| | | | | | | | | RE | VISI | ONS | | | | | | —т | | | | | |-----------------------------|---------------------|------------------|-----|------|---|------------------|--------|----------|------|----------|-------|-----|----------------|-------|-------------|-----------|------|-------|------|-----| | LTR | | | | | DI | ESCR | PTIC | N | | | | | D ₂ | ATE C | YR-MO- | -DA) | | APPRO | OVED | | | LTR | | | | | | | | -DA) | | APPRO | DAF D | | | | | | | | | | | | | | | | - , | | | | 1 | | | | | | | | I | | | | | REV | | | | | | | | | ! | | | | | | | | | | | | | SHEET | REV | SHEET | REV STAT | | | | RE | V | | | | | | | | | | | | | | | | | OF SHEETS | S
 | | | SH | EET | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14_ | | PMIC N/A | | | | | ARED E | | | | | D! | EFENS | | | | s su
Hio | | CENT | rer | | | | | ARDI
ITAK
WIN | RY |) | | KED BY | | RE | | | | | | | | | | | | | | | THIS DRAWIN
FOR USE BY A | G IS A | VAILAI
PARTME | NTS | | OVED E | | | | | PU | | WID | | | | | | POWE: | | | | AND AGEN
DEPARTMEN | | | | DRAW | | PPROVA
3-12-2 | L DATE | <u> </u> | | | | | GE CODE 5 | | 59 | 962-94513 | | | | | | AMSC N/A | ı | | | REVI | SION I | LEVEL | | | | A | | | 5726 | | | | | | | | | | | | | | | | | | | SH | EET 1 | | | | OF 14 | | | | | | | DESC FORM 193 | | | | | | | | | | <u> </u> | | | | | | | | | | | JUL 91 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 5962-E040-94 ### 1. SCOPE - 1.1 <u>Scope</u>. This drawing forms a part of a one part one part number documentation system (see 6.6 herein). Two product assurance classes consisting of military high reliability (device classes Q and M) and space application (device class V), and a choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). Device class M microcircuits represent non-JAN class B microcircuits in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices". When available, a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN. - 1.2 PIN. The PIN shall be as shown in the following example: - 1.2.1 <u>RHA designator</u>. Device class M RHA marked devices shall meet the MIL-I-38535 appendix A specified RHA levels and shall be marked with the appropriate RHA designator. Device classes Q and V RHA marked devices shall meet the MIL-I-38535 specified RHA levels and shall be marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device. - 1.2.2 <u>Device type(s)</u>. The device type(s) shall identify the circuit function as follows: | Device type | Generic number | <u>Circuit function</u> | Turn-on threshold | Turn-off threshold | |-------------|----------------|-------------------------|-------------------|--------------------| | 01 | UCC1801 | Pulse width modulator | 9.4 V | 7.4 V | | 02 | ucc1802 | Pulse width modulator | 12.5 V | 8.3 V | | 03 | UCC1803 | Pulse width modulator | 4.1 V | 3.6 V | | 04 | ucc1804 | Pulse width modulator | 12.5 V | 8.3 V | | 05 | UCC1805 | Pulse width modulator | 4.1 V | 3.6 V | 1.2.3 <u>Device class designator</u>. The device class designator shall be a single letter identifying the product assurance level as follows: Device class ## Device requirements documentation M Vendor self-certification to the requirements for non-JAN class B microcircuits in accordance with 1.2.1 of MIL-STD-883 Q or V Certification and qualification to MIL-I-38535 1.2.4 <u>Case outline(s)</u>. The case outline(s) shall be as designated in MIL-STD-1835 and as follows: | Outline letter | Descriptive designator | <u>Terminals</u> | Package style | |----------------|------------------------|------------------|---------------| | P ['] | GDIP1-T8 or CDIP2-T8 | 8 | Dual-in-line | 1.2.5 <u>Lead finish</u>. The lead finish shall be as specified in MIL-STD-883 (see 3.1 herein) for class M or MIL-I-38535 for classes Q and V. Finish letter "X" shall not be marked on the microcircuit or its packaging. The "X" designation is for use in specifications when lead finishes A, B, and C are considered acceptable and interchangeable without preference. | STANDARDIZED MILITARY DRAWING | SIZE
A | | 5962-94513 | |--|-----------|----------------|------------| | DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | | REVISION LEVEL | SHEET
