

LC²MOS 4/8 Channel Fault-Protected Analog Multiplexers

ADG508F/ADG509F/ADG528F/ADG529F

FEATURES

Wide Supply Ranges (10.8 V to 16.5 V)
Low On Resistance (300 Ω max)
Fast Switching Times
t_{ON} 300 ns max
Low Power Dissipation (3.3 mW max)
Fault and Overvoltage Protection
All Switches OFF with Power Supply OFF
ON Channel Turns OFF if Overvoltage Occurs
Latch-Up Proof Construction
Break-Before-Make Construction
TTL and CMOS Compatible Inputs
Superior Alternative to
MAX358/MAX359
DG458/DG459

APPLICATIONS

Data Acquisition Systems Industrial and Process Control Systems Avionics Test Equipment Signal Routing Between Systems High Reliability Control Systems

GENERAL DESCRIPTION

The ADG508F, ADG509F, ADG528F and ADG529F are CMOS analog multiplexers comprising eight single channels and four differential channels respectively which have fault protection. Using a series n-channel, p-channel, n-channel MOSFET structure, both device and signal source protection is provided in the event of an overvoltage or power loss. The multiplexer can withstand continuous overvoltage inputs up to ±35 V. During fault conditions, the multiplexer input (or output) appears as an open circuit and only a few nanoamperes of leakage current will flow. This protects not only the multiplexer and the circuitry driven by the multiplexer, but also protects the sensors or signal sources that drive the multiplexer.

The ADG508F/ADG509F/ADG528F/ADG529F are designed on an enhanced LC²MOS, trench-isolated process that provides low power dissipation yet gives high switching speed and low on resistance. All channels exhibit break-before-make switching action preventing momentary shorting when switching channels.

The ADG508F and ADG528F switch one of eight inputs to a common output as determined by the 3-bit binary address lines A0, A1 and A2. The ADG509F and ADG529F switch one of four differential inputs to a common differential output as determined by the 2-bit binary address lines A0 and A1. The ADG528F and ADG529F have on-chip address and control latches that facilitate microprocessor interfacing. An EN input on each device is used to enable or disable the device. When disabled, all channels are switched OFF.

This is a preliminary data sheet. To obtain the most recent version or complete data sheet, call our fax retrieval system at 1-800-446-6212.

FUNCTIONAL BLOCK DIAGRAMS

PRODUCT HIGHLIGHTS

1. Fault Protection

The ADG508F/ADG509F/ADG528F/ADG529F can withstand continuous voltage inputs up to ±35 V. When a fault occurs, due to the power supplies being turned off or due to an overvoltage being applied to the ADG508F/ADG509F/ADG528F/ADG529F, all the channels are turned off and only a leakage current of a few nanoamperes flows.

AO A1 EN RS

- 2. Dual Supply Specifications with a Wide Tolerance
 The devices are specified in the 10.8 V to 16.5 V range.
- 3. Low RON
- 4. Fast Switching Times
- Break-Before-Make Switching Switches are guaranteed break-before-make so that input signals are protected against momentary shorting.
- Trench Isolation Guards Against Latch Up
 A dielectric trench separates the p and n-channel MOSFETs thereby preventing latch-up.

SPECIFICATIONS1

ADG508F/ADG509F/ADG528F/ADG529F

Dual Supply ($V_{DB} = +10.8 \text{ V}$ to +16.5 V, $V_{SS} = -10.8 \text{ V}$ to -16.5 V, GND = 0 V, unless otherwise noted)

