S3C72H8/P72H8 PRODUCT OVERVIEW

1

PRODUCT OVERVIEW

OVERVIEW

The S3C72H8 single-chip CMOS microcontroller has been designed for very high performance using Samsung's state-of-the-art 4-bit product development approach, SAM47 (Samsung Arrangeable Microcontrollers). Its main features are an up-to-13-digit LCD direct drive capability, 2-channel comparator inputs and outputs, and versatile 8-counter/ timers and 16-bit frequency counter. The S3C72H8 gives you an excellent design solution for a variety of LCD-related applications, specially thermostat control application.

Up to 21 pins of the available 64-pin QFP packages can be dedicated to I/O. And six vectored interrupts provide fast response to internal and external events.

In addition, the S3C72H8's advanced CMOS technology provides for low power consumption and a wide operating voltage range.

PRODUCT OVERVIEW S3C72H8/P72H8

FEATURES

Architecture

SAM47 4-bit CPU core

Memory

- Data Memory: 512 × 4 bits
- Program Memory: 8196 × 8 bits (Including LCD display RAM)

Memory-Mapped I/O Structure

Data memory bank 15

Interrupts

- Three internal vectored interrupts
- Three external vectored interrupts
- Two quasi-interrupts

8-Bit Timer/Counter (T0)

- Programmable 8-bit timer
- External event counter
- Arbitrary clock frequency output
- External clock signal divider

16-Bit Frequency Counter (FC)

- a 16-bit binary up-counter
- External event counter
- Gate function control

Watch-Dog TIMER and Basic Timer

- 8-bit counter + 3-bit counter
- Overflow signal of 8-bit counter makes a basic timer interrupt. And control the oscillation warmup time
- Overflow signal of 3-bit counter makes a system reset

Watch Timer

- Real-time and interval time measurement
- Four frequency outputs to buzzer sound
- Clock source generation for LCD

LCD Controller/Driver

- 26 segment and 4 common terminals
- Maximum 13-digit LCD direct drive capability
- Display modes: Static, 1/2, 1/3, 1/4 duty
- Voltage regulator and booster (1/3 bias: 1, 2, or 3V, 1/2 bias: 1.5, 3V)

Analog Comparator

2 Ch Comparator (Each CnP, CnN, CnOUT pins)

Bit Sequential Carrier

Support 16-bit serial data transfer in arbitrary format

I/O Ports

- 21 pins for standard I/O
- 26 pins for LCD segment output
- 4 pins for LCD common output
- Two input pins for external interrupts

Oscillation Sources

- Crystal, ceramic, or RC for main system clock
- Crystal or external oscillator for subsystem clock
- Main system clock frequency: 4.19 MHz (typical)
- Subsystem clock frequency: 32.768 kHz
- CPU clock divider circuit (by 4, 8, or 64 main, and by 4 for sub clock)

Power Down Mode

- Idle mode (only CPU clock stops)
- Stop mode (main or sub-system oscillation stops)

Voltage Level Detector

- V_{DD} level detection circuit (2.2, 2.4, 3, or 4.0V)
- External pin level detect mode

Operating Voltage Range

- 1.8V to 5.5V at 3 MHz
- 2.0V to 5.5V at 4.19 MHz

Package Type

- 64-pin QFP

S3C72H8/P72H8 PRODUCT OVERVIEW

BLOCK DIAGRAM

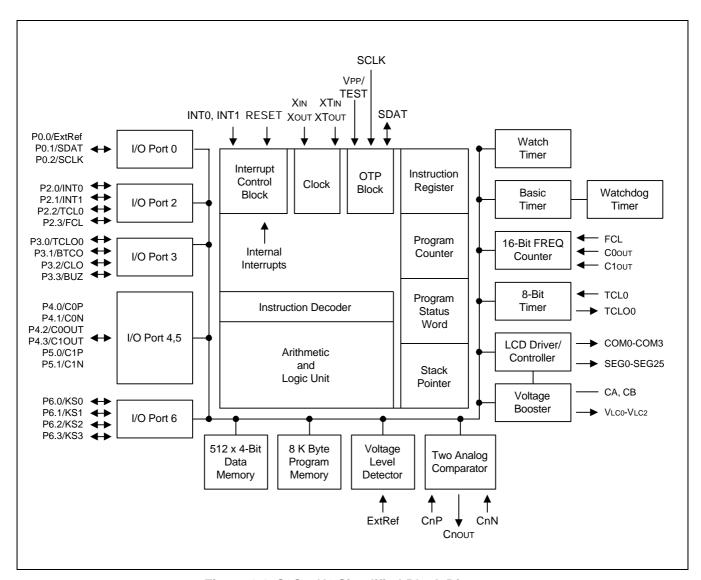


Figure 1-1. S3C72H8 Simplified Block Diagram

PRODUCT OVERVIEW S3C72H8/P72H8

PIN ASSIGNMENTS

Figure 1-2. S3C72H8 Pin Assignment Diagram

S3C72H8/P72H8 PRODUCT OVERVIEW

PIN DESCRIPTIONS

Table 1-1. S3C72H8 Pin Descriptions

Pin Name	Pin Type	Description	Number (64-QFP)	Share Pin	Circuit Type
P0.0 P0.1 P0.2	I/O	3-bit I/O port. 1-bit and 4-bit read/write and test is possible. Port 0 is software configurable as input or output. 3-bit pull-up resistors are software assignable.	6 7 8	ExtRef - -	D-1
P2.0 P2.1 P2.2 P2.3	I/O	4-bit I/O port. 1-bit and 4-bit read/write and test is possible. Individual pins are software configurable as input or output. 4-bit pull-up resistors are software assignable.	17 18 19 20	INT0 INT1 TCL0 FCL	D-1
P3.0 P3.1 P3.2 P3.3	I/O	Same as port 2. Ports 2 and 3 can be addressed by 1, 4, and 8-bit read/write and test instruction.	21 22 23 24	TCLO0 BTCO CLO BUZ	D-1
P4.0-P4.3 P5.0-P5.1	I/O	4/2-bit I/O ports. N-channel open-drain or push-pull output. 1, 4, and 8-bit read/write and test is possible. Ports 4 and 5 can be paired to support 8-bit data transfer. Pull-up resistors are assignable to port unit by software control.	29-32 33-34	C0P/ C0N/ C0OUT/ C1OUT C1P/ C1N	E-1
P6.0-P6.3	I/O	4-bit I/O ports. Port 6 pins are individually software configurable as input or output. 1-bit and 4-bit read/write and test is possible. 4-bit pull-up resistors are software assignable.	25-28	KS0-KS3	D-1
втсо	I/O	Basic timer clock output	22	P3.1	D-1
CLO	I/O	CPU clock output	23	P3.2	D-1
BUZ	I/O	2, 4, 8 or 16 kHz frequency output for buzzer sound with 4.19MHz main-system clock or 32.768 kHz sub-system clock.	24	P3.3	D-1
X _{OUT} , X _{IN}	_	Crystal, ceramic, or RC oscillator signal for main-system clock. (For external clock input, use X_{IN} and input X_{IN} 's reverse phase to X_{OUT})	11, 12	_	-
XT _{OUT} , XT _{IN}	_	Crystal oscillator signal for sub-system clock. (For external clock input, use XT _{IN} and input XT _{IN} 's reverse phase to XT _{OUT})	14, 15	_	-
INTO, INT1	I/O	External interrupts. The triggering edge for INT0 and Int1 is selectable. Only INT0 is synchronized with the system clock.	17, 18	P2.0, P2.1	D-1

