DC/DC CONVERTER 3W, Reinforced Insulation, Medical Safety

FEATURES

- ► Reinforced Insulation rated for 300VAC Working Voltage
- ► I/O-isolation Voltage 4000VACrms
- ► Industrial & Medical Safety Approval
- ▶ Ultra-wide Input Voltage Ranges: 9-40VDC, 18-80VDC and 36-160VDC
- ► Fully regulated Output Voltage
- Low Leakage Current
- ▶ Operating Temp. Range –40°C to +85 °C
- Input Filter meets EN 55022, class A
- ► Short Circuit Protection
- > 3 Years Product Warranty

PRODUCT OVERVIEW

The MINMAX MIHW2000 series is a range of high performance DC/DC converter modules with a reinforced insulation system .The I/O- isolation voltage is specified for 4000VACrms. The product comes in a small DIP-24 package. All models features an ultra-wide input voltage range including 36-160VDC for railroad applications.

Full SMD design with exclusive use of ceramic capacitors guarantees a high reliability with calculated MTBF of >1 Mio. hours.

These high isolation DC/DC converters are the perfect solution solution for many demanding applications in industrial and railroad systems, in medical instrumentation, everywhere where a certified supplementary or reinforced insulation system is required to comply with specific industrial or medical safety standards.

Model Selection	n Guide											
Model Number	Input Voltage	·		Current	Reflected Ripple	Max. capacitive Load	Efficiency (typ.)					
	(Range)		Max.	Min.	@Max. Load	@No Load	Current		@Max. Load			
	VDC	VDC	mA	mA	mA(typ.)	mA(typ.)	mA (typ.)	uF	%			
MIHW2022		5	600	90	160		15	1000	78			
MIHW2023	24	12	250	37.5	151	20		470	83			
MIHW2026	(9 ~ 40)	±12	±125	±18.8	151	20		220#	83			
MIHW2027		±15	±100	±15	151			220#	83			
MIHW2032		5	600	90	80	10		8	1000	78		
MIHW2033	48	12	250	37.5	75		10		10 8	Ω	470	83
MIHW2036	(18 ~ 80)	±12	±125	±18.8	75					220#	83	
MIHW2037		±15	±100	±15	75			220#	83			
MIHW2042		5	600	90	35			1000	78			
MIHW2043	110	12	250	37.5	33	5	5 3	470	83			
MIHW2046	(36 ~ 160)	±12	±125	±18.8	33		3	220#	83			
MIHW2047		±15	±100	±15	33			220#	83			

For each output

Input Specifications					
Parameter	Model	Min.	Тур.	Max.	Unit
	24V Input Models	-0.7		50	
nput Surge Voltage (1 sec. max.)	48V Input Models	-0.7		100	
	110V Input Models	-0.7		180	
	24V Input Models	8	8.5	9	VDC
Start-Up Voltage	48V Input Models	13	15	17	
	110V Input Models	26	30	34	
	24V Input Models			8.5	
Jnder Voltage Shutdown	48V Input Models			16	
	110V Input Models			32	
Reverse Polarity Input Current				0.3	Α
Short Circuit Input Power	All Madala			2000	mW
Internal Power Dissipation	All Models			2500	mW
Conducted EMI		Compliance	to EN 55022,class	A and FCC part	15.class A

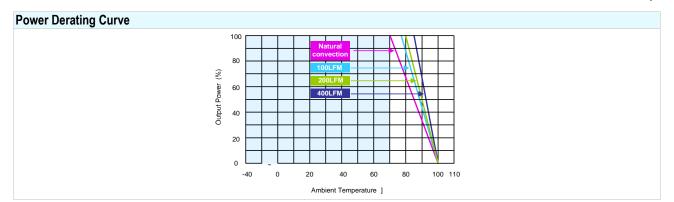
E-mail:sales@minmax.com.tw Tel:886-6-2923150

DC/DC CONVERTER 3W, Reinforced Insulation, Medical Safety

Output Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Output Voltage Accuracy			±0.5	±1.0	%
Output Voltage Balance	Dual Output, Balanced Loads		±0.5	±2.0	%
Line Regulation	Vin=Min. to Max.		±0.3	±0.5	%
Load Regulation	lo=25% to 100%		±0.5	±1.0	%
D: 1 0 N : (00 N I)	5V Output Models		75	100	mV _{P-P}
Ripple & Noise (20MHz)	Other Output Models		100	150	mV _{P-P}
Ripple & Noise (20MHz)	Over Line, Load & Temp.			180	mV _{P-P}
Ripple & Noise (20MHz)				15	mV rms
Transient Recovery Time	050/ Lead Ote Oheren		150	500	uS
Transient Response Deviation	25% Load Step Change		±3	±6	%
Temperature Coefficient			±0.02	±0.05	%/°C
Over Load Protection	Foldback	120	150		%
Short Circuit Protection	Continuous				