2 | # 1.3 Absolute maximum ratings. 1/2/ Supply voltage (low impedance source) 12.0 V OUTPUT energy (capacitive load) 20.0 $\mu { m J}$ Analog inputs (FB, CS) -0.3 V to 6.3 V 1.4 Recommended operating conditions. 2. APPLICABLE DOCUMENTS 2.1 Government specification, standards, bulletin, and handbook. Unless otherwise specified, the following specification, standards, bulletin, and handbook of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein. **SPECIFICATION** **MILITARY** MIL-I-38535 - Integrated Circuits, Manufacturing, General Specification for. **STANDARDS** **MILITARY** MIL-STD-883 - Test Methods and Procedures for Microelectronics. MIL-STD-973 - Configuration Management. MIL-STD-1835 - Microcircuit Case Outlines. BULLETIN MILITARY MIL-BUL-103 - List of Standardized Military Drawings (SMD's). HANDBOOK **MILITARY** MIL-HDBK-780 - Standardized Military Drawings. (Copies of the specification, standards, bulletin, and handbook required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.) 2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence. ^{2/} All voltages are respect to ground. All currents are positive into the specified terminal. | STANDARDIZED
MILITARY DRAWING | SIZE
A | | 5962-94513 | |--|-----------|----------------|------------| | DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | | REVISION LEVEL | SHEET
3 | ^{1/} Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability. ### 3. REQUIREMENTS - 3.1 <u>Item requirements</u>. The individual item requirements for device class M shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein. The individual item requirements for device classes Q and V shall be in accordance with MIL-I-38535, the device manufacturer's Quality Management (QM) plan, and as specified herein. - 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-STD-883 (see 3.1 herein) for device class M and MIL-I-38535 for device classes Q and V and herein. - 3.2.1 Case outline(s). The case outline(s) shall be in accordance with 1.2.4 herein. - 3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1. - 3.2.3 Logic diagram(s). The logic diagram(s) shall be as specified on figure 2. - 3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full ambient operating temperature range. - 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I. - 3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. Marking for device class M shall be in accordance with MIL-STD-883 (see 3.1 herein). In addition, the manufacturer's PIN may also be marked as listed in MIL-BUL-103. Marking for device classes Q and V shall be in accordance with MIL-I-38535. - 3.5.1 <u>Certification/compliance mark</u>. The compliance mark for device class M shall be a "C" as required in MIL-STD-883 (see 3.1 herein). The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-I-38535. - 3.6 <u>Certificate of compliance</u>. For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-BUL-103 (see 6.7.2 herein). For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.7.1 herein). The certificate of compliance submitted to DESC-EC prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device class M, the requirements of MIL-STD-883 (see 3.1 herein), or for device classes Q and V, the requirements of MIL-I-38535 and the requirements herein. - 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device class M in MIL-STD-883 (see 3.1 herein) or for device classes Q and V in MIL-I-38535 shall be provided with each lot of microcircuits delivered to this drawing. - 3.8 <u>Notification of change for device class M</u>. For device class M, notification to DESC-EC of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change as defined in MIL-STD-973. - 3.9 <u>Verification and review for device class M</u>. For device class M, DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer. - 3.10 <u>Microcircuit group assignment for device class M</u>. Device class M devices covered by this drawing shall be in microcircuit group number 110 (see MIL-I-38535, appendix A). - 4. QUALITY ASSURANCE PROVISIONS - 4.1 <u>Sampling and inspection</u>. For device class M, sampling and inspection procedures shall be in accordance with MIL-STD-883 (see 3.1 herein). For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-I-38535 and the device manufacturer's QM plan. | STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER | SIZE