ANALOG SWITCH Analog Signal Range RON RON Drift RON Match LEAKAGE CURRENTS Source OFF Leakage Is (OFF) Drain OFF Leakage Is (OFF) ADG508F/ADG528F ADG509F/ADG528F ADG509F/ADG528F ADG509F/ADG528F ADG509F/ADG529F Channel ON Leakage Is, Is (ON) ADG508F/ADG529F FAULT Output Leakage Current (With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Power Supplies Off) DIGITAL INPUTS Input High Voltage, V _{INL} Input Current Inn, or InNH CIN, Digital Input Capacitance	+25°C 300 200 0.6 5 ±0.02 ±0.5 ±0.04 ±1 ±1 ±0.04 ±1 ±1 ±1 ±0.02	-40°C to +85°C Vss + 3 V _{DD} - 0.7 400 250 ±50 ±100 ±50 ±100 ±50	+25°C 300 200 0.6 5 ±0.02 ±0.5 ±0.04 ±1 ±1 ±1 ±0.04 ±1	-55°C to +125°C Vss + 3 V _{DD} - 0.7 400 250 ±50 ±100 ±50	% typ nA typ nA max nA typ	Test Conditions/Comments $ \begin{array}{c} -10 \ V \leq V_S \leq +10 \ V, \ I_S = 1 \ mA; \\ V_{DD} = +15 \ V \pm 5\%, \ V_{SS} = -15 \ V \pm 5\% \\ -5 \ V \leq V_S \leq +5 \ V, \ I_S = 1 \ mA; \\ V_{DD} = +15 \ V \pm 10\%, \ V_{SS} = -15 \ V \pm 10\% \\ V_S = 0 \ V, \ I_{DS} = 1 \ mA \\ V_{DD} = +15 \ V \pm 10 \ V, \ I_S = 1 \ mA \\ V_{DD} = +15 \ V \pm 10\%, \ V_{SS} = -15 \ V \pm 10\% \\ \end{array} $
Analog Signal Range R _{ON} R _{ON} Drift R _{ON} Match LEAKAGE CURRENTS Source OFF Leakage I _S (OFF) Drain OFF Leakage I _D (OFF) ADG508F/ADG528F ADG509F/ADG529F Channel ON Leakage I _D , I _S (ON) ADG508F/ADG529F ADG509F/ADG529F FAULT Output Leakage Current (With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Power Supplies Off) DIGITAL INPUTS Input High Voltage, V _{INL} Input Current I _{INL} or I _{INH} C _{IN} , Digital Input Capacitance	300 200 0.6 5 \$\pmu0.02 \pmu0.05 \pmu0.04 \pmu1 \pmu1 \pmu0.04 \pmu1 \pmu1 \pmu0.02	$V_{SS} + 3$ $V_{DD} - 0.7$ 400 250 ± 100 ± 100	300 200 0.6 5 \$\frac{\pmathcal{0}}{5}\$\$\pmathcal	$V_{SS} + 3$ $V_{DD} - 0.7$ 400 250 ± 50 ± 100	V min V max Ω max Ω typ %/°C typ % typ nA typ nA max nA typ	$ \begin{array}{c} -10 \text{ V} \leq \text{V}_S \leq +10 \text{ V}, \text{ I}_S = 1 \text{ mA}; \\ \text{V}_{DD} = +15 \text{ V} \pm 5\%, \text{V}_{SS} = -15 \text{ V} \pm 5\% \\ -5 \text{ V} \leq \text{V}_S \leq +5 \text{ V}, \text{ I}_S = 1 \text{ mA}; \\ \text{V}_{DD} = +15 \text{ V} \pm 10\%, \text{V}_{SS} = -15 \text{ V} \pm 10\% \\ \text{V}_S = 0 \text{ V}, \text{I}_{DS} = 1 \text{ mA} \\ -10 \text{ V} \leq \text{V}_S \leq +10 \text{ V}, \text{I}_S = 1 \text{ mA} \\ \text{V}_{DD} = +15 \text{ V} \pm 10\%, \text{V}_{SS} = -15 \text{ V} \pm 10\% \\ \end{array} $ $ \begin{array}{c} \text{V}_D = \pm 10 \text{ V}, \text{V}_S = \mp 10 \text{ V}; \\ \text{Test Circuit 2} \end{array} $
Analog Signal Range R _{ON} R _{ON} Drift R _{ON} Match LEAKAGE CURRENTS Source OFF Leakage I _S (OFF) Drain OFF Leakage I _D (OFF) ADG508F/ADG528F ADG509F/ADG529F Channel ON Leakage I _D , I _S (ON) ADG508F/ADG529F ADG509F/ADG529F FAULT Output Leakage Current (With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Power Supplies Off) DIGITAL INPUTS Input High Voltage, V _{INL} Input Current I _{INL} or I _{INH} C _{IN} , Digital Input Capacitance	200 0.6 5 ±0.02 ±0.5 ±0.04 ±1 ±1,004 ±1 ±1,004 ±1,004	V _{DD} - 0.7 400 250 ±50 ±100 ±50 ±100	200 0.6 5 ±0.02 ±0.5 ±0.04 ±1 ±1 ±0.04 ±1	V _{DD} - 0.7 400 250 ±50 ±100	V max Ω max Ω typ %/°C typ % typ nA typ nA max nA typ	$\begin{split} &V_{DD} = +15 \text{ V} \pm 5\%, V_{SS} = -15 \text{ V} \pm 5\% \\ &-5 \text{ V} \le V_S \le +5 \text{ V}, I_S = 1 \text{ mA}; \\ &V_{DD} = +15 \text{ V} \pm 10\%, V_{SS} = -15 \text{ V} \pm 10\% \\ &V_S = 0 \text{ V}, I_{DS} = 1 \text{ mA} \\ &-10 \text{ V} \le V_S \le +10 \text{ V}, I_S = 1 \text{ mA} \\ &V_{DD} = +15 \text{ V} \pm 10\%, V_{SS} = -15 \text{ V} \pm 10\% \\ &V_D = \pm 10 \text{ V}, V_S = \mp 10 \text{ V}; \\ &V_D = \pm 10 \text{ V}, V_S = \mp 10 \text{ V}; \\ &Test Circuit 2 \end{split}$