PRODUCT OVERVIEW S3C72H8/P72H8

Table 1-1. S3C72H8 Pin Descriptions (Continued)

Pin Name	Pin Type	Description	Number (64-QFP)	Share Pin	Circuit Type
KS0-KS3	I/O	Quasi-interrupt input with falling edge detection	25-28	P6.0-P6.3	D-1
ExtRef	I/O	External Reference input	6	P0.0	D-1
TCL0	I/O	External clock input for timer/counter 0	19	P2.2	D-1
FCL	I/O	External clock input for frequency counter	20	P2.3	D-1
TCLO0	I/O	Timer/counter 0 clock output	21	P3.0	D-1
COM0-COM3	0	LCD common signal output	61-64	-	H-16
SEG0-SEG25	0	LCD segment output	35-60	1	H-16
CA, CB	ı	Voltage booster capacitor pins	1, 2	-	_
V _{LC0} -V _{LC2}	1	Voltage booster output pins (V_{LC0} is the regulated output, V_{LC1} is the 2* V_{LC0} output, V_{LC2} is the 3* V_{LC0} output)	3-5	-	_
COP, CON, COOUT	I/O	Comparator 0 non-inverting input, inverting input and output. C0Out can be configured as C-MOS push-pull or N-Ch open drain output	29-31	P4.0-P4.2	_
C1P, C1N, C1OUT	I/O I	Comparator 1 non-inverting input, inverting input and output. C1Out can be configured as C-MOS push-pull or N-Ch open drain output	32-34	P4.3-P5.1	_
RESET	-	Reset signal for chip initialization	16	_	В
V _{DD}	-	Main power supply	9	_	_
V _{SS}	ı	Ground	10	_	_
TEST	ı	Test signal input (must be connected to V _{SS})	13	V _{PP}	_
SDAT	I/O	Serial data for OTP programming	7	P0.1	
SCLK	I/O	Serial clock for OTP programming	8	P0.2	
V _{PP}	ı	Power supply pin for EPROM cell writing	13	TEST	

NOTE: Pull-up resistors for ports 0, 2, 3, and 6 are automatically disabled if they are configured to output mode. But pull-up resistors for ports 4 and 5 are retained its state even though they are configured to output mode.

S3C72H8/P72H8 PRODUCT OVERVIEW

PIN CIRCUIT DIAGRAMS

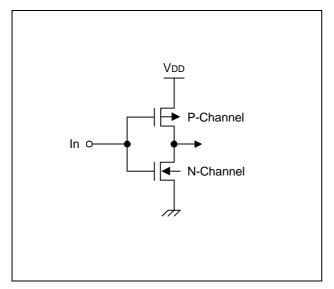


Figure 1-3. Pin Circuit Type A

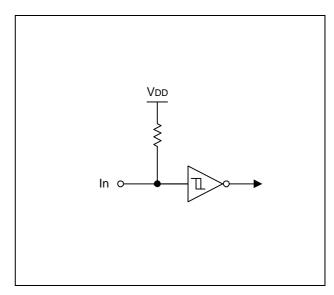


Figure 1-4. Pin Circuit Type B (Reset)

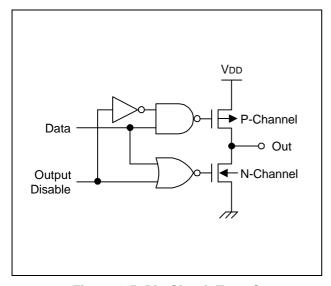


Figure 1-5. Pin Circuit Type C

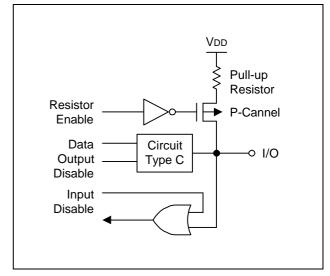


Figure 1-6. Pin Circuit Type D-1 (P0, P2, P3, P6)

PRODUCT OVERVIEW S3C72H8/P72H8

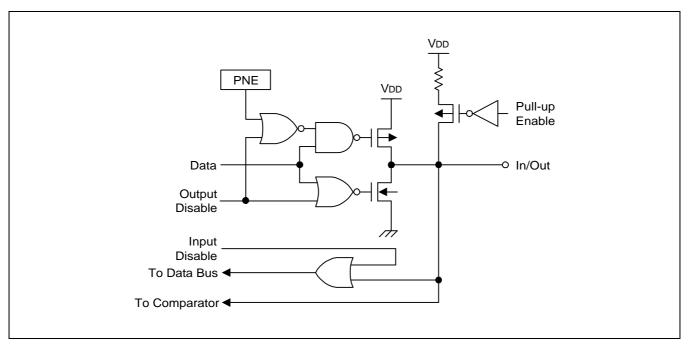


Figure 1-7. Pin Circuit Type E-1 (P4, P5)

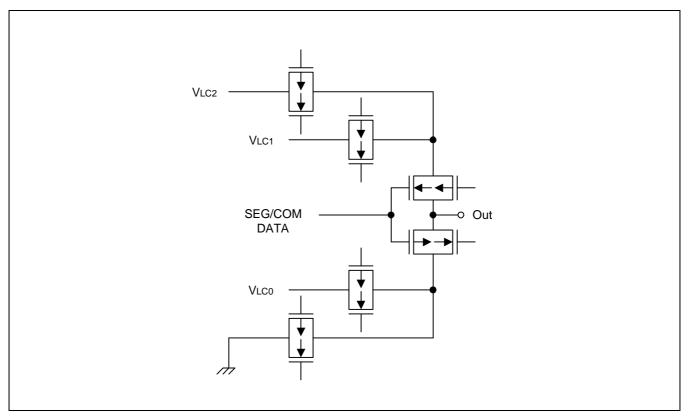


Figure 1-8. Pin Circuit Type H-16 (COM/SEG)

2 ADDRESS SPACES

PROGRAM MEMORY (ROM)

OVERVIEW

ROM maps for S3C72H8 devices are mask programmable at the factory. S3C72H8 has $8K \times 8$ -bit program memory. In its standard configuration, the device's $8,192 \times 8$ -bit program memory has four areas that are directly addressable by the program counter (PC):

- 14-byte area for vector addresses
- 96-byte instruction reference area
- 18-byte general-purpose area
- 8064-byte general-purpose area

General-Purpose Program Memory

Two program memory areas are allocated for general-purpose use: One area is 18 bytes in size and the other is 8,064 bytes.

