

SEMITOP® 3

### **IGBT** Module

#### **SK71GB065TF**

**Target Data** 

#### **Features**

- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonding aluminium oxide ceramic (DBC)
- · High short circuit capability
- Low tail current with low temperature dependence
- Hyperfast diodes
- Integrated NTC temperature sensor

### **Typical Applications**

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS
- 1)  $V_{CE,sat}$ ,  $V_F$  = chip level value

| Absolute                   | Maximum Ratings                                        | T <sub>s</sub> = 25 °C, unless otherwise | T <sub>s</sub> = 25 °C, unless otherwise specified |  |  |  |  |  |
|----------------------------|--------------------------------------------------------|------------------------------------------|----------------------------------------------------|--|--|--|--|--|
| Symbol                     | Conditions                                             | Values                                   | Units                                              |  |  |  |  |  |
| IGBT                       |                                                        |                                          |                                                    |  |  |  |  |  |
| $V_{CES}$                  |                                                        | 600                                      | V                                                  |  |  |  |  |  |
| $V_{GES}$                  |                                                        | ± 20                                     | V                                                  |  |  |  |  |  |
| I <sub>C</sub>             | $T_s = 25 (80) ^{\circ}C;$                             | 100 (70)                                 | Α                                                  |  |  |  |  |  |
| I <sub>CM</sub>            | $t_p < 1 \text{ ms; } T_s = 25 (80) \text{ °C;}$       | 200 (140)                                | Α                                                  |  |  |  |  |  |
| T <sub>j</sub>             | ·                                                      | - 40 <b>+</b> 150                        | °C                                                 |  |  |  |  |  |
| Inverse/Freewheeling Diode |                                                        |                                          |                                                    |  |  |  |  |  |
| I <sub>F</sub>             | $T_s = 25 (80)  ^{\circ}C;$                            | 45 (30)                                  | Α                                                  |  |  |  |  |  |
| $I_{FM} = -I_{CM}$         | $t_p < 1 \text{ ms; } T_s = 25 (80) ^{\circ}\text{C;}$ | 90 (60)                                  | Α                                                  |  |  |  |  |  |
| T <sub>j</sub>             |                                                        | - 40 <b>+</b> 150                        | °C                                                 |  |  |  |  |  |
| T <sub>stg</sub>           |                                                        | - 40 + 125                               | °C                                                 |  |  |  |  |  |
| T <sub>sol</sub>           | Terminals, 10 s                                        | 260                                      | °C                                                 |  |  |  |  |  |
| V <sub>isol</sub>          | AC 50 Hz, r.m.s. 1 min. / 1 s                          | 2500 / 3000                              | V                                                  |  |  |  |  |  |

| Characteristics                                                                                             |                                                                                                                                                                                                                                        | T <sub>s</sub> = 25 °C | T <sub>s</sub> = 25 °C, unless otherwise specified |                       |                            |  |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------|-----------------------|----------------------------|--|
| Symbol                                                                                                      | Conditions                                                                                                                                                                                                                             | min.                   | typ.                                               | max.                  | Units                      |  |
| IGBT                                                                                                        |                                                                                                                                                                                                                                        |                        |                                                    |                       | •                          |  |
| $egin{array}{l} V_{\text{CE(sat)}} \ V_{\text{GE(th)}} \ C_{\text{ies}} \ R_{\text{th(j-s)}} \ \end{array}$ | $\begin{split} & I_{C} = 100 \text{ A, } T_{j} = 25 \text{ (125) °C} \\ & V_{CE} = V_{GE}; \ I_{C} = 0,002 \text{ A} \\ & V_{CE} = 25 \text{ V; } V_{GE} = 0 \text{ V; 1 MHz} \\ & \text{per IGBT} \\ & \text{per module} \end{split}$ | 3                      | 2 (2,2)<br>4<br>5,4                                | 2,5 (2,7)<br>5<br>0,5 | V<br>V<br>nF<br>K/W<br>K/W |  |
| $t_{d(on)}$ $t_r$ $t_{d(off)}$ $t_f$ $E_{on} + E_{off}$                                                     | under following conditions: $\begin{aligned} &V_{CC}=400 \text{ V}, V_{GE}=\pm 15 \text{ V} \\ &I_{C}=60 \text{ A}, T_{j}=125 \text{ °C} \\ &R_{Gon}=R_{Goff}=6,2 \Omega \end{aligned}$ Inductive load                                 |                        | 71<br>22<br>338<br>40<br>3,34                      |                       | ns<br>ns<br>ns<br>ns       |  |
|                                                                                                             | Freewheeling Diode                                                                                                                                                                                                                     |                        | -,                                                 |                       | 1                          |  |
| $V_F = V_{EC}$ $V_{(TO)}$ $r_T$ $R_{th(j-s)}$                                                               |                                                                                                                                                                                                                                        |                        | 1,1<br>0,85<br>12                                  | 1,6 (1,2)             | V<br>V<br>mΩ<br>K/W        |  |
| I <sub>RRM</sub><br>Q <sub>rr</sub><br>E <sub>off</sub>                                                     | under following conditions: $I_F = 30 \text{ A}; V_R = 400 \text{ V}$ $dI_F/dt = 500 \text{ A/}\mu\text{s}$ $V_{GE} = 0 \text{ V}; T_j = 125 \text{ °C}$                                                                               |                        | 25<br>1<br>1                                       |                       | Α<br>μC<br>mJ              |  |
| Mechanic                                                                                                    | cal data                                                                                                                                                                                                                               |                        |                                                    |                       |                            |  |
| M1<br>w                                                                                                     | mounting torque                                                                                                                                                                                                                        | 2,25                   | 30                                                 | 2,5                   | Nm<br>g                    |  |
| Case                                                                                                        | SEMITOP® 3                                                                                                                                                                                                                             |                        | T 72                                               |                       |                            |  |























This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.