R _{ON} Drift R _{ON} Match LEAKAGE CURRENTS Source OFF Leakage I _S (OFF) Drain OFF Leakage I _D (OFF) ADG508F/ADG528F ADG509F/ADG528F Channel ON Leakage I _D , I _S (ON) ADG508F/ADG528F ADG509F/ADG529F FAULT Output Leakage Current (With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Power Supplies Off) DIGITAL INPUTS Input High Voltage, V _{INL} Input Current I _{INL} or I _{IN} H C _{IN} , Digital Input Capacitance	200 0.6 5 ±0.02 ±0.5 ±0.04 ±1 ±1,004 ±1 ±1,004 ±1,004	V _{DD} - 0.7 400 250 ±50 ±100 ±50 ±100	200 0.6 5 ±0.02 ±0.5 ±0.04 ±1 ±1 ±0.04 ±1	V _{DD} - 0.7 400 250 ±50 ±100	V max Ω max Ω typ %/°C typ % typ nA typ nA max nA typ	$\begin{split} &V_{DD} = +15 \text{ V} \pm 5\%, V_{SS} = -15 \text{ V} \pm 5\% \\ &-5 \text{ V} \le V_S \le +5 \text{ V}, I_S = 1 \text{ mA}; \\ &V_{DD} = +15 \text{ V} \pm 10\%, V_{SS} = -15 \text{ V} \pm 10\% \\ &V_S = 0 \text{ V}, I_{DS} = 1 \text{ mA} \\ &-10 \text{ V} \le V_S \le +10 \text{ V}, I_S = 1 \text{ mA}. \\ &V_{DD} = +15 \text{ V} \pm 10\%, V_{SS} = -15 \text{ V} \pm 10\% \\ &V_D = \pm 10 \text{ V}, V_S = \mp 10 \text{ V}; \\ &Test Circuit 2 \end{split}$
R _{ON} Drift R _{ON} Match LEAKAGE CURRENTS Source OFF Leakage I _S (OFF) Drain OFF Leakage I _D (OFF) ADG508F/ADG528F ADG509F/ADG529F Channel ON Leakage I _D , I _S (ON) ADG508F/ADG528F ADG509F/ADG529F FAULT Output Leakage Current (With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Power Supplies Off) DIGITAL INPUTS Input High Voltage, V _{INL} Input Current I _{INL} or I _{INH} C _{IN} , Digital Input Capacitance	200 0.6 5 ±0.02 ±0.5 ±0.04 ±1 ±1,004 ±1 ±1,004 ±1,004	±50 ±100 ±50 ±100	200 0.6 5 ±0.02 ±0.5 ±0.04 ±1 ±1 ±1 ±0.04 ±1	±50 ±100	Ω max Ω typ %/°C typ % typ nA typ nA max nA typ	$\begin{split} &V_{DD} = +15 \text{ V} \pm 5\%, V_{SS} = -15 \text{ V} \pm 5\% \\ &-5 \text{ V} \le V_S \le +5 \text{ V}, I_S = 1 \text{ mA}; \\ &V_{DD} = +15 \text{ V} \pm 10\%, V_{SS} = -15 \text{ V} \pm 10\% \\ &V_S = 0 \text{ V}, I_{DS} = 1 \text{ mA} \\ &-10 \text{ V} \le V_S \le +10 \text{ V}, I_S = 1 \text{ mA}. \\ &V_{DD} = +15 \text{ V} \pm 10\%, V_{SS} = -15 \text{ V} \pm 10\% \\ &V_D = \pm 10 \text{ V}, V_S = \mp 10 \text{ V}; \\ &Test Circuit 2 \end{split}$
R _{ON} Drift R _{ON} Match LEAKAGE CURRENTS Source OFF Leakage I _S (OFF) Drain OFF Leakage I _D (OFF) ADG508F/ADG528F ADG509F/ADG529F Channel ON Leakage I _D , I _S (ON) ADG508F/ADG528F ADG509F/ADG529F FAULT Output Leakage Current (With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Power Supplies Off) DIGITAL INPUTS Input High Voltage, V _{INL} Input Current I _{INL} or I _{INH} C _{IN} , Digital Input Capacitance	200 0.6 5 ±0.02 ±0.5 ±0.04 ±1 ±1,004 ±1 ±1,004 ±1,004	±50 ±100 ±50 ±100	200 0.6 5 ±0.02 ±0.5 ±0.04 ±1 ±1 ±1 ±0.04 ±1	±50 ±100	Ω typ %/°C typ % typ nA typ nA max nA typ	$\begin{split} &V_{DD} = +15 \text{ V} \pm 5\%, V_{SS} = -15 \text{ V} \pm 5\% \\ &-5 \text{ V} \le V_S \le +5 \text{ V}, I_S = 1 \text{ mA}; \\ &V_{DD} = +15 \text{ V} \pm 10\%, V_{SS} = -15 \text{ V} \pm 10\% \\ &V_S = 0 \text{ V}, I_{DS} = 1 \text{ mA} \\ &-10 \text{ V} \le V_S \le +10 \text{ V}, I_S = 1 \text{ mA}. \\ &V_{DD} = +15 \text{ V} \pm 10\%, V_{SS} = -15 \text{ V} \pm 10\% \\ &V_D = \pm 10 \text{ V}, V_S = \mp 10 \text{ V}; \\ &Test Circuit 2 \end{split}$
R _{ON} Match LEAKAGE CURRENTS Source OFF Leakage I _S (OFF) Drain OFF Leakage I _D (OFF) ADG508F/ADG528F ADG509F/ADG529F Channel ON Leakage I _D , I _S (ON) ADG508F/ADG529F ADG509F/ADG529F FAULT Output Leakage Current (With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Power Supplies Off) DIGITAL INPUTS Input High Voltage, V _{INL} Input Current I _{INL} or I _{IN'H} C _{IN} , Digital Input Capacitance	±0.02 ±0.5 ±0.04 ±1 ±1 ±0.04 ±1 ±1	±50 ±100 ±50 ±100	0.6 5 ±0.02 ±0.5 ±0.04 ±1 ±1 ±0.04 ±1	±50 ±100	%/°C typ % typ nA typ nA max nA typ	$ \begin{array}{l} -5 \text{ V} \leq \text{V}_{S} \leq +5 \text{ V}, \text{ I}_{S} = 1 \text{ mA}; \\ \text{V}_{DD} = +15 \text{ V} \pm 10\%, \text{V}_{SS} = -15 \text{ V} \pm 10\% \\ \text{V}_{S} = 0 \text{ V}, \text{I}_{DS} = 1 \text{ mA} \\ -10 \text{ V} \leq \text{V}_{S} \leq +10 \text{ V}, \text{I}_{S} = 1 \text{ mA} \\ \text{V}_{DD} = +15 \text{ V} \pm 10\%, \text{V}_{SS} = -15 \text{ V} \pm 10\% \\ \end{array} $ $ \begin{array}{l} \text{V}_{DD} = \pm 10 \text{ V}, \text{V}_{S} = \mp 10 \text{ V}; \\ \text{Test Circuit 2} \end{array} $