Vector Addresses

A 14-byte vector address area is used to store the vector addresses required to execute system resets and interrupts. Start addresses for interrupt service routines are stored in this area, along with the values of the enable memory bank (EMB) and enable register bank (ERB) flags that are used to set their initial value for the corresponding service routines. The 12-byte area can be used alternately as general-purpose ROM.

REF Instructions

Locations 0020H-007FH are used as a reference area (look-up table) for 1-byte REF instructions. The REF instruction reduces the byte size of instruction operands. REF can reference one 2-byte instruction, two 1-byte instructions, and three-byte instructions which are stored in the look-up table. Unused look-up table addresses can be used as general-purpose ROM.

Table 2-1. Program Memory Address Ranges

ROM Area Function	Address Ranges	Area Size (in Bytes)
Vector address area	0000H-000DH	14
General-purpose program memory	000CH-001FH	18
REF instruction look-up table area	0020H-007FH	96
General-purpose program memory	0080H-1FFFH	8064

GENERAL-PURPOSE MEMORY AREAS

The 18-byte area at ROM locations 000CH-001FH and the 8,064-byte area at ROM locations 0080H-1FFFH are used as general-purpose program memory. Unused locations in the vector address area and REF instruction look-up table areas can be used as general-purpose program memory. However, care must be taken not to overwrite live data when writing programs that use special-purpose areas of the ROM.

VECTOR ADDRESS AREA

The 14-byte vector address area of the ROM is used to store the vector addresses for executing system resets and interrupts. The starting addresses of interrupt service routines are stored in this area, along with the enable memory bank (EMB) and enable register bank (ERB) flag values that are needed to initialize the service routines. 14-byte vector addresses are organized as follows:

EMB	ERB	0	PC12	PC11	PC10	PC9	PC8
PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0

To set up the vector address area for specific programs, use the instruction VENTn.

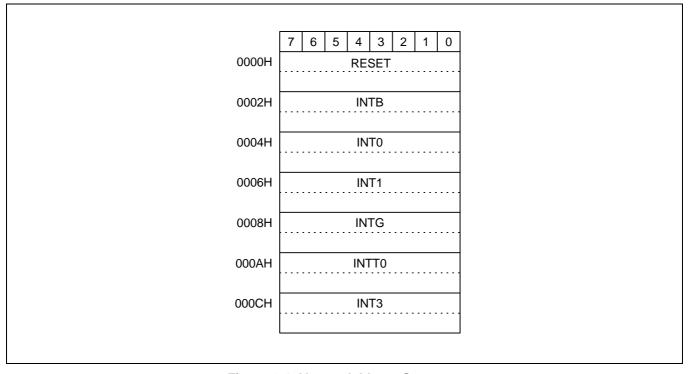


Figure 2-1. Vector Address Structure

PROGRAMMING TIP — Defining Vectored Interrupts

The following examples show you several ways you can define the vectored interrupt and instruction reference areas in program memory:

1. When all vector interrupts are used:

```
ORG
              0000H
VENT0
                                    : EMB \leftarrow 1, ERB \leftarrow 0; Jump to RESET address by RESET
              1,0,RESET
VENT1
              0,0,INTB
                                    : EMB \leftarrow 0, ERB \leftarrow 0; Jump to INTB address by INTB
                                    ; EMB \leftarrow 0, ERB \leftarrow 0; Jump to INT0 address by INT0
VENT2
              0.0.INT0
                                    : EMB \leftarrow 0, ERB \leftarrow 0; Jump to INT1 address by INT1
VENT3
              0,0,INT1
                                    : EMB \leftarrow 0, ERB \leftarrow 0; Jump to INTG address by INTG
VENT4
              0,0,INTG
VENT5
              0,0,INTT0
                                    ; EMB \leftarrow 0, ERB \leftarrow 0; Jump to INTT0 address by INTT0
VENT6
              0,0,INT3
                                    ; EMB \leftarrow 0, ERB \leftarrow 0; Jump to INT3 address by INT3
```

2. When a specific vectored interrupt such as INT0, and INTT0 is not used, the unused vector interrupt locations must be skipped with the assembly instruction ORG so that jumps will address the correct locations:

```
ORG
             0000H
VENT0
             1,0,RESET
                                   ; EMB \leftarrow 1, ERB \leftarrow 0; Jump to RESET address by RESET
VENT1
             0.0.INTB
                                   ; EMB \leftarrow 0, ERB \leftarrow 0; Jump to INTB address by INTB
                                   ; INT0 interrupt not used
ORG
             0006H
VENT3
                                   ; EMB \leftarrow 0, ERB \leftarrow 0; Jump to INT1 address by INT1
             0,0,INT1
VENT4
             0.0.INTG
                                   ; EMB \leftarrow 0, ERB \leftarrow 0; Jump to INTG address by INTG
ORG
             000CH
                                   ; INTT0 interrupt not used
VENT6
             0,0,INT3
                                   ; EMB \leftarrow 0, ERB \leftarrow 0; Jump to INT3 address by INT3
ORG
             0010H
```

3. If an INT0 interrupt is not used and if its corresponding vector interrupt area is not fully utilized, or if it is not written by a ORG instruction as in Example 2, a CPU malfunction will occur:

```
ORG
              0000H
VENT0
              1,0,RESET
                                    ; EMB \leftarrow 1, ERB \leftarrow 0; Jump to RESET address by RESET
VENT1
              0,0,INTB
                                    ; EMB \leftarrow 0, ERB \leftarrow 0; Jump to INTB address by INTB
VENT3
              0,0,INT1
                                   ; EMB \leftarrow 0, ERB \leftarrow 0; Jump to INT1 address by INT1
              0,0,INTG
                                    : EMB \leftarrow 0, ERB \leftarrow 0; Jump to INTG address by INTG
VENT4
                                    ; EMB \leftarrow 0, ERB \leftarrow 0; Jump to INTT0 address by INTT0
VENT5
              0.0.INTT0
VENT6
                                    ; EMB \leftarrow 0, ERB \leftarrow 0; Jump to INT3 address by INT3
              0,0,INT3
ORG
              0010H
```

General-purpose ROM area

In this example, when an INTG interrupt is generated, the corresponding vector area is not VENT4 INTG, but VENT5 INTT0. This causes an INTG interrupt to jump incorrectly to the INTT0 address and causes a CPU malfunction to occur.