A | | 5962-94513 | |---|-----------|----------------|------------| | DAYTON, OHIO 45444 | | REVISION LEVEL | SHEET 4 | | Test |
 Symbol |
 Conditions
 -55°C ≤ T _A ≤ +1
 unless otherwise sp | | Group A | Device
type | Limits 2/ | | Unit
 | |-------------------------------------|-----------------------|--|---------|---------|----------------|--------------|-------|---------------------| | | | unless otherwise sp

 | ecified | |] | Min | Max | | | Reference section | | | | | | | | | | Output voltage | Vout | IDRIVER = 10 mA,
 T _A = +25°C | | 1 | 01,02, | 4.925 | 5.075 |
 v
. | | | | | | | 03,05 | 3.94 | 4.06 | ļ | | Load regulation | v _{LD} | I _{OUT} = 0.2 mA to 5 | mA | 1,2,3 | ALL | | 30 | mV | | Total variation | v _{TV} | <u>3</u> / | | 1,2,3 | 01,02, | 4.88 | 5.10 | V | | | | | | | 03,05 | 3.90 | 4.08 | | | Output short circuit current | Ios | | | 1,2,3 | ALL |
 -5
 | -35 |
 mA
 | | Oscillator section | | | | | | • | | | | Amplitude | | | | 1,2,3 | ALL | 2.30 | 2.50 | v | | Oscillator frequency f ₀ | |
 <u>4</u> /
 | | 4,5,6 | 01,03,
05 |
 26
 | 36 |
 kHz | | | | | | | 02,04 | 40 | 52 | | | Error amplifier section | | | | | | | _ | | | Input voltage | VIN | V _{COMP} = 2.5 V | | 1,2,3 | 01,02, | 2.44 | 2.56 | mV | | | | ν _{COMP} = 2.0 v | | | 03,05 | 1.95 | 2.05 |
 | | Input bias current | IIB | | | 1,2,3 | 01 | -1 | 1 | μΑ | | COMP sink current | ^I si | FB = 2.7 V, COMP = | 1.1 V | 1,2,3 | ALL | 0.3 | 3.5 | mA | | COMP source current | I _{SO} | FB = 1.8 V,
COMP = REF -1 V | | 1,2,3 | ALL | -0.2 | -0.8 | mA | | See footnotes at end of t | able. | | | | <u> </u> | | • | | | | | | | | | | | | | MILITA | DARDIZED
RY DRAWIN | IG | SI2 | | | | 5962 | -9451 | | DEFENSE ELECTRO | ONICS SUP
OHIO 45 | PLY CENTER | | | EVISION | LEVEL | SHEET | · | | | Symbol | Conditions
 -55°C ≤ T _A ≤ +12
 unless otherwise spe | <u>1</u> /
5°C | Group A subgroups | Device
 type | Limit | s <u>2</u> / | Unit | |----------------------------|------------------|--|-------------------|-------------------|------------------|--------------|--------------|-------------| | | | unless otherwise spe | CITIEG | | | Min | Max | | | Error amplifier section - | Continued. | | | | | | | | | Open loop voltage gain | OLVG | | | 4,5,6 | ALL | 60 |
 | dB | | Pulse width modulator sect | ion | | | | | | | | | Maximum duty cycle | | | | 4,5,6 | 01,04, |
 48
 |
 50
 |
 %
 | | | | | | | 02,03 | 97 | 100 | | | Minimum duty cycle | | COMP = 0 V | | 4,5,6 | ALL |

 | 0 | % | | Current sense section | | | | | | | | | | Maximum input signal | VIN |
 COMP = 5 V <u>5</u> / | - | 1,2,3 | ALL | 0.9 | 1.1 | v | | Input bias current | +I _{IB} | | | 1,2,3 | ALL |
 | 200 | nA | | | -I _{IB} |
 | | | | -200 | | | | Over-current threshold | v _{oc} | | | 1,2,3 | ALL | 1.35 | 1.60 | V | | COMP to CS offset | | cs = 0 V | | 1,2,3 | ALL | 0.45 | 1.35 | v | | Gain | | 6/ | | 4,5,6 | ALL | 1.10 | 1.80 | V/V | | CS blank time | tcs | | | 9,10,11 | ALL | 50 | 150 | ns | | See footnotes at end of ta | ble. | • | | | | | | | | | | . • | | | | | | | | | | | | | | | Test | Symbol | Conditions <u>1</u> /
 -55°C ≤ T _A ≤ +125°C
 unless otherwise specified | Group A subgroups | Device type | Limit | s <u>2</u> / | Unit | |---|-------------------|--|-------------------|-------------|-------|--------------|----------------| | | | unless otherwise specified | | | Min | Max | | | Output section | | | | | | | | | DUTPUT low level voltage | VOUTL | I = 20 mA | 1,2,3 | ALL | | 0.4 |
 V | | | | _ I = 200 mA | _ | | | 0.90 |
 | | | 1 | i I = 50 mA, V _{CC} = 5 V | | 03,05 | | 0.40 | | | | | I = 20 mA, V _{CC} = 0 V | | ALL | | 1.2 | | | OUTPUT high V _{SAT} ,
(V _{CC} -OUTPUT) | V _{OUTH} | I = 20 mA | 1,2,3 | ALL | | 0.4 | V | | (V _{CC} -OUTPUT) | | I = 200 mA | _!