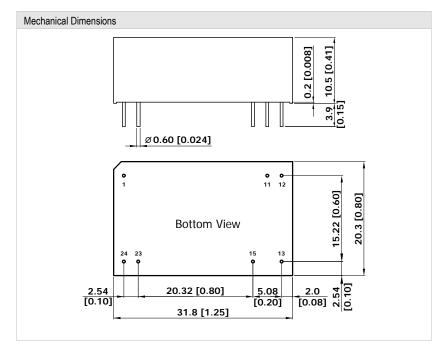
Isolation, Safety Standards						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
I/O Isolation Voltage (rated)	60 Seconds	4000			VACrms	
I/O Isolation Test Voltage	Flash tested for 1 Second	6000			V_{PK}	
Leakage Current	240VAC, 60Hz			2	uA	
I/O Isolation Resistance	500 VDC	10			GΩ	
I/O Isolation Capacitance	100KHz, 1V		7	13	pF	
	cUL/UL60950-1, CSA C22.2 No. 60950-1-03					
Safety Standards	UL60601-1,CSA C22.2 No.601-1					
	IEC/EN 60950-1, IEC/EN 60601-1					
Approvale	IEC60950-1 CB report, cUL/UL 60950-1 certificate					
Approvals	UL60601-1 UL certificate					

General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Switching Frequency			150		KHz
MTBF(calculated)	MIL-HDBK-217F@25°C, Ground Benign	1,000,000			Hours


Input Fuse					
24V Input Models	48V Input Models	110V Input Models			
1000mA Slow-Blow Type	500mA Slow-Blow Type	300mA Slow-Blow Type			

Environmental Specifications						
Parameter	Conditions	Min.	Max.	Unit		
Operating Temperature Range (with Derating)	Ambient	-40	+85	°C		
Case Temperature			+95	°C		
Storage Temperature Range		-50	+125	°C		
Humidity (non condensing)			95	% rel. H		
Cooling	Free-Air convection					
Lead Temperature (1.5mm from case for 10Sec.)			260	°C		

E-mail:sales@minmax.com.tw Tel:886-6-2923150


DC/DC CONVERTER 3W, Reinforced Insulation, Medical Safety

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 Ripple & Noise measurement bandwidth is 0-20 MHz.
- 4 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however, they may not meet all specifications listed.
- 5 All DC/DC converters should be externally fused at the front end for protection.
- 6 Other input and output voltage may be available, please contact factory.
- 7 Specifications subject to change without notice.

Package Specifications

Pin Connec	Pin Connections				
Pin	Single Output Dual Outpu				
1	+Vin	+Vin			
11	No Pin	Common			
12	-Vout	No Pin			
13	+Vout	-Vout			
15	No Pin	+Vout			
23	-Vin	-Vin			
24	-Vin	-Vin			

- ► All dimensions in mm (inches)
- ► Tolerance: X.X±0.25 (X.XX±0.01)

X.XX±0.13 (X.XXX±0.005)

▶ Pin diameter Ø 0.6 ±0.05 (0.024±0.002)

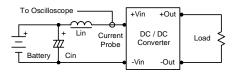
Physical Characteristics

Case Size : 31.8x20.3x10.5mm (1.25x0.8x0.41 Inches)

Case Material : Non-Conductive Black Plastic (flammability to UL 94V-0 rated)

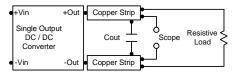
Weight : 16.2g

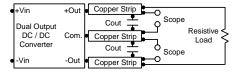
E-mail:sales@minmax.com.tw Tel:886-6-2923150



DC/DC CONVERTER 3W. Reinforced Insulation. Medical Safety

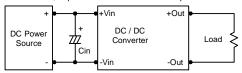
Test Configurations


Input Reflected-Ripple Current Test Setup


Input reflected-ripple current is measured with a inductor Lin (4.7 μ H) and Cin (220 μ F, ESR < 1.0 μ C at 100 KHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 KHz.

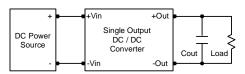
Peak-to-Peak Output Noise Measurement Test

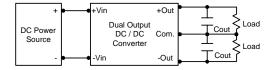
Use a Cout 0.47uF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.


Design & Feature Considerations

Overcurrent Protection

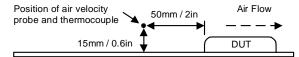
To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor on the input to insure startup. By using a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 4.7uF for the 24V input devices, a 2.2uF for the 48V devices and a 1uF for the 110V devices, capacitor mounted close to the power module helps ensure stability of the unit.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3uF capacitors at the output.



Maximum Capacitive Load

The MIHW2000 series has limitation of maximum connected capacitance on the output. The power module may operate in current limiting mode during start-up, affecting the ramp-up and the startup time. Connect capacitors at the point of load for best performance. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 95°C. The derating curves are determined from measurements obtained in a test setup.

Tel: 886-6-2923150 Fax: 886-6-2923149 E-mail: sales@minmax.com.tw

18, Sin Sin Road, An-Ping Industrial District, Tainan 702, Taiwan

Minmax Technology Co., Ltd.