INSTRUCTION REFERENCE AREA

Using 1-byte REF instructions, you can easily reference instructions with larger byte sizes that are stored in addresses 0020H-007FH of program memory. This 96-byte area is called the REF instruction reference area, or look-up table. Locations in the REF look-up table may contain two one-byte instructions, a single two-byte instruction, or three-byte instruction such as a JP (jump) or CALL. The starting address of the instruction you are referencing must always be an even number. To reference a JP or CALL instruction, it must be written to the reference area in a two-byte format: for JP, this format is TJP; for CALL, it is TCALL.

By using REF instructions you can execute instructions large than one byte. In summary, there are three ways you can use the REF instruction:

- Using the 1-byte REF instruction to execute one 2-byte or two 1-byte instructions,
- Branching to any location by referencing a branch instruction stored in the look-up table,
- Calling subroutines at any location by referencing a call instruction stored in the look-up table.

PROGRAMMING TIP — Using the REF Look-Up Table

Here is one example of how to use the REF instruction look-up table:

JMAIN KEYCK WATCH INCHL	ORG TJP BTSF TCALL LD INCS	0020H MAIN KEYFG CLOCK @HL,A HL	; 0, MAIN ; 1, KEYFG CHECK ; 2, CALL CLOCK ; 3, (HL) ← A
ABC	LD ORG	EA,#00H 0080	; 47, EA ← #00H
MAIN	NOP NOP •		
	REF	KEYCK	; BTSF KEYFG (1-byte instruction)
	REF	JMAIN	; KEYFG = 1, jump to MAIN (1-byte instruction)
	REF	WATCH	; KEYFG = 0, CALL CLOCK (1-byte instruction)
	REF	INCHL	; LD @HL,A ; INCS HL
	REF	ABC	; LD EA,#00H (1-byte instruction)
	•		
	•		
	•		

DATA MEMORY (RAM)

OVERVIEW

In its standard configuration, the 512 x 4-bit data memory has four areas:

- 32 × 4-bit working register area in bank 0
- 224 × 4-bit general-purpose area in bank 0 which is also used as the stack area
- 230 × 4-bit general-purpose area in bank 1
- 26 × 4-bit area for LCD data in bank 1
- 128 × 4-bit area in bank 15 for memory-mapped I/O addresses

To make it easier to reference, the data memory area has three memory banks - bank 0, bank 1 and bank 15. The select memory bank instruction (SMB) is used to select the bank you want to select as working data memory. Data stored in RAM locations are 1, 4, and 8-bit addressable. One exception is the LCD data register area, which is 1-bit and 4-bit addressable only.

Initialization values for the data memory area are not defined by hardware and must therefore be initialized by program software following power RESET. However, when RESET signal is generated in power-down mode, the most of data memory contents are held.



Figure 2-2. Data Memory (RAM) Map

Memory Banks 0, 1, and 15

Bank 0	(000H-0FFH)	The lowest 32 nibbles of bank 0 (000H-01FH) are used as working registers; the next 224 nibbles (020H-0FFH) can be used both as stack area and as general-purpose data memory. Use the stack area for implementing subroutine calls and returns, and for interrupt processing.
Bank 1	(100H-1FFH)	The lowest 230 nibbles of bank1 (100H–1E5H) are for general-purpose use; use the remaining of 26 nibbles (1E6H-1FFH) as display registers or as general purpose memory.
Bank 15	(F80H-FFFH)	The microcontroller uses bank 15 for memory-mapped peripheral I/O. Fixed RAM locations for each peripheral hardware address are mapped into this area.

Data Memory Addressing Modes

The enable memory bank (EMB) flag controls the addressing mode for data memory banks 0, 1 or 15. When the EMB flag is logic zero, the addressable area is restricted to specific locations, depending on whether direct or indirect addressing is used. With direct addressing, you can access locations 000-07FH of bank 0 and bank 15. With indirect addressing, only bank 0 (000H-0FFH) can be accessed. When the EMB flag is set to logic one, all three data memory banks can be accessed according to the current SMB value.

For 8-bit addressing, two 4-bit registers are addressed as a register pair. Also, when using 8-bit instructions to address RAM locations, remember to use the even-numbered register address as the instruction operand.

Working Registers

The RAM working register area in data memory bank 0 is further divided into four *register* banks (bank 0, 1, 2, and 3). Each register bank has eight 4-bit registers and paired 4-bit registers are 8-bit addressable.

Register A is used as a 4-bit accumulator and register pair EA as an 8-bit extended accumulator. The carry flag bit can also be used as a 1-bit accumulator. Register pairs WX, WL, and HL are used as address pointers for indirect addressing. To limit the possibility of data corruption due to incorrect register addressing, it is advisable to use register bank 0 for the main program and banks 1, 2, and 3 for interrupt service routines.

LCD Data Register Area

Bit values for LCD segment data are stored in data memory bank 1. Register locations in this area that are not used to store LCD data can be assigned to general-purpose use.

Table 2-2. Data Memory Organization and Addressing

Addresses	Register Areas	Bank	EMB Value	SMB Value
000H-01FH	Working registers	0	0, 1	0
020H-0FFH	Stack and general-purpose registers			
100H-1E5H	General-purpose registers	1	1	1
1E6H-1FFH	LCD Data registers			
F80H-FFFH	I/O-mapped hardware registers	15	0, 1	15

PROGRAMMING TIP — Clearing Data Memory Banks 0 and 1

Clear banks 0 and 1 of the data memory area:

RAMCLR RMCL1	SMB LD LD LD INCS JR	1 HL,#00H A,#0H @HL,A HL RMCL1	;	RAM (100H-1FFH) clear
RMCL0	SMB LD LD INCS JR	0 HL,#10H @HL,A HL RMCL0	;	RAM (010H-0FFH) clear

WORKING REGISTERS

Working registers, mapped to RAM address 000H-01FH in data memory bank 0, are used to temporarily store intermediate results during program execution, as well as pointer values used for indirect addressing. Unused registers may be used as general-purpose memory. Working register data can be manipulated as 1-bit units, 4-bit units or, using paired registers, as 8-bit units.