R _{ON} Match LEAKAGE CURRENTS Source OFF Leakage I _S (OFF) Drain OFF Leakage I _D (OFF) ADG508F/ADG528F ADG509F/ADG529F Channel ON Leakage I _D , I _S (ON) ADG508F/ADG529F ADG509F/ADG529F FAULT Output Leakage Current (With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Power Supplies Off) DIGITAL INPUTS Input High Voltage, V _{INL} Input Current I _{INL} or I _{IN'H} C _{IN} , Digital Input Capacitance	±0.02 ±0.5 ±0.04 ±1 ±1 ±0.04 ±1 ±1	±50 ±100 ±50 ±100	0.6 5 ±0.02 ±0.5 ±0.04 ±1 ±1 ±0.04 ±1	±50 ±100	%/°C typ % typ nA typ nA max nA typ	$\begin{split} &V_{DD} = +15 \ V \pm 10\%, \ V_{SS} = -15 \ V \pm 10\% \\ &V_{S} = 0 \ V, \ I_{DS} = 1 \ mA \\ &-10 \ V \le V_{S} \le +10 \ V, \ I_{S} = 1 \ mA \\ &V_{DD} = +15 \ V \pm 10\%, \ V_{SS} = -15 \ V \pm 10\% \\ &V_{D} = \pm 10 \ V, \ V_{S} = \mp 10 \ V; \\ &Test \ Circuit \ 2 \end{split}$
R _{ON} Match LEAKAGE CURRENTS Source OFF Leakage I _S (OFF) Drain OFF Leakage I _D (OFF) ADG508F/ADG528F ADG509F/ADG529F Channel ON Leakage I _D , I _S (ON) ADG508F/ADG529F ADG509F/ADG529F FAULT Output Leakage Current (With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Power Supplies Off) DIGITAL INPUTS Input High Voltage, V _{INL} Input Current I _{INL} or I _{IN'H} C _{IN} , Digital Input Capacitance	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	±100 ±50 ±100	±0.02 ±0.5 ±0.04 ±1 ±1 ±0.04 ±1	±100	% typ nA typ nA max nA typ	$\begin{split} &V_S = 0 \text{ V, } I_{DS} = 1 \text{ mA} \\ &-10 \text{ V} \leq V_S \leq +10 \text{ V, } I_S = 1 \text{ mA} \\ &V_{DD} = +15 \text{ V} \pm 10\%, \ V_{SS} = -15 \text{ V} \pm 10\% \\ &V_D = \pm 10 \text{ V, } V_S = \mp 10 \text{ V;} \\ &\text{Test Circuit 2} \end{split}$
R _{ON} Match LEAKAGE CURRENTS Source OFF Leakage I _S (OFF) Drain OFF Leakage I _D (OFF) ADG508F/ADG528F ADG509F/ADG529F Channel ON Leakage I _D , I _S (ON) ADG508F/ADG529F ADG509F/ADG529F FAULT Output Leakage Current (With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Power Supplies Off) DIGITAL INPUTS Input High Voltage, V _{INL} Input Current I _{INL} or I _{IN'H} C _{IN} , Digital Input Capacitance	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	±100 ±50 ±100	±0.02 ±0.5 ±0.04 ±1 ±1 ±0.04 ±1	±100	% typ nA typ nA max nA typ	$ \begin{array}{l} -10 \text{ V} \leq \text{V}_S \leq +10 \text{ V}, \text{ I}_S = 1 \text{ mA} \\ \text{V}_{DD} = +15 \text{ V} \pm 10\%, \text{ V}_{SS} = -15 \text{ V} \pm 10\% \\ \\ \text{V}_D = \pm 10 \text{ V}, \text{ V}_S = \mp 10 \text{ V}; \\ \text{Test Circuit 2} \end{array} $
LEAKAGE CURRENTS Source OFF Leakage I _S (OFF) Drain OFF Leakage I _D (OFF) ADG508F/ADG528F ADG509F/ADG529F Channel ON Leakage I _D , I _S (ON) ADG508F/ADG528F ADG509F/ADG529F FAULT Output Leakage Current (With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Power Supplies Off) DIGITAL INPUTS Input High Voltage, V _{INL} Input Low Voltage, V _{INL} Input Current I _{INL} or I _{IN} C _{IN} , Digital Input Capacitance	±0.02 ±0.5 ±0.04 ±1 ±1 ±0.04 ±1 ±1 ±1	±100 ±50 ±100	±0.02 ±0.5 ±0.04 ±1 ±1 ±0.04 ±1	±100	nA typ nA max nA typ	$V_{DD} = +15 \text{ V} \pm 10\%, V_{SS} = -15 \text{ V} \pm 10\%$ $V_{D} = \pm 10 \text{ V}, V_{S} = \mp 10 \text{ V};$ Test Circuit 2
