

STGW30NB60HD

N-CHANNEL 30A - 600V TO-247 PowerMESHTM IGBT

TO-247

60

30

240

190

1.52

-65 to 150

150

SCHEMATIC DIACDAM

TYPE	Vces	V _{CE(sat)}	Ιc
STGW30NB60HD	600 V	< 2.8 V	30 A

- HIGH INPUT IMPEDANCE
- (VOLTAGE DRIVEN)
- LOW ON-VOLTAGE DROP (VCESAT)
- LOW GATE CHARGE
- HIGH CURRENT CAPABILITY
- VERY HIGH FREQUENCY OPERATION
- OFF LOSSES INCLUDE TAIL CURRENT
- CO-PACKAGE WITH TURBOSWITCHTM ANTIPARALLEL DIODE

DESCRIPTION

Using the latest high voltage technology based on a patented strip layout, STMicroelectronics has designed an advanced family of IGBTs, the PowerMESHTM IGBTs, with outstanding perfomances. The suffix "H" identifies a family optimized to achieve very high frequency application

APPLICATIONS

Symbol VCES

 V_{ECR}

 V_{GE}

Ιc

Ιc

I_{CM}(●)

P_{tot}

Tstg

Ti

- HIGH FREQUENCY M
- WELDING EQUIPMEN
- SMPS AND PFC IN BC AND RESONANT TOF

Collector Current (pulsed)

Total Dissipation at T_c = 25 °C

Max. Operating Junction Temperature

Collector Current (continuous) at T_c = 25 °C

Collector Current (continuous) at T_c = 100 °C

to achieve very low switching times for ency applications (<120kHz).		AM
TIONS REQUENCY MOTOR CONTROLS NG EQUIPMENTS AND PFC IN BOTH HARD SWITCH ESONANT TOPOLOGIES	G (1) 0 SC12850 E (3)	
TE MAXIMUM RATINGS		
Parameter	Value	Unit
Collector-Emitter Voltage (V _{GS} = 0)	600	V
Emitter-Collector Voltage	20	V
Gate-Emitter Voltage	± 20	V

ABSOLUTE MAXIMUM

(•) Pulse width limited by safe operating area

Derating Factor

Storage Temperature

А

А

А

W W/°C

°C

°C

THERMAL DATA

ſ	R _{thj-case}	Thermal Res	istance	Junction-case	Max	0.66	°C/W
	R _{thj-amb}	Thermal Res	istance	Junction-ambient	Max	30	oC/W
	R _{thc-h}	Thermal Res	istance	Case-heatsink	Тур	0.1	°C/W

ELECTRICAL CHARACTERISTICS (T_j = 25 $^{\circ}$ C unless otherwise specified) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{BR(CES)}	Collector-Emitter Breakdown Voltage	$I_{C} = 250 \ \mu A$ $V_{GE} = 0$	600			V
I _{CES}	Collector cut-off (V _{GE} = 0)				250 2000	μΑ μΑ
I _{GES}	Gate-Emitter Leakage Current (V _{CE} = 0)	$V_{GE} = \pm 20 \text{ V} \qquad V_{CE} = 0$			± 100	nA

ON (*)

Symbol	Parameter	Test Conditions		Тур.	Max.	Unit
$V_{\text{GE(th)}}$	Gate Threshold Voltage	$V_{CE} = V_{GE}$ I _C = 250 µA	3		5	V
V _{CE(SAT)}		$ \begin{array}{lll} V_{GE} = 15 \ V & I_C = 30 \ A \\ V_{GE} = 15 \ V & I_C = 30 \ A & T_j = 125 \ ^oC \end{array} $		2.2 1.8	2.8	V V

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g fs	Forward Transconductance	V _{CE} =25 V I _C = 30 A		20		S
Cies C _{oes} C _{res}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{CE} = 25 V f = 1 MHz V_{GE} = 0$		2300 250 60		pF pF pF
Q _G Q _{GE} Q _{GC}	Total Gate Charge Gate-Emitter Charge Gate-Collector Charge	$V_{CE} = 480 \text{ V}$ $I_C = 30 \text{ A}$ $V_{GE} = 15 \text{ V}$		150 15 72		nC nC nC
I _{CL}	Latching Current		120			A

SWITCHING ON

Symbol	Parameter	Test Con	Test Conditions		Тур.	Max.	Unit
t _{d(on)} t _r	Delay Time Rise Time	V _{CC} = 480 V V _{GE} = 15 V	I _C = 30 A R _G = 10Ω		15 35		ns ns
(di/dt) _{on}	Turn-on Current Slope	V _{CC} = 480 V R _G = 10 Ω	I _C = 30 A V _{GE} = 15 V		1000		A/µs
Eon	Turn-on Switching Losses	T _j = 125 °C			1000		μJ