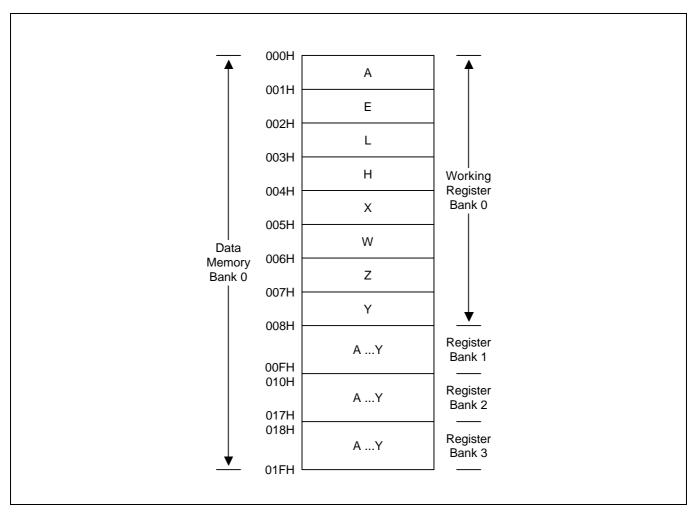


Figure 2-3. Working Register Map

Working Register Banks

For addressing purposes, the working register area is divided into four register banks — bank 0, bank 1, bank 2, and bank 3. Any one of these banks can be selected as the working register bank by the register bank selection instruction (SRB n) and by setting the status of the register bank enable flag (ERB).

Generally, working register bank 0 is used for the main program, and banks 1, 2, and 3 for interrupt service routines. Following this convention helps to prevent possible data corruption during program execution due to contention in register bank addressing.

ERB Setting		SRB S	Selected Register Bank		
	3	2	1	0	
0	0	0	_	_	Always set to bank 0
			0	0	Bank 0
1	0	0	0	1	Bank 1
			1	0	Bank 2
			1	1	Bank 3

Table 2-3. Working Register Organization and Addressing

Paired Working Registers

Each of the register banks is subdivided into eight 4-bit registers. These registers, named Y, Z, W, X, H, L, E and A, can either be manipulated individually using 4-bit instructions, or together as register pairs for 8-bit data manipulation.

The names of the 8-bit register pairs in each register bank are EA, HL, WX, YZ and WL. Registers A, L, X and Z always become the lower nibble when registers are addressed as 8-bit pairs. This makes a total of eight 4-bit registers or four 8-bit double registers in each of the four working register banks.

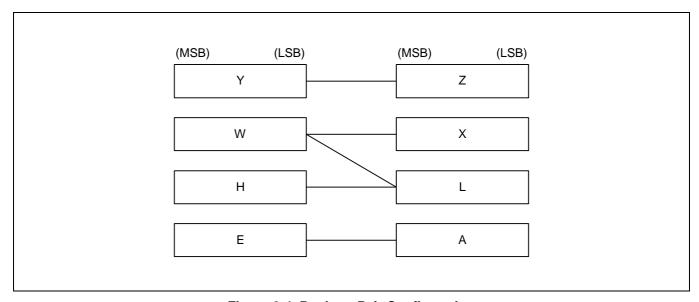


Figure 2-4. Register Pair Configuration

Special-Purpose Working Registers

Register A is used as a 4-bit accumulator and double register EA as an 8-bit accumulator. The carry flag can also be used as a 1-bit accumulator.

8-bit double registers WX, WL and HL are used as data pointers for indirect addressing. When the HL register serves as a data pointer, the instructions LDI, LDD, XCHI, and XCHD can make very efficient use of working registers as program loop counters by letting you transfer a value to the L register and increment or decrement it using a single instruction.

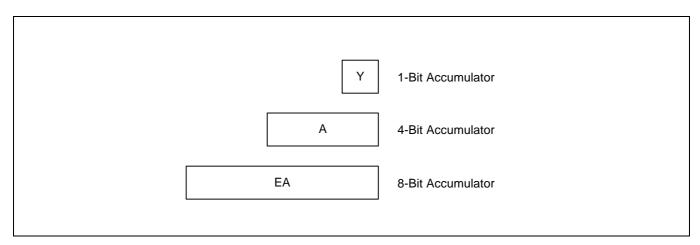


Figure 2-5. 1-Bit, 4-Bit, and 8-Bit Accumulator

Recommendation for Multiple Interrupt Processing

If more than four interrupts are being processed at one time, you can avoid possible loss of working register data by using the PUSH RR instruction to save register contents to the stack before the service routines are executed in the same register bank. When the routines have executed successfully, you can restore the register contents from the stack to working memory using the POP instruction.

PROGRAMMING TIP — Selecting the Working Register Area

The following examples show the correct programming method for selecting working register area:

```
1.
            When ERB = "0":
VENT2
            1,0,INT0
                                                 ; EMB \leftarrow 1, ERB \leftarrow 0, Jump to INT0 address
INT<sub>0</sub>
            PUSH
                        SB
                                                   PUSH current SMB, SRB
            SRB
                        2
                                                 ; Instruction does not execute because ERB = "0"
            PUSH
                        HL
                                                 ; PUSH HL register contents to stack
                                                 ; PUSH WX register contents to stack
            PUSH
                        WX
                                                 ; PUSH YZ register contents to stack
            PUSH
                        YΖ
            PUSH
                        EΑ
                                                 ; PUSH EA register contents to stack
            SMB
                        0
                        EA.#00H
            LD
            LD
                        80H.EA
            LD
                        HL,#40H
            INCS
                        HL
            LD
                        WX,EA
            LD
                        YZ,EA
            POP
                        EΑ
                                                  POP EA register contents from stack
            POP
                        YΖ
                                                   POP YZ register contents from stack
            POP
                        WX
                                                 ; POP WX register contents from stack
            POP
                        HL
                                                 ; POP HL register contents from stack
                                                 ; POP current SMB, SRB
            POP
                        SB
            IRET
```

The POP instructions execute alternately with the PUSH instructions. If an SMB n instruction is used in an interrupt service routine, a PUSH and POP SB instruction must be used to store and restore the current SMB and SRB values, as shown in Example 2 below.

```
2.
            When ERB = "1":
VENT2
            1,1,INT0
                                                   ; EMB \leftarrow 1, ERB \leftarrow 1, Jump to INT0 address
INT<sub>0</sub>
            PUSH
                                                     Store current SMB, SRB
                         SB
                         2
                                                     Select register bank 2 because of ERB = "1"
            SRB
            SMB
                         0
            LD
                         EA,#00H
            LD
                         80H,EA
                         HL,#40H
            LD
            INCS
                         HL
            LD
                         WX,EA
            LD
                         YZ,EA
            POP
                         SB
                                                   ; Restore SMB, SRB
            IRET
```


STACK OPERATIONS

STACK POINTER (SP)

The stack pointer (SP) is an 8-bit register that stores the address used to access the stack, an area of data memory set aside for temporary storage of data and addresses. The SP can be read or written by 8-bit control instructions. When addressing the SP, bit 0 must always remain cleared to logic zero.

