independently to immediately update their respective DAC registers. An address input decodes DAC A or DAC B when the chip select \overline{CS} input is strobed. An asynchronous reset input sets the output to zero scale. The MSB bit can be used to establish a preset to midscale when the reset input is strobed. The AD8582 is available in the 24-pin plastic DIP and the surface mount SOIC-24. Each part is fully specified for operation over 40 C to ± 85 C, and the full ± 5 V \pm 5% power supply range. #### ORDERING INFORMATION¹ | Model | Temperature
Range | Package
Description | Package
Option ² | | | |-------------|----------------------|------------------------|--------------------------------|--|--| | AD8582AN | -40 C to +85 C | 24-Pin Plastic DIP | N-24 | | | | AD8582AR | 40 'C to +85' C | 24-Lead SOIC | SOL-24 | | | | AD8582CHIPS | +25°C | Die | | | | #### NOTES ⁴For the specifications contact your local Analog Devices sales office. The AD8582 contains 1270 transistors Tor outline information see Package Information section ## **AD8582—SPECIFICATIONS** ### **ELECTRICAL CHARACTERISTICS** (@ $V_{00} = +5.0 \text{ V} \pm 5\%$, $R_L = \text{No Load}$, $-40^{\circ}\text{C} \le T_A \le +85^{\circ}\text{C}$, unless otherwise noted) | Parameter | Symbol | Condition | Min | Typ | Max | Units | |--------------------------------------|-------------------------|---|-------|-----------|----------|--------------| | STATIC PERFORMANCE | | | | | | | | Resolution | N | Note 1 | 12 | | | Bits | | Relative Accuracy | INL. | | 2 | $\pm 3/4$ | +2 | LSB | | Differential Nonlinearity | DNL | Monotonic | 1 | $\pm 3/4$ | + l | LSB | | Zero-Scale Error | V_{ZSL} | $Data = 000_n$ | | +0.2 | + 3 | mV | | Full-Scale Voltage | V ₁₈ | $Data = FFF_{H}^{2}$ | 4.079 | 4.095 | 4.111 | V | | Full-Scale Tempco | TCV _{FS} | Notes 2 and 3 | i | ±16 | | ppm/ | | MATCHING PERFORMANCE | | | | | | | | Linearity Matching Error | ΔV _{FS} A/B | | | ±1 | | LSB | | REFERENCE OUTPUT | | | | | | | | Output Voltage | V_{RPP} | | 2.484 | 2.500 | 2.516 | V | | Output Source Current | I_{RH} | Note 4 | | | - 5 | mA | | Line Rejection | LN_{RFI} | | į | | 0.08 | %/V | | Load Regulation | LD_{8EG} | $I_{RhF} = 0 \text{ mA to 5 mA}$ | | | 0.1 | %/mA | | ANALOG OUTPUT | | | | | | | | Output Current | $I_{\alpha_1 \gamma_1}$ | $Data = 800_{H}$ | | | ± 5 | mA | | Load Regulation at Half Scale | LD_{RFG} | $R_{\rm I} = 402 \Omega$ to ∞ , Data = $800_{\rm H}$ | | l | 3 | LSB | | Capacitive Load | C ₁ | No Oscillation | | 500 | | pF | | DYNAMIC CHARACTERISTICS ³ | | | | | | | | Crosstalk | \mathbf{C}^{1} | | | >64 | | dB | | Voltage Output Settling Time | t _s | To ±1 LSB of Final Value | | 16 | | μs | | Digital Feedthrough | F ₁ | Signal Measured at DAC Output, While Changing Data (LDA = LDB = "1") | | 35 | | nV s | | LOGIC INPUTS | | | | | | | | Logic Input Low Voltage | V_{ii} | | | | 0.8 | \mathbf{v} | | Logic Input High Voltage | v _{iii} | | 2.4 | | | v | | Input Leakage Current | I ₀ | | | | 10 | μA | | Input Capacitance | Cu | Note 3 | | | 10 | pF | | TIMING SPECIFICATIONS | | | | | | | | Chip Select Pulse Width | t _{csw} | | 30 | | | ns | | DAC Select Setup | tas | | 30 | | | ns | | DAC Select Hold | t _{AH} | | 0 | | | ns | | Data Setup | t _{DS} | | 30 | | | ns | | Data Hold | t _{DH} | | 10 | | | ns | | Load Setup | t ₁₈ | | 20 | | | ns | | Load Hold | t _{i H} | | 10 | | | ns | | Load Pulse Width | t _{1.15} w | | 20 | | | ns | | Reset Pulse Width | t _{RSW} . | | 30 | | | ns | | SUPPLY CHARACTERISTICS | | | | | | | | Positive Supply Current | I _{DI} , | $V_{IH} = 2.4 \text{ V}, V_{II} = 0.8 \text{ V}$ | | 4 | 7 | mA | | 5 5 1 3 | 73 | $V_{II} = 0 \text{ V}, V_{DD} = +5 \text{ V}$ | | 1 | 2 | mA | | Power Dissipation ⁷ | P _{DISS} | $V_{IH} = 2.4 \text{ V}, V_{II} = 0.8 \text{ V}$
$V_{II} = 0 \text{ V}, V_{DD} = +5 \text{ V}$ | | 20
5 | 35
10 | mW
mW | | Power Supply Sensitivity | PSS | | 1 | 0.002 | 0.004 | m w
%/% | | rower supply sensitivity | 133 | $\Delta V_{DD} = \pm 5\%$ | | 0.002 | 0.004 | 707.70 | #### NOTES $^{^{\}circ}1$ LSB = 1 mV for 0 V to ± 4.095 V output range. Includes internal voltage reference error. These parameters are guaranteed by design and not subject to production testing. ^{&#}x27;Very little sink current is available at the V_{REE} pin. Use external buffer if setting up a virtual ground. ^{&#}x27;Settling time is not guaranteed for the first six codes 0 through 5. [&]quot;All input control signals are specified with $t_{\rm g}$ = $t_{\rm f}$ = 5 ns (10% to 90% of +5 V) and timed from a voltage level of 1.6 V. Power dissipation is a calculated value $I_{\rm DD}$ + 5 V. Specifications subject to change without notice.