

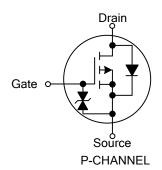
UNISONIC TECHNOLOGIES CO., LTD

UTT4407 **Preliminary** Power MOSFET

P-CHANNEL ENHANCEMENT MODE POWER MOSFET

DESCRIPTION

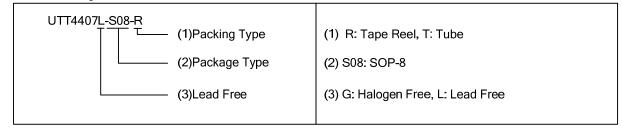
The UTC UTT4407 is a P-channel enhancement mode power MOSFET using UTC's advanced trench technology to provide customers with a minimum on-state resistance and extremal low gate charge with a 25V gate rating

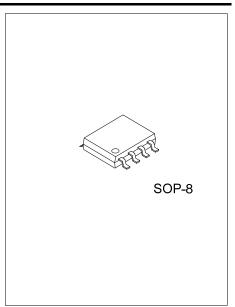

The UTC UTT4407 is universally applied in PWM or used as a load switch.

FEATURES

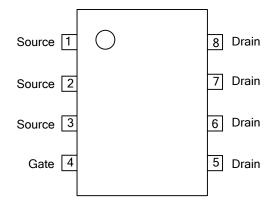
- * $V_{DS(V)} = -30V$
- * $I_D = -12A(V_{GS} = -20V)$
- * $R_{DS(ON)}$ < 13m Ω @ V_{GS} = -20V,

 $R_{DS(ON)} < 14m\Omega @V_{GS} = -10V$


SYMBOL



ORDERING INFORMATION


Ordering Number		Daakaga	Dacking		
Lead Free	Halogen Free	Package	Packing		
UTT4407L-S08-R	UTT4407G-S08-R	SOP-8	Tape Reel		
UTT4407L-S08-T	UTT4407G-S08-T	SOP-8	Tube		

Note: Pin Assignment: G: Gate D: Drain S: Source

■ PIN CONFIGURATION

■ ABSOLUTE MAXIMUM RATINGS (T_A = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	-30	V	
Gate-Source Voltage		V_{GSS}	±25	V	
Drain Current	Continuous(Note 2)	$T_A = 25^{\circ}C$	- I _D	-12	Α
	Continuous(Note 2)	$T_A = 70^{\circ}C$		-10	
	Pulsed (Note 3)		I _{DM}	-60	
Power Dissipation (Note 2) $\frac{T_A = 25^{\circ}C}{T_A = 70^{\circ}C}$		D	3	W	
		$T_A = 70^{\circ}C$	P _D	2.1	VV
Junction Temperature		T_J	+150	°C	
Storage Temperature		T _{STG}	-55~+ 150	°C	

Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Device mounted on 1in² FR-4 board with 2oz. Copper, t = 10sec.
- 3. Repetitive rating, pulse width limited by junction temperature.

■ THERMAL CHARACTERISTICS (T_A = 25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient (Note)	θ_{JA}	75	°C/W

Note: Device mounted on 1in^2 FR-4 board with 2oz. Copper, t = 10 sec.

■ ELECTRICAL CHARACTERISTICS (T_J =25°C, unless otherwise noted)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV _{DSS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu \text{A}$	-30			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} =-24V,V _{GS} =0 V			-1	
			V _{DS} =-24V,V _{GS} =0 V,T _J =55°C			-5	μA
Gate- Source Leakage Current	Forward	I _{GSS}	V_{GS} =+25 V , V_{DS} =0 V	+100			
	Reverse		V _{GS} =-25V,V _{DS} =0V			-100	μA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS} = V_{GS}$, $I_D = -250 \mu A$	-1.7	-2.5	-3	V
			$V_{GS} = -10V, I_D = -10A$		11	14	mΩ
Drain-Source On-State Resistance	Desir On the Original Desires		V _{GS} =-10V,I _D =-10A,T _J =125°C		15	19	mΩ
Diani-Source On-State Resistance	;	R _{DS(ON)}	V _{GS} =-20V, I _D =-10A		10	13	mΩ
			V_{GS} =-4.5V, I_{D} =-10A		24		mΩ
DYNAMIC PARAMETERS							
Input Capacitance		C _{ISS}			2076	2500	
Output Capacitance		Coss	V_{DS} =-15 V, V_{GS} =0V, f=1MHz		503		pF
Reverse Transfer Capacitance		C _{RSS}			302		
Gate Resistance		R_g	V_{DS} =0V, V_{GS} =0V, f=1MHz		2	3	Ω
SWITCHING PARAMETERS							
Total Gate Charge	Total Gate Charge		V _{DS} =-15V,V _{GS} =-10V,		37.2	45	nC
Gate Source Charge		Q_GS	I _D =-12A		7		
Gate Drain Charge		Q_GD	ID12A		10.4		
Turn-ON Delay Time		t _{D(ON)}			12.4		
Turn-ON Rise Time		t_R	V _{DS} =-15V, V _{GS} =-10V,		8.2		ns
Turn-OFF Delay Time		t _{D(OFF)}	$R_L=1.25\Omega$, $R_{GEN}=3\Omega$		25.6		
Turn-OFF Fall-Time		t _F			12		
SOURCE-DRAIN DIODE RATING	S AND CH	ARACTER	ISTICS				
Drain-Source Diode Forward Volta	Drain-Source Diode Forward Voltage		I _S =-1A, V _{GS} =0V		-0.72	-1	V
Maximum Continuous Drain-Source	e Diode	1-				-4.2	Α
Forward Current		I _S				-4.2	A
Body Diode Reverse Recovery Time		t _{RR}	I _F =-12 A, dI/dt=100A/μs		33	40	ns
Body Diode Reverse Recovery Charge		Q _{RR}	I _F =-12A, dI/dt=100A/μs		23		nC

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.