

TO-251 (IPAK) TO-252 (DPAK)

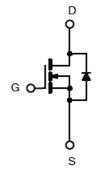
Pin Definition:
1. Gate

Drain
 Source

PRODUCT SUMMARY

V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A)
500	0.85 @ V _{GS} =10V	7.2

Features


- Low On-Resistance.
- High power and current handing capability.

Ordering Information

Part No.	Package	Packing
TSM8N50CH C5G	TO-251	75pcs / Tube
TSM8N50CP ROG	TO-252	2.5Kpcs / 13" Reel

Note: "G" denotes for Halogen Free

Block Diagram

N-Channel MOSFET

Absolute Maximum Rating (Tc = 25°C unless otherwise noted)

Parameter		Symbol	Limit	Unit
Drain-Source Voltage		V _{DS}	500	V
Gate-Source Voltage		V_{GS}	±30	V
Continuous Drain Current	Tc = 25°C	- I _D	7.2	А
	Tc = 100°C		4.3	А
Pulsed Drain Current (Note 1)		I _{DM}	28.8	А
Single Pulse Avalanche Energy (Note 2)		E _{AS}	181	mJ
Total Power Dissipation @ T _C = 25°C		P _{TOT}	89	W
Operating Junction Temperature		TJ	150	∘C
Storage Temperature Range		T _{STG}	-55 to +150	°C

Note1: Repetitive Rating : Pulse width limited by maximum junction temperature.

Note2: L=7mH, I_{AS} =8A, V_{DD} = 50V, V_{DS} = 200V, Starting T_J = 25 $^{\circ}$ C

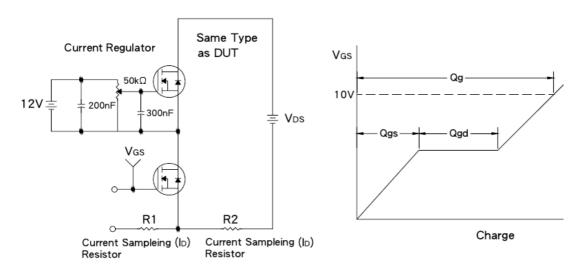
Thermal Performance

Parameter	Symbol	Limit	Unit	
Thermal Resistance - Junction to Case	R⊖ _{JC}	1.4	°C/W	
Thermal Resistance - Junction to Ambient	RO _{JA}	50		

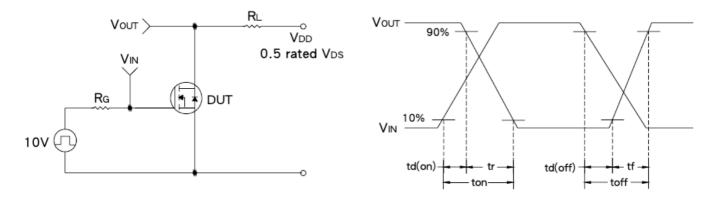
Electrical Specifications (Tc = 25°C unless otherwise noted)