Source OFF Leakage I _S (OFF) Drain OFF Leakage I _D (OFF) ADG508F/ADG528F ADG509F/ADG529F Channel ON Leakage I _D , I _S (ON) ADG508F/ADG528F ADG509F/ADG529F FAULT Output Leakage Current (With Overvoltage) Input Leakage Current (With Power Supplies Off) DIGITAL INPUTS Input High Voltage, V _{INL} Input Current I _{INL} or I _{INH} C _{IN} , Digital Input Capacitance	±0.5 ±0.04 ±1 ±1 ±0.04 ±1 ±1 ±0.02	±100 ±50 ±100	±0.5 ±0.04 ±1 ±1 ±0.04 ±1	±100	nA max nA typ	$V_D = \pm 10 \text{ V}, V_S = \mp 10 \text{ V};$ Test Circuit 2
Source OFF Leakage I _S (OFF) Drain OFF Leakage I _D (OFF) ADG508F/ADG528F ADG509F/ADG529F Channel ON Leakage I _D , I _S (ON) ADG508F/ADG528F ADG509F/ADG529F FAULT Output Leakage Current (With Overvoltage) Input Leakage Current (With Power Supplies Off) DIGITAL INPUTS Input High Voltage, V _{INL} Input Current I _{INL} or I _{INH} C _{IN} , Digital Input Capacitance	±0.5 ±0.04 ±1 ±1 ±0.04 ±1 ±1 ±0.02	±100 ±50 ±100	±0.5 ±0.04 ±1 ±1 ±0.04 ±1	±100	nA max nA typ	Test Circuit 2
Drain OFF Leakage I _D (OFF) ADG508F/ADG528F ADG509F/ADG529F Channel ON Leakage I _D , I _S (ON) ADG508F/ADG528F ADG509F/ADG529F FAULT Output Leakage Current (With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Power Supplies Off) DIGITAL INPUTS Input High Voltage, V _{INL} Input Low Voltage, V _{INL} Input Current I _{INL} or I _{IN} C _{IN} , Digital Input Capacitance	±0.5 ±0.04 ±1 ±1 ±0.04 ±1 ±1 ±0.02	±100 ±50 ±100	±0.5 ±0.04 ±1 ±1 ±0.04 ±1	±100	nA max nA typ	Test Circuit 2
ADG508F/ADG528F ADG509F/ADG529F Channel ON Leakage I _D , I _S (ON) ADG508F/ADG528F ADG509F/ADG529F FAULT Output Leakage Current (With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Power Supplies Off) DIGITAL INPUTS Input High Voltage, V _{INL} Input Current I _{INL} or I _{INH} C _{IN} , Digital Input Capacitance	±0.04 ±1 ±1 ±0.04 ±1 ±1	±100 ±50 ±100	±0.04 ±1 ±1 ±0.04 ±1	±100	nA typ	
ADG508F/ADG528F ADG509F/ADG529F Channel ON Leakage I _D , I _S (ON) ADG508F/ADG528F ADG509F/ADG529F FAULT Output Leakage Current (With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Power Supplies Off) DIGITAL INPUTS Input High Voltage, V _{INL} Input Current I _{INL} or I _{INH} C _{IN} , Digital Input Capacitance	±1 ±1 ±0.04 ±1 ±1	±50 ±100	±1 ±1 ±0.04 ±1			
ADG509F/ADG529F Channel ON Leakage ID, IS (ON) ADG508F/ADG528F ADG509F/ADG529F FAULT Output Leakage Current (With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Power Supplies Off) DIGITAL INPUTS Input High Voltage, VINL Input Low Voltage, VINL Input Current INL or INH CIN, Digital Input Capacitance	±1 ±0.04 ±1 ±1	±50 ±100	±1 ±0.04 ±1			
Channel ON Leakage I _D , I _S (ON) ADG508F/ADG528F ADG509F/ADG529F FAULT Output Leakage Current (With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Power Supplies Off) DIGITAL INPUTS Input High Voltage, V _{INL} Input Current I _{INL} or I _{INH} C _{IN} , Digital Input Capacitance	±0.04 ±1 ±1	±100	±0.04 ±1	±50	nA max	Test Circuit 3
ADG508F/ADG528F ADG509F/ADG529F FAULT Output Leakage Current (With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Power Supplies Off) DIGITAL INPUTS Input High Voltage, V _{INL} Input Low Voltage, V _{INL} Input Current I _{INL} or I _{INH} C _{IN} , Digital Input Capacitance	±1 ±1 ±0.02		±1		nA max	[**
ADG509F/ADG529F FAULT Output Leakage Current (With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Power Supplies Off) DIGITAL INPUTS Input High Voltage, V _{INH} Input Low Voltage, V _{INL} Input Current I _{INL} or I _{INH} C _{IN} , Digital Input Capacitance	±1.02			1100	nA typ	$V_S = V_D = \pm 10 V;$
FAULT Output Leakage Current (With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Power Supplies Off) DIGITAL INPUTS Input High Voltage, V _{INH} Input Low Voltage, V _{INL} Input Current I _{INL} or I _{INH} C _{IN} , Digital Input Capacitance	±0.02	±30		±100	nA max	Test Circuit 4
Output Leakage Current (With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Power Supplies Off) DIGITAL INPUTS Input High Voltage, V _{INH} Input Low Voltage, V _{INL} Input Current I _{INL} or I _{INH} C _{IN} , Digital Input Capacitance			±1	±50	nA max	