_! | | | 1.9 | | | | | I = 50 mA, V _{CC} = 5 V | | 03,05 | | 0.9 | | | Rise time | t _R | c _L = 1 nF | 9,10,11 | ALL | | 70 | ns | | Fall time | t _F | c _L = 1 nF | 9,10,11 | ALL | | 75 | ns | | Under-voltage lock-out sect | ion | <u> </u> | | | - | | | | Start threshold voltage | 1 |
 <u>7</u> / | 1,2,3 | 01 | 8.6 | 10.2 | V | | | | | | 02,04 | 11.5 | 13.5 | - | | | | | | 03,05 | 3.7 | 4.5 | | | Minimum operating voltage | | <u> 7</u> / | 1,2,3 | 01 | 6.8 | 8.0 | v | | after start | | | | 02,04 | 7.6_ | 9.0 | _ | | | <u> </u> | | | 03,05 | 3.2 | 4.0 | <u> </u> | | | - | | 1,2,3 | 01 | 1.6 | 2.4_ | _ v | | Hysteresis | i | | 1 | 1 | 1 | | | | Hysteresis
after start | | | | 02,04 | 3.5 | 5.1 | - | | | TARLE | T | Electrical | performance | characteristics - | Continued. | |--|-------|---|------------|-------------|-------------------|------------| |--|-------|---|------------|-------------|-------------------|------------| | Test | Symbol | -55°C ≤ T _A ≤ +125°C | | Device
type | Limit | s <u>2</u> / | Unit

 | |-------------------------------------|----------------------------|-------------------------------------|-------|------------------|-------|--------------|--------------------| | · | unless otherwise specified | | | | Min | Max | | | Overall section | | | | | | | | | Start-up current | | V _{CC} < start threshold | 1,2,3 | All | | 0.2 | mA | | Operating supply current | | FB = 0 V, CS = 0 V,
OSC disabled | 1,2,3 | ALL | | 1.0 | mA | | V _{CC} zener shunt voltage | | I _{CC} = 10 mA <u>7</u> / | 1,2,3 | All | 12 | 15 | V | | Shunt to start difference | | | 1,2,3 | 02,04 | 0.5 | | V | ^{1/} V_{CC} = 10 V. Adjust V_{CC} above the start threshold before setting at 10 V. RT = 100kΩ from REF pin to RC pin. cT = 330 pF from RC pin to GND pins. A 0.1 μ F capacitor is placed from V_{CC} to GND pins. A 0.01 μ F capacitor is placed from V_{REF} to GND pins. - $\underline{\mathbf{3}}/$ Total variation includes temperature stablity and load regulation. - 4/ Oscillator frequency for device types 02 and 03 is the output frequency. Oscillator frequency for device types 01 and 04 is twice the output frequency. - $\underline{5}/$ The test is measured at trip point of latch with Feedback (FB) pin at 0 V. - $\underline{6}$ / The gain is defined by: A = $\frac{\Delta V_{COMP}}{\Delta V_{CS}}$, where V_{CS} = 0 V and 0.8 V. - 7/ Start threshold and zener shunt thresholds track one another. | STANDARDIZED MILITARY DRAWING | SIZE
A | | 5962-94513 | |--|-----------|----------------|------------| | DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | | REVISION LEVEL | SHEET
8 | ^{2/} The algebraic convention, whereby the most negative value is a minimum and the most positive is a maximum, is used in this table. Negative current shall be defined as conventional current flow out of a device terminal. | Device type | 01 | | | |-----------------|-----------------------------|--|--| | Case outline | Р | | | | Terminal number | Terminal symbol | | | | 1 | COMPARATOR (COMP) | | | | 2 | FEEDBACK (FB) | | | | 3 | CURRENT SENSE (CS) | | | | 4 | RESISTANCE-CAPACITANCE (RC) | | | | 5 | GROUND (GND) | | | | 6 | OUTPUT (OUT) | | | | 7 | V _{cc} | | | | 8 | VOLTAGE REFERNCE (REF) | | | FIGURE 1. Terminal connections. | STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | SIZE
A | | 5962-94513 | |--|-----------|----------------|------------| | | | REVISION LEVEL | SHEET
9 | - 4.2 <u>Screening</u>. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. For device classes Q and V, screening shall be in accordance with MIL-I-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. - 4.2.1 Additional criteria for device class M. - a. Burn-in test, method 1015 of MIL-STD-883. - (1) Test condition C. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015. - (2) $T_A = +125$ °C, minimum. - b. Interim and final electrical test parameters shall be as specified in table II herein. - 4.2.2 Additional criteria for device classes Q and V. - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-I-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-I-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015. - b. Interim and final electrical test parameters shall be as specified in table II herein. - c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in appendix B of MIL-I-38535. - 4.3 Qualification inspection for device classes Q and V. Qualification inspection for device classes Q and V shall be in accordance with MIL-I-38535. Inspections to be performed shall be those specified in MIL-I-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4). - 4.4 <u>Conformance inspection</u>. Quality conformance inspection for device class M shall be in accordance with MIL-STD-883 (see 3.1 herein) and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4). Technology conformance inspection for classes Q and V shall be in accordance with MIL-I-38535 including groups A, B, C, D, and E inspections and as specified herein except where option 2 of MIL-I-38535 permits alternate in-line control testing. - 4.4.1 Group A inspection. - a. Tests shall be as specified in table II herein. - b. Subgroups 7 and 8 in table I, method 5005 of MIL-STD-883 shall be omitted. - 4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table II herein. - 4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883: - a. Test condition C. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005. - b. $T_A = +125$ °C, minimum. - c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883. | STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | SIZE
A | | 5962-94513 | |--|-----------|----------------|------------| | | - | REVISION LEVEL | SHEET 11 | TABLE II. <u>Electrical test requirements</u>. | Test requirements | Subgroups
(in accordance with
MIL-STD-883,
TM 5005, table I) | Subgroups
(in accordance with
MIL-I-38535, table III) | | |---|---|---|-----------------------------------| | | Device
class M | Device
 class Q | Device
class V | | Interim electrical parameters (see 4.2) | | | | | Final electrical parameters (see 4.2) | 1,2,3,4,5,6, <u>1</u> /
9,10,11 | 1,2,3,4,5,6 <u>1</u> /
9,10,11 | 1,2,3,4,5 <u>1</u> /
6,9,10,11 | | Group A test
requirements (see 4.4) | 1,2,3,4,5,6,
9,10,11 | 1,2,3,4,5,6,
9,10,11 | 1,2,3,4,5, | | Group C end-point electrical parameters (see 4.4) | 1,4 | 1,4 | 1,4 | | Group D end-point electrical parameters (see 4.4) | 1,4 | 1,4 | 1,4 | | Group E end-point electrical parameters (see 4.4) | | | | - 1/ PDA applies to subgroup 1. - 4.4.2.2 <u>Additional criteria for device classes Q and V</u>. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-I-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB, in accordance with MIL-I-38535, and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005. - 4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table II herein. - 4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein). RHA levels for device classes Q and V shall be M, D, R, and H and for device class M shall be M and D - a. End-point electrical parameters shall be as specified in table II herein. - b. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-I-38535, appendix A, for the RHA level being tested. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-I-38535 for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table I at T_A = +25°C ±5°C, after exposure, to the subgroups specified in table II herein. - c. When specified in the purchase order or contract, a copy of the RHA delta limits shall be supplied. | STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | SIZE
A | | 5962-94513 | |--|-----------|----------------|------------| | | | REVISION LEVEL | SHEET 12 | #### 5. PACKAGING 5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-STD-883 (see 3.1 herein) for device class M and MIL-1-38535 for device classes Q and V. #### 6. NOTES - 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes. - 6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing. - 6.1.2 Substitutability. Device class Q devices will replace device class M devices. - 6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal. - 6.3 <u>Record of users</u>. Military and industrial users shall inform Defense Electronics Supply Center when a system application requires configuration control and which SMD's are applicable to that system. DESC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DESC-EC, telephone (513) 296-6047. - 6.4 <u>Comments</u>. Comments on this drawing should be directed to DESC-EC, Dayton, Ohio 