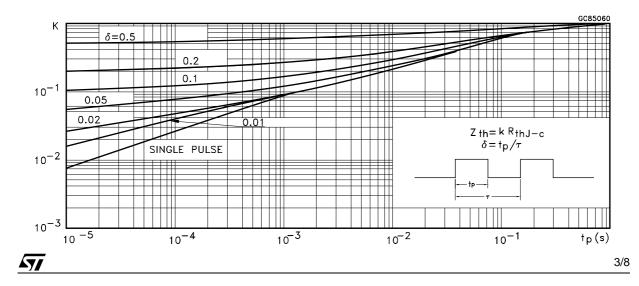
57

ELECTRICAL CHARACTERISTICS (continued)

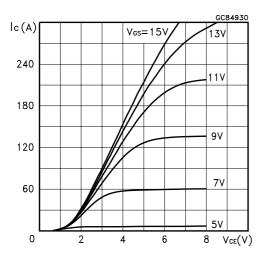
SWITCHING OFF

Symbol	Parameter	Test Cond	itions	Min.	Тур.	Max.	Unit
$\begin{array}{c} t_c \\ t_r(v_{off}) \\ t_d(_{off}) \\ t_f \\ E_{off}(^{**}) \\ E_{ts}(\circ) \end{array}$	Cross-Over Time Off Voltage Rise Time Delay Time Fall Time Turn-off Switching Loss Total Switching Loss	V _{CC} = 480 V R _{GE} = 10 Ω	I _C = 30 A V _{GE} = 15 V		150 40 210 90 1.10 2.0		ns ns ns mJ mJ
$\begin{array}{c} t_c \\ t_r(v_{off}) \\ t_d(_{off}) \\ t_f \\ E_{off}(^{**}) \\ E_{ts}(_{O}) \end{array}$	Cross-Over Time Off Voltage Rise Time Delay Time Fall Time Turn-off Switching Loss Total Switching Loss	$V_{CC} = 480 V$ $R_{GE} = 10 \Omega$ $T_j = 125 \ ^{\circ}C$	I _C = 30 A V _{GE} = 15 V		250 70 250 160 1.6 2.65		ns ns ns mJ mJ

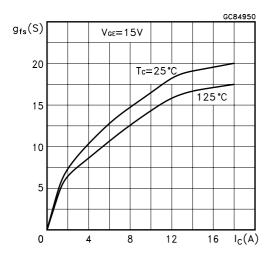
COLLECTOR-EMITTER DIODE

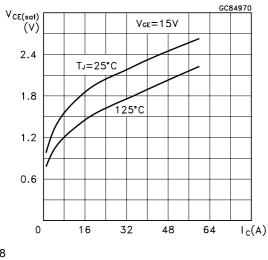

Symbol	Parameter	Test Cond	ditions	Min.	Тур.	Max.	Unit
l _f I _{fm}	Forward Current Forward Current pulsed					30 240	A A
V _f	Forward On-Voltage	I _f = 30 A I _f = 30 A	T _j = 125 °C		1.7 1.55	2.0	V V
t _{rr} Q _{rr} I _{rrm}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	l _f = 30 A dI/dt = 100 A/μS	V _R = 100 V T _j = 125 °C		116 406 7		nS nC A

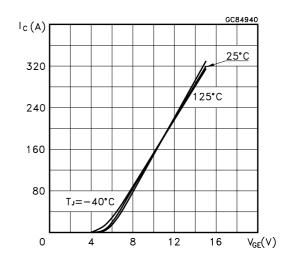
(•) Pulse width limited by max. junction temperature (>) Include recovery losses on the STTA2006 freewheeling diode

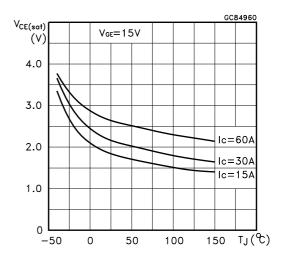

(*) Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %

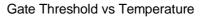
(**)Losses Include Also The Tail (Jedec Standardization)