F80H	SP3	SP2	SP1	"0"
F81H	SP7	SP6	SP5	SP4

There are two basic stack operations: writing to the top of the stack (push), and reading from the top of the stack (pop). A push decrements the SP and a pop increments it so that the SP always points to the top address of the last data to be written to the stack.

The program counter contents and program status word are stored in the stack area prior to the execution of a CALL or a PUSH instruction, or during interrupt service routines. Stack operation is a LIFO (Last In-First Out) type. The stack area is located in general-purpose data memory bank 0.

During an interrupt or a subroutine, the PC value and the PSW are saved to the stack area. When the routine has completed, the stack pointer is referenced to restore the PC and PSW, and the next instruction is executed.

The SP can address stack registers in bank 0 (addresses 000H-0FFH) regardless of the current value of the enable memory bank (EMB) flag and the select memory bank (SMB) flag. Although general-purpose register areas can be used for stack operations, be careful to avoid data loss due to simultaneous use of the same register(s).

Since the RESET value of the stack pointer is not defined in firmware, we recommend that you initialize the stack pointer by program code to location 00H. This sets the first register of the stack area to 0FFH.

NOTE

A subroutine call occupies six nibbles in the stack; an interrupt requires six. When subroutine nesting or interrupt routines are used continuously, the stack area should be set in accordance with the maximum number of subroutine levels. To do this, estimate the number of nibbles that will be used for the subroutines or interrupts and set the stack area correspondingly.

PROGRAMMING TIP — Initializing the Stack Pointer

To initialize the stack pointer (SP):

1. When EMB = "1":

SMB 15 ; Select memory bank 15

LD EA,#00H ; Bit 0 of SP is always cleared to "0"

LD SP,EA ; Stack area initial address (0FFH) \leftarrow (SP) - 1

2. When EMB = "0":

LD EA,#00H

LD SP,EA ; Memory addressing area (00H-7FH, F80H-FFFH)

PUSH OPERATIONS

Three kinds of push operations reference the stack pointer (SP) to write data from the source register to the stack: PUSH instructions, CALL instructions, and interrupts. In each case, the SP is *decreased* by a number determined by the type of push operation and then points to the next available stack location.

PUSH Instructions

A PUSH instruction references the SP to write two 4-bit data nibbles to the stack. Two 4-bit stack addresses are referenced by the stack pointer: one for the upper register value and another for the lower register. After the PUSH has executed, the SP is decreased *by two* and points to the next available stack location.

CALL Instructions

When a subroutine call is issued, the CALL instruction references the SP to write the PC's contents to six 4-bit stack locations. Current values for the enable memory bank (EMB) flag and the enable register bank (ERB) flag are also pushed to the stack. Since six 4-bit stack locations are used per CALL, you may nest subroutine calls up to the number of levels permitted in the stack.

Interrupt Routines

An interrupt routine references the SP to push the contents of the PC and the program status word (PSW) to the stack. Six 4-bit stack locations are used to store this data. After the interrupt has executed, the SP is decreased *by six* and points to the next available stack location. During an interrupt sequence, subroutines may be nested up to the number of levels which are permitted in the stack area.

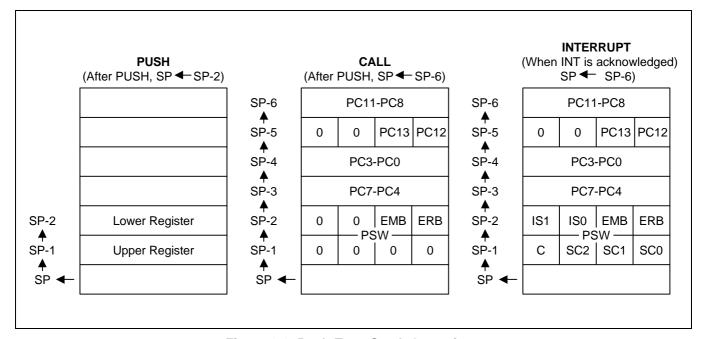


Figure 2-6. Push-Type Stack Operations

POP OPERATIONS

For each push operation there is a corresponding pop operation to write data from the stack back to the source register or registers: for the PUSH instruction it is the POP instruction; for CALL, the instruction RET or SRET; for interrupts, the instruction IRET. When a pop operation occurs, the SP is *incremented* by a number determined by the type of operation and points to the next free stack location.

POP Instructions

A POP instruction references the SP to write data stored in two 4-bit stack locations back to the register pairs and SB register. The value of the lower 4-bit register is popped first, followed by the value of the upper 4-bit register. After the POP has executed, the SP is incremented by two and points to the next free stack location.

RET and SRET Instructions

The end of a subroutine call is signaled by the return instruction, RET or SRET. The RET or SRET uses the SP to reference the six 4-bit stack locations used for the CALL and to write this data back to the PC, the EMB, and the ERB. After the RET or SRET has executed, the SP is incremented *by six* and points to the next free stack location.

IRET Instructions

The end of an interrupt sequence is signaled by the instruction IRET. IRET references the SP to locate the six 4-bit stack addresses used for the interrupt and to write this data back to the PC and the PSW. After the IRET has executed, the SP is incremented *by six* and points to the next free stack location.

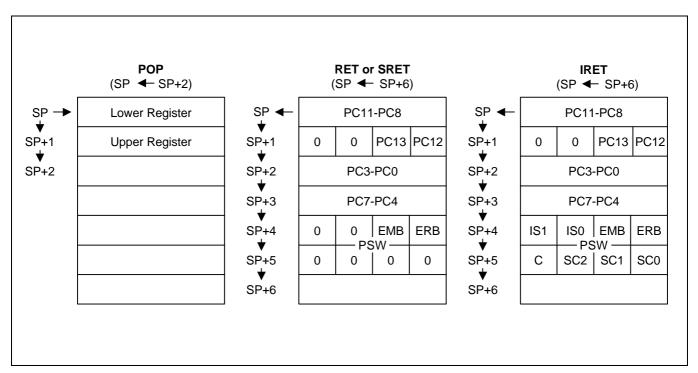


Figure 2-7. Pop-Type Stack Operations

BIT SEQUENTIAL CARRIER (BSC)

The bit sequential carrier (BSC) is a 16-bit general register that can be manipulated using 1-, 4-, and 8-bit RAM control instructions. RESET clears all BSC bit values to logic zero.

Using the BSC, you can specify sequential addresses and bit locations using 1-bit indirect addressing (memb.@L). (Bit addressing is independent of the current EMB value.) In this way, programs can process 16-bit data by moving the bit location sequentially and then incrementing or decreasing the value of the L register.

BSC data can also be manipulated using direct addressing. For 8-bit manipulations, the 4-bit register names BSC0 and BSC2 must be specified and the upper and lower 8 bits manipulated separately.