(With Overvoltage) Input Leakage Current (With Overvoltage) Input Leakage Current (With Power Supplies Off) DIGITAL INPUTS Input High Voltage, V _{INH} Input Low Voltage, V _{INL} Input Current I _{INL} or I _{INH} C _{IN} , Digital Input Capacitance				#		· I
Input Leakage Current (With Overvoltage) Input Leakage Current (With Power Supplies Off) DIGITAL INPUTS Input High Voltage, V _{INH} Input Low Voltage, V _{INL} Input Current I _{INL} or I _{INH} C _{IN} , Digital Input Capacitance	±0.005		±0.02	740,	nA typ	$V_S = \pm 33 \text{ V}, V_D = 0 \text{ V}$
(With Overvoltage) Input Leakage Current (With Power Supplies Off) DIGITAL INPUTS Input High Voltage, V _{INH} Input Low Voltage, V _{INL} Input Current I _{INL} or I _{INH} C _{IN} , Digital Input Capacitance	±0.005	±2		±2	μA max	İ
Input Leakage Current (With Power Supplies Off) DIGITAL INPUTS Input High Voltage, V _{INH} Input Low Voltage, V _{INL} Input Current I _{INL} or I _{INH} C _{IN} , Digital Input Capacitance			±0.005	4541	μ A ∉typ	$V_S = \pm 25 \text{ V}, V_D = \pm 25 \text{ V}$
(With Power Supplies Off) DIGITAL INPUTS Input High Voltage, V _{INH} Input Low Voltage, V _{INL} Input Current I _{INL} or I _{INH} C _{IN} , Digital Input Capacitance	±5		±10	(184	⊭Armax	
DIGITAL INPUTS Input High Voltage, V _{INH} Input Low Voltage, V _{INL} Input Current I _{INL} or I _{INH} C _{IN} , Digital Input Capacitance	± 0.001		±0.001	g Pr. gillin	µA typ	$V_S = \pm 25 \text{ V}, V_D = V_{EN} = 0 \text{ V},$
Input High Voltage, V _{INH} Input Low Voltage, V _{INL} Input Current I _{INL} or I _{INH} C _{IN} , Digital Input Capacitance	±2	elit.	±5.	, L# P	β μA max	$V_{IN} = 0 \text{ V or } 5 \text{ V}$
Input High Voltage, V _{INH} Input Low Voltage, V _{INL} Input Current I _{INL} or I _{INH} C _{IN} , Digital Input Capacitance		_ mig - \ _ mj 3 3 4	*	* * 4- 11. Y		
Input Low Voltage, V _{INL} Input Current I _{INL} or I _{INH} C _{IN} , Digital Input Capacitance		2.4	er ins San Des⊀	-2.4 F	V min	
Input Current I _{INL} or I _{INH} C _{IN} , Digital Input Capacitance		0.8	42 Y A	0.8	V max	
C _{IN} , Digital Input Capacitance				4	'	
		±1 ***		*±1	µA max	$V_{IN} = 0$ or V_{DD}
	5	E4.	5		pF typ	f = 1 MHz
DYNAMIC CHARACTERISTICS ²			14,	tilir T		
TTRANSITION	200		200		ns typ	$R_L = 1 M\Omega, C_L = 35 pF;$
	300	400	300	400	ns max	$V_{S1} = \pm 10 \text{ V}, V_{S8} = \mp 10 \text{ V}; \text{ Test Circuit 5}$
topen	50		50		ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$;
	25	10	25	10	ns max	V _S = +5 V; Test Circuit 6
t _{ON} (EN)	200		200		ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$;
	300	400	300	400	ns max	V _S = +5 V; Test Circuit 7
t _{OFF} (EN)	200		200		ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$;
į	300	400	300	400	ns max	V _S = +5 V; Test Circuit 7
t _{SETT} , Settling Time						
0.1%		0.6		0.6	μs typ	
0.01%		1.7		1.7	μs typ	
tw, Write Pulse Width	100	120	100	130	ns min	
t _S , Address, Enable Setup Time		100		100	ns min	
t _H , Address, Enable Hold Time		10		10	ns min	
t _{RS} , Reset Pulse Width		100		100	ns min	
Charge Injection	15		15		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}; \text{ Test Circuit } 8$
OFF Isolation	68		68		dB typ	$R_L = 1 \text{ k}\Omega$, $C_L = 15 \text{ pF}$, $f = 100 \text{ kHz}$;
	50		50		dB min	V _S = 7 V rms; Test Circuit 9
Channel-to-Channel Crosstalk	85		85		dB typ	$R_L = 1 \text{ k}\Omega$, $C_L = 15 \text{ pF}$, $f = 100 \text{ kHz}$;
						Test Circuit 11
C _s (OFF)	5		5		pF typ	f = 1 MHz
C _D (OFF)						f = 1 MHz
ADG508F/ADG528F	15·		15		pF typ	
ADG509F/ADG529F	10		10		pF typ	· · · · · · · · · · · · · · · · · · ·
POWER REQUIREMENTS						
I _{DD}	0.05		0.05		mA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
	0.1	0.2	0.1	0.2	mA max	
I _{SS}	0.01		0.01		mA typ	
	0.1	0.2	0.1	0.2	mA max	