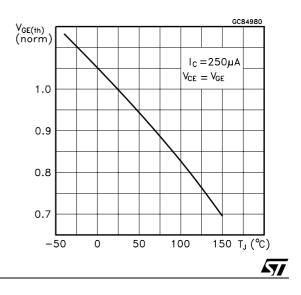

Thermal Impedance

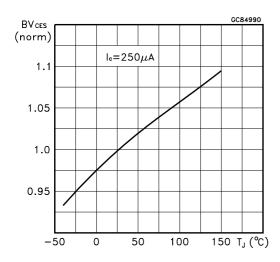

Output Characteristics


Transconductance

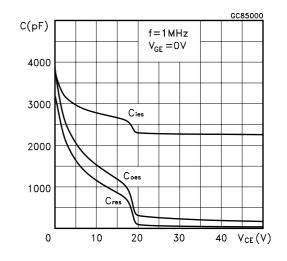

Collector-Emitter On Voltage vs Collector Current

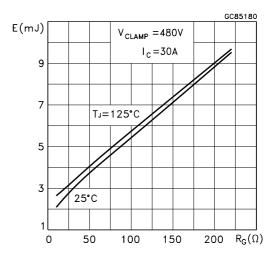



Transfer Characteristics

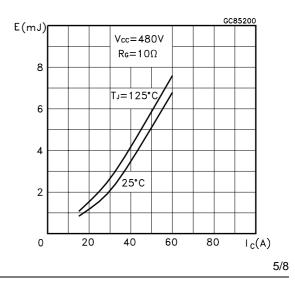


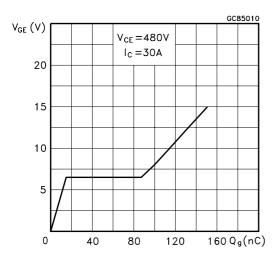
Collector-Emitter On Voltage vs Temperature

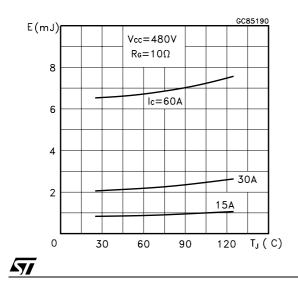




Normalized Breakdown Voltage vs Temperature


Capacitance Variations


Total Switching Losses vs Gate Resistance


Total Switching Losses vs Collector Current

Gate Charge vs Gate-Emitter Voltage

Total Switching Losses vs Temperature

Switching Off Safe Operating Area

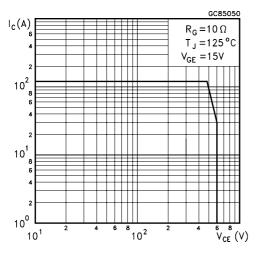


Fig. 1: Gate Charge test Circuit

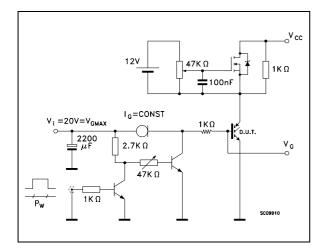


Fig. 3: Switching Waveforms

Diode Forward Voltage

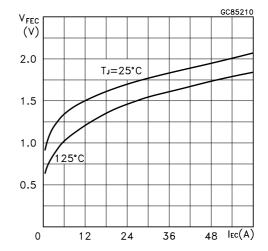
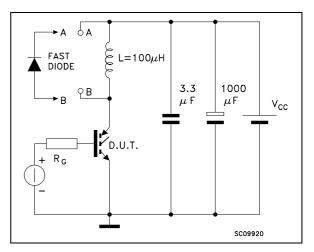
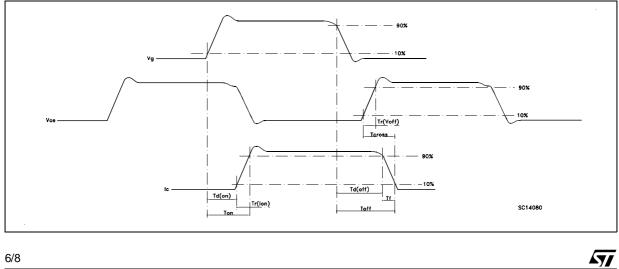
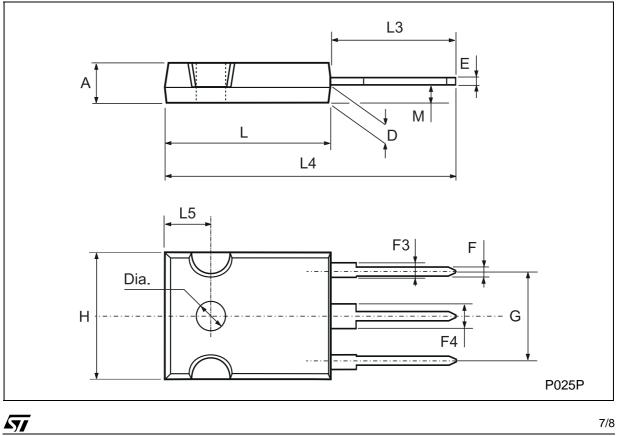




Fig. 2: Test Circuit For Inductive Load Switching



6/8

DIM.		mm		inch			
DINI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	4.7		5.3	0.185		0.209	
D	2.2		2.6	0.087		0.102	
E	0.4		0.8	0.016		0.031	
F	1		1.4	0.039		0.055	
F3	2		2.4	0.079		0.094	
F4	3		3.4	0.118		0.134	
G		10.9			0.429		
Н	15.3		15.9	0.602		0.626	
L	19.7		20.3	0.776		0.779	
L3	14.2		14.8	0.559		0.582	
L4		34.6			1.362		
L5		5.5			0.217		
М	2		3	0.079		0.118	

TO-247 MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics

> © 1999 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

8/8

A7