If the values of the L register are 0H at BSC0.@L, the address and bit location assignment is FC0H.0. If the L register content is FH at BSC0.@L, the address and bit location assignment is FC3H.3.

Name	Address	Bit 3	Bit 2	Bit 1	Bit 0
BSC0	FC0H	BSC0.3	BSC0.2	BSC0.1	BSC0.0
BSC1	FC1H	BSC1.3	BSC1.2	BSC1.1	BSC1.0
BSC2	FC2H	BSC2.3	BSC2.2	BSC2.1	BSC2.0
BSC3	FC3H	BSC3.3	BSC3.2	BSC3.1	BSC3.0

Table 2-4. BSC Register Organization

PROGRAMMING TIP — Using the BSC Register to Output 16-Bit Data

To use the bit sequential carrier (BSC) register to output 16-bit data (5937H) to the P3.0 pin:

BITS	EMB		
SMB	15		
LD	EA,#37H	;	
LD	BSC0,EA	;	$BSC0 \leftarrow A, BSC1 \leftarrow E$
LD	EA,#59H	;	
LD	BSC2,EA	;	$BSC2 \leftarrow A, BSC3 \leftarrow E$
SMB	0		
LD	L,#0H	;	
LDB	C,BSC0.@L	;	
LDB	P3.0,C	;	P3.0 ← C
INCS	L		
JR	AGN		
RET			
	SMB LD LD LD SMB LD LDB LDB INCS JR	SMB 15 LD EA,#37H LD BSC0,EA LD EA,#59H LD BSC2,EA SMB 0 LD L,#0H LDB C,BSC0.@L LDB P3.0,C INCS L JR AGN	SMB 15 LD EA,#37H ; LD BSC0,EA ; LD EA,#59H ; LD BSC2,EA ; SMB 0

PROGRAM COUNTER (PC)

A 13-bit program counter (PC) stores addresses for instruction fetches during program execution (S3C7235 microcontroller has 14-bit program counter, PC0–PC13). Whenever a reset operation or an interrupt occurs, bits PC12 through PC0 are set to the vector address.

Usually, the PC is incremented by the number of bytes of the instruction being fetched. One exception is the 1-byte REF instruction which is used to reference instructions stored in the ROM.

PROGRAM STATUS WORD (PSW)

The program status word (PSW) is an 8-bit word that defines system status and program execution status and which permits an interrupted process to resume operation after an interrupt request has been serviced. PSW values are mapped as follows:

	(MSB)			(LSB)
FB0H	IS1	IS0	EMB	ERB
FB1H	С	SC2	SC1	SC0

The PSW can be manipulated by 1-bit or 4-bit read/write and by 8-bit read instructions, depending on the specific bit or bits being addressed. The PSW can be addressed during program execution regardless of the current value of the enable memory bank (EMB) flag.

Part or all of the PSW is saved to stack prior to execution of a subroutine call or hardware interrupt. After the interrupt has been processed, the PSW values are popped from the stack back to the PSW address.

When a RESET is generated, the EMB and ERB values are set according to the RESET vector address, and the carry flag is left undefined (or the current value is retained). PSW bits IS0, IS1, SC0, SC1, and SC2 are all cleared to logical zero.

Table 2-5. Program Status Word Bit Descriptions

PSW Bit Identifier	Description	Bit Addressing	Read/Write
IS1, IS0	Interrupt status flags	1, 4	R/W
EMB	Enable memory bank flag	1	R/W
ERB	Enable register bank flag	1	R/W
С	Carry flag	1	R/W
SC2, SC1, SC0	Program skip flags	8	R

INTERRUPT STATUS FLAGS (ISO, IS1)

PSW bits ISO and IS1 contain the current interrupt execution status values. You can manipulate ISO and IS1 flags directly using 1-bit RAM control instructions

By manipulating interrupt status flags in conjunction with the interrupt priority register (IPR), you can process multiple interrupts by anticipating the next interrupt in an execution sequence. The interrupt priority control circuit determines the ISO and IS1 settings in order to control multiple interrupt processing. When both interrupt status flags are set to "0", all interrupts are allowed. The priority with which interrupts are processed is then determined by the IPR.

When an interrupt occurs, ISO and IS1 are pushed to the stack as part of the PSW and are automatically incremented to the next higher priority level. Then, when the interrupt service routine ends with an IRET instruction, ISO and IS1 values are restored to the PSW. Table 2-6 shows the effects of ISO and IS1 flag settings.

IS1 Value	IS0 Value	Status of Currently Executing Process	Effect of IS0 and IS1 Settings on Interrupt Request Control
0	0	0	All interrupt requests are serviced
0	1	1	Only high-priority interrupt(s) as determined in the interrupt priority register (IPR) are serviced
1	0	2	No more interrupt requests are serviced
1	1	_	Not applicable; these bit settings are undefined

Table 2-6. Interrupt Status Flag Bit Settings

Since interrupt status flags can be addressed by write instructions, programs can exert direct control over interrupt processing status. Before interrupt status flags can be addressed, however, you must first execute a DI instruction to inhibit additional interrupt routines. When the bit manipulation has been completed, execute an EI instruction to re-enable interrupt processing.

PROGRAMMING TIP — Setting ISx Flags for Interrupt Processing

The following instruction sequence shows how to use the ISO and IS1 flags to control interrupt processing:

INTB DI ; Disable interrupt

BITR IS1 ; IS1 \leftarrow 0

BITS ISO ; Allow interrupts according to IPR priority level

EI ; Enable interrupt

EMB FLAG (EMB)

The EMB flag is used to allocate specific address locations in the RAM by modifying the upper 4 bits of 12-bit data memory addresses. In this way, it controls the addressing mode for data memory banks 0, 1 or 15.

When the EMB flag is "0", the data memory address space is restricted to bank 15 and addresses 000H–07FH of memory bank 0, regardless of the SMB register contents. When the EMB flag is set to "1", the general-purpose areas of bank 0, 1 and 15 can be accessed by using the appropriate SMB value.

