

+5 Volt, Parallel Input Complete Dual 12-Bit DAC

AD8582

FEATURES

Complete Dual 12-Bit DAC
No External Components
Single +5 Volt Operation
1 mV/Bit with 4.095 V Full Scale
True Voltage Output, ±5 mA Drive
Very Low Power: 5 mW

APPLICATIONS
Digitally Controlled Calibration
Portable Equipment
Servo Controls
Process Control Equipment
PC Peripherals

GENERAL DESCRIPTION

The AD8582 is a complete, parallel input, dual 12-bit, voltage output DAC designed to operate from a single +5 volt supply. Built using a CBCMOS process, this monolithic DAC offers the user low cost, and ease-of-use in +5 volt only systems.

Included on the chip, in addition to the DACs, are a rail-to-rail amplifier, latch and reference. The reference $(V_{\rm REP})$ is trimmed to 2.5 volts output, and the on-chip amplifier gains up the DAC output to 4.095 volts full scale. The user needs only supply a ± 5 volt supply.

The AD8582 is coded natural binary. The op amp output swings from 0 volt to ± 4.095 volts for a one-millivolt-per-bit resolution, and is capable of driving ± 5 mA. Operation down to 4.3 V is possible with output load currents less than 1 mA.

Figure 1. Minimum Supply Voltage vs. Load

FUNCTIONAL BLOCK DIAGRAM

The high speed parallel data interface connects to the fastest processors without wait states. The double-buffered input structure allows the user to load the input registers one at a time, then a single load strobe tied to both LDA + LDB inputs will update both DAC outputs simultaneously. LDA and LDB can also be activated independently to immediately update their respective DAC registers. An address input decodes DAC A or DAC B when the chip select \overline{CS} input is strobed. An asynchronous reset input sets the output to zero scale. The MSB bit can be used to establish a preset to midscale when the reset input is strobed.

The AD8582 is available in the 24-pin plastic DIP and the surface mount SOIC-24. Each part is fully specified for operation over 40 C to ± 85 C, and the full ± 5 V \pm 5% power supply range.

ORDERING INFORMATION¹

Model	Temperature Range	Package Description	Package Option ²		
AD8582AN	-40 C to +85 C	24-Pin Plastic DIP	N-24		
AD8582AR	40 'C to +85' C	24-Lead SOIC	SOL-24		
AD8582CHIPS	+25°C	Die			

NOTES

⁴For the specifications contact your local Analog Devices sales office. The AD8582 contains 1270 transistors

Tor outline information see Package Information section

AD8582—SPECIFICATIONS

ELECTRICAL CHARACTERISTICS (@ $V_{00} = +5.0 \text{ V} \pm 5\%$, $R_L = \text{No Load}$, $-40^{\circ}\text{C} \le T_A \le +85^{\circ}\text{C}$, unless otherwise noted)

Parameter	Symbol	Condition	Min	Typ	Max	Units
STATIC PERFORMANCE						
Resolution	N	Note 1	12			Bits
Relative Accuracy	INL.		2	$\pm 3/4$	+2	LSB
Differential Nonlinearity	DNL	Monotonic	1	$\pm 3/4$	+ l	LSB
Zero-Scale Error	V_{ZSL}	$Data = 000_n$		+0.2	+ 3	mV
Full-Scale Voltage	V ₁₈	$Data = FFF_{H}^{2}$	4.079	4.095	4.111	V
Full-Scale Tempco	TCV _{FS}	Notes 2 and 3	i	±16		ppm/
MATCHING PERFORMANCE						
Linearity Matching Error	ΔV _{FS} A/B			±1		LSB
REFERENCE OUTPUT						
Output Voltage	V_{RPP}		2.484	2.500	2.516	V
Output Source Current	I_{RH}	Note 4			- 5	mA
Line Rejection	LN_{RFI}		į		0.08	%/V
Load Regulation	LD_{8EG}	$I_{RhF} = 0 \text{ mA to 5 mA}$			0.1	%/mA
ANALOG OUTPUT						
Output Current	$I_{\alpha_1 \gamma_1}$	$Data = 800_{H}$			± 5	mA
Load Regulation at Half Scale	LD_{RFG}	$R_{\rm I} = 402 \Omega$ to ∞ , Data = $800_{\rm H}$		l	3	LSB
Capacitive Load	C ₁	No Oscillation		500		pF
DYNAMIC CHARACTERISTICS ³						
Crosstalk	\mathbf{C}^{1}			>64		dB
Voltage Output Settling Time	t _s	To ±1 LSB of Final Value		16		μs
Digital Feedthrough	F ₁	Signal Measured at DAC Output, While Changing Data (LDA = LDB = "1")		35		nV s
LOGIC INPUTS						
Logic Input Low Voltage	V_{ii}				0.8	\mathbf{v}
Logic Input High Voltage	v _{iii}		2.4			v
Input Leakage Current	I ₀				10	μA
Input Capacitance	Cu	Note 3			10	pF
TIMING SPECIFICATIONS						
Chip Select Pulse Width	t _{csw}		30			ns
DAC Select Setup	tas		30			ns
DAC Select Hold	t _{AH}		0			ns
Data Setup	t _{DS}		30			ns
Data Hold	t _{DH}		10			ns
Load Setup	t ₁₈		20			ns
Load Hold	t _{i H}		10			ns
Load Pulse Width	t _{1.15} w		20			ns
Reset Pulse Width	t _{RSW} .		30			ns
SUPPLY CHARACTERISTICS						
Positive Supply Current	I _{DI} ,	$V_{IH} = 2.4 \text{ V}, V_{II} = 0.8 \text{ V}$		4	7	mA
5 5 1 3	73	$V_{II} = 0 \text{ V}, V_{DD} = +5 \text{ V}$		1	2	mA
Power Dissipation ⁷	P _{DISS}	$V_{IH} = 2.4 \text{ V}, V_{II} = 0.8 \text{ V}$ $V_{II} = 0 \text{ V}, V_{DD} = +5 \text{ V}$		20 5	35 10	mW mW
Power Supply Sensitivity	PSS		1	0.002	0.004	m w %/%
rower supply sensitivity	133	$\Delta V_{DD} = \pm 5\%$		0.002	0.004	707.70

NOTES

 $^{^{\}circ}1$ LSB = 1 mV for 0 V to ± 4.095 V output range.

Includes internal voltage reference error.

These parameters are guaranteed by design and not subject to production testing.

^{&#}x27;Very little sink current is available at the V_{REE} pin. Use external buffer if setting up a virtual ground.

^{&#}x27;Settling time is not guaranteed for the first six codes 0 through 5.

[&]quot;All input control signals are specified with $t_{\rm g}$ = $t_{\rm f}$ = 5 ns (10% to 90% of +5 V) and timed from a voltage level of 1.6 V.

Power dissipation is a calculated value $I_{\rm DD}$ + 5 V.

Specifications subject to change without notice.