45444-5270, or telephone (513) 296-5377. - 6.5 Abbreviations, symbols, and definitions. - COMP This is the output of the error amplifier and the input of the pulse width modulator comparator. - FB Feedback pin is the inverting input of the error amplifier. For best stability, keep FB lead length as short as possible and FB stray capacitance as small as possible. - CS Current sense is the input to the current sense comparators. - RC Resistance-capacitance is the oscillator timing pin. For fixed frequency operation, set timing capacitor charging current by connecting a resistor from REF to RC. Set frequency by connecting a timing capacitor from RC to GND. For best performance, keep the timing capacitor lead to GND as short and direct as possible. If possible, use separate ground traces for the timing capacitor and all other functions. The frequency of oscillation can be estimated with the following equations: For device types 01, 02, and 04: $f = 1.5/(R \times C)$. For device type 03: $f = 1.0/(R \times C)$. Frequency is in hertz, resistance is in ohms, and capacitance is in farads. The recommended range of timing resistors is between 10 k Ω and 200 k Ω and timing capacitor is 100 pF to 1000 pF. Never use a timing resistor less than 10 k Ω . - GND This is reference ground and power ground for all functions on this part. - OUT This is the output of a high-current power driver capable. of driving the gate of a power MOSFET with peak currents exceeding ±750 mA. The OUT pin is actively held low when V_{CC} is below the under-voltage lockout (UVLO) threshold. The high-current power driver consists of FET output devices, which can switch all of the way to GND and all of the way to V_{CC}. The output stage al;so provides a very low impedance to overshoot and undershoot. This means that in many cases, external schottky clamp diodes are not required. - $\mathbf{V}_{\mathbf{CC}}$. This is the power input connection for this device. - REF This is the voltage reference for the error amplifier and also for many other functions. REF is also used as the logic power supply for high speed switching logic. | STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | SIZE
A | | 5962-94513 | |--|-----------|----------------|------------| | | | REVISION LEVEL | SHEET 13 | 6.6 One part - one part number system. The one part - one part number system described below has been developed to allow for transitions between identical generic devices covered by the three major microcircuit requirements documents (MIL-H-38534, MIL-I-38535, and 1.2.1 of MIL-STD-883) without the necessity for the generation of unique PIN's. The three military requirements documents represent different class levels, and previously when a device manufacturer upgraded military product from one class level to another, the benefits of the upgraded product were unavailable to the Original Equipment Manufacturer (OEM), that was contractually locked into the original unique PIN. By establishing a one part number system covering all three documents, the OEM can acquire to the highest class level available for a given generic device to meet system needs without modifying the original contract parts selection criteria. | Military documentation format | Example PIN under new system | Manufacturing source listing | Document
<u>listing</u> | |--|------------------------------|------------------------------|----------------------------| | New MIL-H-38534 Standardized Military
Drawings | 5962-XXXXXZZ(H or K)YY | QML-38534 | MIL-BUL-103 | | New MIL-I-38535 Standardized Military
Drawings | 5962-XXXXXZZ(Q or V)YY | QML-38535 | MIL-BUL-103 | | New 1.2.1 of MIL-STD-883 Standardized
Military Drawings | 5962-XXXXXZZ(M)YY | MIL-BUL-103 | MIL-BUL-103 | ## 6.7 Sources of supply. - 6.7.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DESC-EC and have agreed to this drawing. - 6.7.2 Approved sources of supply for device class M. Approved sources of supply for class M are listed in MIL-BUL-103. The vendors listed in MIL-BUL-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DESC-EC. | STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | SIZE
A | | 5962-94513 | |---|-----------|----------------|-------------| | | | REVISION LEVEL | SHEET
14 |