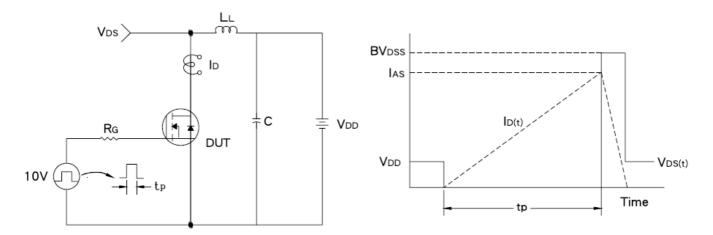
Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Static						
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250uA$	BV _{DSS}	500			V
Drain-Source On-State Resistance	$V_{GS} = 10V, I_D = 3.6A$	R _{DS(ON)}		0.7	0.85	Ω
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250uA$	V _{GS(TH)}	2.0	3.0	4.0	V
Zero Gate Voltage Drain Current	$V_{DS} = 500V, V_{GS} = 0V$	I _{DSS}			1	uA
Gate Body Leakage	$V_{GS} = \pm 30V, V_{DS} = 0V$	I _{GSS}			±100	nA
Dynamic (Note a)						
Total Gate Charge		Q_g		26.6		nC
Gate-Source Charge	$V_{DD} = 400V, I_D = 7A,$	Q_{gs}		5.4		
Gate-Drain Charge	$V_{GS} = 10V$	Q_{gd}		6.82		
Input Capacitance		C _{iss}		1595		pF
Output Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$	C _{oss}		127.4		
Reverse Transfer Capacitance	f = 1.0MHz	C _{rss}		14.5		
Switching (Note a)						
Turn-On Delay Time		t _{d(on)}		22		
Turn-On Rise Time	$V_{GS} = 10V, I_{D} = 7A,$	t _r		6.8		
Turn-Off Delay Time	$V_{DD} = 250V, R_{GEN} = 9.1\Omega$	t _{d(off)}		42		nS
Turn-Off Fall Time		t _f		4.8		
Source-Drain Diode Ratings and C	haracteristic					
Source Current		I _S			7	Α
Diode Forward Voltage	$I_S = 7A$, $V_{GS} = 0V$	V_{SD}			1.5	V

Note a: Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%.



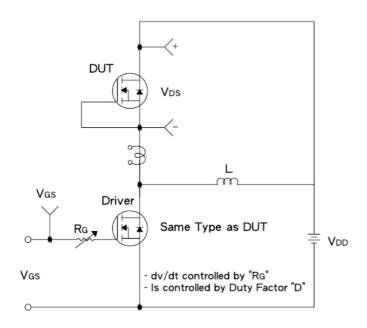
TSM8N50

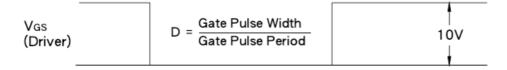

500V N-Channel MOSFET

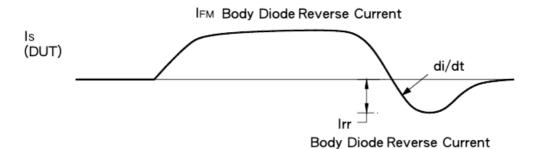

Gate Charge Test Circuit & Waveform

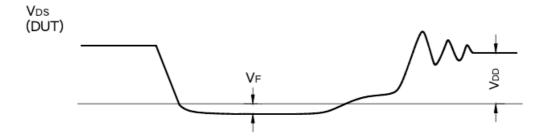
Resistive Switching Test Circuit & Waveform

EAS Test Circuit & Waveform

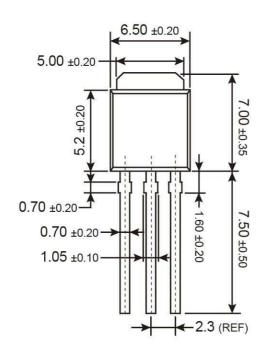


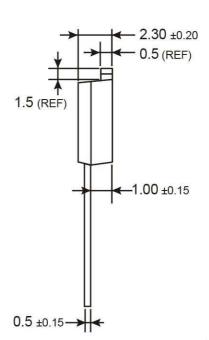

TSM8N50


500V N-Channel MOSFET

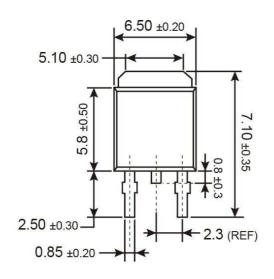


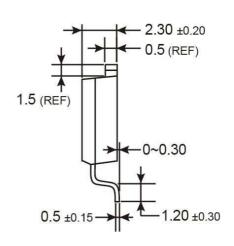
Diode Reverse Recovery Time Test Circuit & Waveform





TO-251 Mechanical Drawing





Unit: Millimeters

TO-252 Mechanical Drawing

Unit: Millimeters

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.