NOTES

¹Temperature ranges are as follows: B Versions: -40°C to +85°C; T Versions: -55°C to +125°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice

ADG508F/ADG509F/ADG528F/ADG529F

ABSOLUTE MAXIMUM RATINGS*

$(T_A = +25^{\circ}C \text{ unless otherwise noted})$
V _{DD} to V _{SS} +44 V
V _{DD} to GND0.3 V to +25 V
V _{SS} to GND +0.3 V to -25 V
V_{EN} , V_A Digital Input $V_{SS} - 4 \text{ V to } V_{DD} + 4 \text{ V}$
V _S , Analog Input Overvoltage with Power ON V _{SS} - 20 V
to V_{DD} + 20 V
V _S , Analog Input Overvoltage with Power OFF
35 V to +35 V
Continuous Current, S or D
Peak Current, S or D
(Pulsed at 1 ms, 10% Duty Cycle max) 40 mA
Operating Temperature Range
Industrial (B Version)40°C to +85°C
Extended (T Version)55°C to +125°C
Storage Temperature Range65°C to +150°C
Junction Temperature +150°C
Cerdip Package, Power Dissipation900 mW
θ _{IA} , Thermal Impedance
Lead Temperature, Soldering (10 sec) +300°C
Plastic Package, Power Dissipation470 mW
θ _{IA} , Thermal Impedance
Lead Temperature, Soldering (10 sec) +260°C
SOIC Package, Power Dissipation
θ _{IA} , Thermal Impedance
Lead Temperature, Soldering
Vapor Phase (60 sec) ±215°€
Infrared (15 sec)
PLCC Package, Power Dissipation
θ _{JA} , Thermal Impedance
Lead Temperature, Soldering
Vapor Phase (60 sec) +215°C
Infrared (15 sec) +220°C

