SN74LS109A

Dual JK Positive Edge-Triggered Flip-Flop

The SN74LS109A consists of two high speed completely independent transition clocked $J\overline{K}$ flip-flops. The clocking operation is independent of rise and fall times of the clock waveform. The $J\overline{K}$ design allows operation as a D flip-flop by simply connecting the J and \overline{K} pins together.

MODE SELECT – TRUTH TABLE

OPERATING MODE		INP	OUTPUTS			
OPERATING WIDDE	S _D	CD	J	K	Q	Q
Set	L	Н	Х	Х	Н	L
Reset (Clear)	Н	L	Χ	Χ	L	Н
*Undetermined	L	L	Χ	Χ	Н	Н
Load "1" (Set)	Н	Н	h	h	Н	L
Hold	Н	Н	1	h	q	q
Toggle	Н	Н	h	I	q	q
Load "0" (Reset)	Н	Н	I	I	L	Н

^{*} Both outputs will be HIGH while both \overline{S}_D and \overline{C}_D are LOW, but the output states are unpredictable if \overline{S}_D and \overline{C}_D go HIGH simultaneously.

H, h = HIGH Voltage Level

L, I = LOW Voltage Level

X = Don't Care

I, h (q) = Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the LOW to HIGH clock transition.

GUARANTEED OPERATING RANGES

Symbol	Parameter	Min	Тур	Max	Unit
V _{CC}	Supply Voltage	4.75	5.0	5.25	V
T _A	Operating Ambient Temperature Range	0	25	70	°C
I _{OH}	Output Current – High			-0.4	mA
I _{OL}	Output Current – Low			8.0	mA

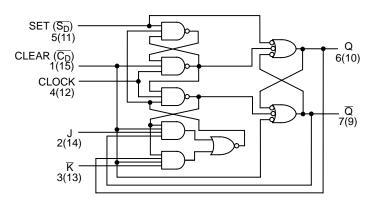
ON Semiconductor™

http://onsemi.com

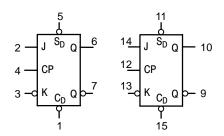
LOW POWER SCHOTTKY

PLASTIC N SUFFIX CASE 648

SOIC D SUFFIX CASE 751B


SOEIAJ M SUFFIX CASE 966

ORDERING INFORMATION


Device	Package	Shipping
SN74LS109AN	16 Pin DIP	2000 Units/Box
SN74LS109AD	SOIC-16	38 Units/Rail
SN74LS109ADR2	SOIC-16	2500/Tape & Reel
SN74LS109AM	SOEIAJ-16	See Note 1
SN74LS109AMEL	SOEIAJ-16	See Note 1

 For ordering information on the EIAJ version of the SOIC package, please contact your local ON Semiconductor representative.

LOGIC DIAGRAM

LOGIC SYMBOL

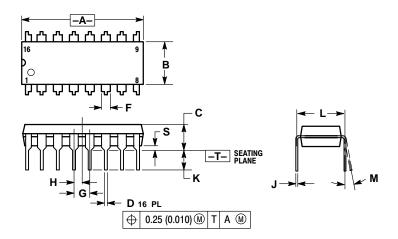
V_{CC} = PIN 16 GND = PIN 8

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

		Limits					
Symbol	Parameter	Min	Тур	Max	Unit	Tes	t Conditions
V _{IH}	Input HIGH Voltage	2.0			V	Guaranteed Inpu	t HIGH Voltage for
V _{IL}	Input LOW Voltage			0.8	٧	Guaranteed Inpu	t LOW Voltage for
V _{IK}	Input Clamp Diode Voltage		-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} =$	–18 mA
V _{OH}	Output HIGH Voltage	2.7	3.5		V	V _{CC} = MIN, I _{OH} = or V _{IL} per Truth T	
,,	Outside OW/Vallage		0.25	0.4	V	I _{OL} = 4.0 mA	$V_{CC} = V_{CC} MIN,$
V _{OL}	Output LOW Voltage		0.35	0.5	V	I _{OL} = 8.0 mA	V _{IN} = V _{IL} or V _{IH} per Truth Table
l _{IH}	Input HIGH Current J, K, Clock Set, Clear			20 40	μΑ	V _{CC} = MAX, V _{IN} = 2.7 V	
	J, K, Clock Set, Clear			0.1 0.2	mA	V _{CC} = MAX, V _{IN} = 7.0 V	
I _{IL}	Input LOW Current J, K, Clock Set, Clear			-0.4 -0.8	mA	V _{CC} = MAX, V _{IN} = 0.4 V	
Ios	Output Short Circuit Current (Note 1)	-20		-100	mA	V _{CC} = MAX	
I _{CC}	Power Supply Current		_	8.0	mA	$V_{CC} = MAX$	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS ($T_A = 25^{\circ}C$, $V_{CC} = 5.0 \text{ V}$)


		Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
f _{MAX}	Maximum Clock Frequency	25	33		MHz	
t _{PLH}	Clock Clock Set to Output		13	25	ns	$V_{CC} = 5.0 \text{ V}$ $C_{L} = 15 \text{ pF}$
t _{PHL}	Clock, Clear, Set to Output		25	40	ns	ς, 10 p.

AC SETUP REQUIREMENTS (T_A = 25° C, V_{CC} = 5.0 V)

			Limits			
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
t _W	Clock High Clear, Set Pulse Width	25			ns	
	Data Setup Time — HIGH	20			ns	V 50V
τ _S	LOW	20			ns	$V_{CC} = 5.0 \text{ V}$
t _h	Hold time	5.0			ns	

PACKAGE DIMENSIONS

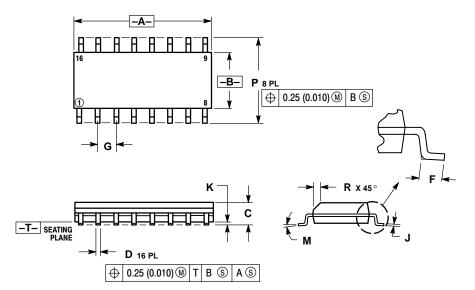
N SUFFIX PLASTIC PACKAGE CASE 648-08 ISSUE R

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: INCH.


 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.

 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

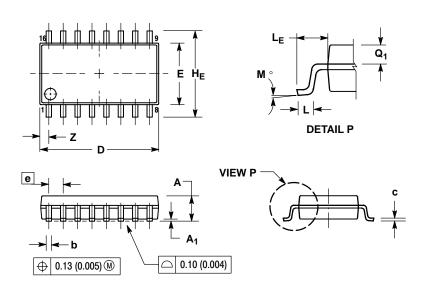
 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54 BSC		
Н	0.050	BSC	1.27 BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
М	0°	10 °	0°	10 °	
S	0.020	0.040	0.51	1.01	

D SUFFIX PLASTIC SOIC PACKAGE CASE 751B-05 **ISSUE J**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.


- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSIONS A AND B DO NOT INCLUDE
 MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
 PER SIDE.
 5. DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL
 IN EXCESS OF THE D DIMENSION AT
 MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
P	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

PACKAGE DIMENSIONS

M SUFFIX

SOEIAJ PACKAGE CASE 966-01 **ISSUE O**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE
- PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006)
 PER SIDE.

 4. TERMINAL NUMBERS ARE SHOWN FOR
 REFERENCE ONLY.

 5. THE LEAD WIDTH DIMENSION (b) DOES NOT
 INCLUDE DAMBAR PROTRUSION. ALLOWABLE
 DAMBAR PROTRUSION SHALL BE 0.08 (0.003)
 TOTAL IN EXCESS OF THE LEAD WIDTH
 DIMENSION AT MAXIMUM MATERIAL CONDITION.
 DAMBAR CANNOT BE LOCATED ON THE LOWER
 RADIUS OR THE FOOT. MINIMUM SPACE
 BETWEEN PROTRUSIONS AND ADJACENT LEAD
 TO BE 0.46 (0.018).

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α		2.05		0.081	
A ₁	0.05	0.20	0.002	0.008	
b	0.35	0.50	0.014	0.020	
С	0.18	0.27	0.007	0.011	
D	9.90	10.50	0.390	0.413	
Е	5.10	5.45	0.201	0.215	
е	1.27	BSC	0.050 BSC		
HE	7.40	8.20	0.291	0.323	
L	0.50	0.85	0.020	0.033	
LE	1.10	1.50	0.043	0.059	
M	0 °	10°	0°	10 °	
Q ₁	0.70	0.90	0.028	0.035	
Z		0.78		0.031	

Notes

Notes

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303–308–7140 (M–F 2:30pm to 5:00pm Munich Time)
Email: ONlit–german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303-308-7142 (M-F 1:30pm to 5:00pm UK Time)

Email: ONlit@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800–4422–3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549

Phone: 81–3–5487–8345 Email: r14153@onsemi.com

Fax Response Line: 303-675-2167

800-344-3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.