*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

PIN CONFIGURATIONS

	r.	III COMI	GULTIONS	
	DIP		PLCC	
A0 1 EN 2 V _{SS} 3 S1 4 S2 5 S3 6 S4 7	ADG508F TOP VIEW (Not to Scale)	16 A1 15 A2 14 GND 13 V _{DD} 12 S5 11 S6 10 S7	V _{SS} 4 S1 5 ADG508F TOP VIEW (Not to Scale) (Not to Scale) 9 10 11 11 12 13	
D 8 A0 1 EN 2 Vss 3 S1A 4 S2A 5 S3A 6 S4A 7 DA 8	ADG509F TOP VIEW (Not to Scale)	9 S8 16 A1 15 GND 14 V _{DD} 13 S1B 12 S2B 13 S3B 10 S4B 0 DB	V _{SS} 4 S1A 5 NC 6 TOP VIEW (Not to Scale) (Not to Scale) 9 10 11 12 13	
WR 1 A0 2 EN 3 Vss 4 St 5 82 8 S3 7 S4 8 D 9	ADG528F TOP VIEW (Not to Scale)	18 FS 17 A1 16 A2 15 GND 14 V _D 0 13 S5 12 S6 11 S7 10 S8	S1 6 ADG528F 17 GND 15 S5 S3 8 9 10 11 12 13 3 6 9 6 6 9 6 6 9 6 6 9 6 6 9 6 9 6 9	
WR 1 A0 2 EN 3 V _{SS} 4 S1A 5 S2A 6 S3A 7 S4A B DA 9	ADG529F TOP VIEW (Not to Scale)	18 RS 17 A1 16 GND 15 V ₀₀ 14 S1B 13 S2B 12 S3B 11 S4B 10 DB	P	

NC = NO CONNECT

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although these devices feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ADG508F/ADG509F/ADG528F/ADG529F

ORDERING GUIDE

Model ¹	Temperature Range	Package Option ²	
ADG508FBN	-40°C to +85°C	N-16	
ADG508FBR	-40°C to +85°C	R-16A	
ADG508FBP	-40°C to +85°C	P-20A	
ADG508FTQ	-55°C to +125°C	Q-16	
ADG509FBN	-40°C to +85°C	N-16	
ADG509FBR	-40°C to +85°C	R-16A	
ADG509FBP	-40°C to +85°C	P-20A	
ADG509FTQ	-55°C to +125°C	Q-16	
ADG528FBN	-40°C to +85°C	N-18	
ADG528FBP	-40°C to +85°C	P-20A	
ADG528FTQ	−55°C to +125°C	Q-18	
ADG529FBN	-40°C to +85°C	N-18	
ADG529FBP	-40°C to +85°C	P-20A	
ADG529FTQ	-55°C to +125°C	Q-18	

NOTES

Table I. ADG508F Truth Table

A2	A1	A 0	EN	ON SWITCH
X	X	X	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

X = Don't Care

Table II. ADG509F Truth Table

A1	A0	EN	ON SWITCH PAIR
X	x	0	NONE
0	0	1	1
0	1 1	1	2
1	0	1	3
1	1 1	1	4

Y = Don't Core

Table III. ADG528F Truth Table

					27 24	
A2	A1	A0	en	WR	RS	ON SWITCH
X	x	X	X	1. \$ f	1. I. (1.)	Retains Previous Switch Condition
X	X	X	x	, X .	1-	NONE (Address and Enable
			₹,			Latches Cleared)
X	X	X	0	0	1	NONE
0	0	0	1	0	1	1
0	0	1	1	0	1	2
0	1	0	1	0	1	3
0	1	1	1	0	1	4
1	0	0	1	0	1	5
1	0	1	1	0	1 1	6
1	1	0	1	0	1	7
1	1	1	1	0	1	8

X = Don't Care

Table IV. ADG529F Truth Table

A 1	A 0	EN	WR	RS	ON SWITCH PAIR
X	x	X	£	1	Retains Previous Switch Condition
X	X	X	x	0	NONE (Address and Enable Latches Cleared)
X	X	0	0	1	NONE
0	0	1	0	1	1
0	1	1	0	1	2
1	0	1	0	1	3
1	1	1	1 0	1	4

X = Don't Care

To order MIL-STD-883, Class B processed parts, add /883B to T grade part numbers.

²N = Plastic DIP; P = Plastic Leaded Chip Carrier (PLCC); Q = Cerdip; R = 0.15" Small Outline IC (SOIC). For outline information see Package Information section.