PROGRAMMING TIP — Using the EMB Flag to Select Memory Banks

EMB flag settings for memory bank selection:

1. When EMB = "0":

```
SMB
                                      : Non-essential instruction since EMB = "0"
            1
LD
            A,#9H
LD
            90H,A
                                     ; (F90H) ← A, bank 15 is selected
LD
            34H,A
                                      ; (034H) ← A, bank 0 is selected
SMB
                                     : Non-essential instruction since EMB = "0"
                                        (F90H) ← A, bank 15 is selected
            90H.A
LD
LD
            34H.A
                                        (034H) ← A, bank 0 is selected
SMB
            15
                                     ; Non-essential instruction, since EMB = "0"
LD
            20H,A
                                     ; (020H) \leftarrow A, bank 0 is selected
LD
            90H,A
                                     ; (F90H) ← A, bank 15 is selected
```

2. When EMB = "1":

```
SMB
                                     ; Select memory bank 1
LD
            A,#9H
LD
            90H,A
                                       (190H) \leftarrow A, bank 1 is selected
                                       (134H) ← A, bank 1 is selected
LD
            34H,A
SMB
                                       Select memory bank 0
            0
LD
            90H,A
                                     ; (090H) ← A, bank 0 is selected
                                     ; (034H) ← A, bank 0 is selected
LD
            34H,A
SMB
                                      Select memory bank 15
            15
LD
            20H.A
                                     ; Program error, but assembler does not detect it
LD
            90H,A
                                       (F90H) ← A, bank 15 is selected
```


ERB FLAG (ERB)

The 1-bit register bank enable flag (ERB) determines the range of addressable working register area. When the ERB flag is "1", the working register area from register banks 0 to 3 is selected according to the register bank selection register (SRB). When the ERB flag is "0", register bank 0 is the selected working register area, regardless of the current value of the register bank selection register (SRB).

When an internal RESET is generated, bit 6 of program memory address 0000H is written to the ERB flag. This automatically initializes the flag. When a vectored interrupt is generated, bit 6 of the respective address table in program memory is written to the ERB flag, setting the correct flag status before the interrupt service routine is executed.

During the interrupt routine, the ERB value is automatically pushed to the stack area along with the other PSW bits. Afterwards, it is popped back to the FB0H.0 bit location. The initial ERB flag settings for each vectored interrupt are defined using VENTn instructions.

PROGRAMMING TIP — Using the ERB Flag to Select Register Banks

ERB flag settings for register bank selection:

1. When ERB = "0":

```
SRB
              1
                                             Register bank 0 is selected (since ERB = "0", the
                                             SRB is configured to bank 0)
LD
              EA,#34H
                                             Bank 0 EA ← #34H
LD
              HL,EA
                                          ; Bank 0 \text{ HL} \leftarrow \text{EA}
                                          ; Register bank 0 is selected
SRB
              2
LD
              YZ,EA
                                             Bank 0 \text{ YZ} \leftarrow \text{EA}
SRB
              3
                                             Register bank 0 is selected
                                             Bank 0 WX ← EA
LD
              WX,EA
```

2. When ERB = "1":

SRB	1	; Register bank 1 is selected
LD	EA,#34H	; Bank 1 EA ← #34H
LD	HL,EA	; Bank 1 HL ← Bank 1 EA
SRB	2	; Register bank 2 is selected
LD	YZ,EA	; Bank 2 YZ ← BANK2 EA
SRB	3	; Register bank 3 is selected
LD	WX,EA	; Bank 3 WX ← Bank 3 EA

SKIP CONDITION FLAGS (SC2, SC1, SC0)

The skip condition flags SC2, SC1, and SC0 in the PSW indicate the current program skip conditions and are set and reset automatically during program execution. Skip condition flags can only be addressed by 8-bit read instructions. Direct manipulation of the SC2, SC1, and SC0 bits is not allowed.

CARRY FLAG (C)

The carry flag is used to save the result of an overflow or borrow when executing arithmetic instructions involving a carry (ADC, SBC). The carry flag can also be used as a 1-bit accumulator for performing Boolean operations involving bit-addressed data memory.

If an overflow or borrow condition occurs when executing arithmetic instructions with carry (ADC, SBC), the carry flag is set to "1". Otherwise, its value is "0". When a RESET occurs, the current value of the carry flag is retained during power-down mode, but when normal operating mode resumes, its value is undefined.

The carry flag can be directly manipulated by predefined set of 1-bit read/write instructions, independent of other bits in the PSW. Only the ADC and SBC instructions, and the instructions listed in Table 2-7, affect the carry flag.

Operation Type	Instructions	Carry Flag Manipulation	
Direct manipulation	SCF	Set carry flag to "1"	
	RCF	Clear carry flag to "0" (reset carry flag)	
	CCF	Invert carry flag value (complement carry flag)	
	BTST C	Test carry and skip if C = "1"	
Bit transfer	LDB (operand) (1),C	Load carry flag value to the specified bit	
	LDB C,(operand) (1)	Load contents of the specified bit to carry flag	
Boolean manipulation	BAND C,(operand) (1)	AND the specified bit with contents of carry flag and sat the result to the carry flag	
	BOR C,(operand) (1)	OR the specified bit with contents of carry flag and save the result to the carry flag	
	BXOR C,(operand) (1)	XOR the specified bit with contents of carry flag and save the result to the carry flag	
Interrupt routine	INTn (2)	Save carry flag to stack with other PSW bits	
Return from interrupt	IRET	Restore carry flag from stack with other PSW bits	

Table 2-7. Valid Carry Flag Manipulation Instructions

NOTES:

- 1. The operand has three bit addressing formats: mema.a, memb.@L, and @H + DA.b.
- 2. 'INTn' refers to the specific interrupt being executed and is not an instruction.

PROGRAMMING TIP — Using the Carry Flag as a 1-Bit Accumulator

1. Set the carry flag to logic one:

SCF ; $C \leftarrow 1$

LD EA,#0C3H ; EA \leftarrow #0C3H LD HL,#0AAH ; HL \leftarrow #0AAH

ADC EA,HL ; EA \leftarrow #0C3H + #0AAH + #1H, C \leftarrow 1

2. Logical-AND bit 3 of address 3FH with P3.3 and output the result to P5.0:

LD H,#3H ; Set the upper four bits of the address to the H register

value

LDB P4.0,C ; Output result from carry flag to P4.0

S3C72H8/P72H8 ADDRESSING MODES

3

ADDRESSING MODES

OVERVIEW

The enable memory bank flag, EMB, controls the two addressing modes for data memory. When the EMB flag is set to logic one, you can address the entire RAM area; when the EMB flag is cleared to logic zero, the addressable area in the RAM is restricted to specific locations.

The EMB flag works in connection with the select memory bank instruction, SMBn. You will recall that the SMBn instruction is used to select RAM bank 0, 1 or 15. The SMB setting is always contained in the upper four bits of a 12-bit RAM address. For this reason, both addressing modes (EMB = "0" and EMB = "1") apply specifically to the memory bank indicated by the SMB instruction, and any restrictions to the addressable area within banks 0, 1 or 15. Direct and indirect 1-bit, 4-bit, and 8-bit addressing methods can be used. Several RAM locations are addressable at all times, regardless of the current EMB flag setting.

Here are a few guidelines to keep in mind regarding data memory addressing:

- When you address peripheral hardware locations in bank 15, the mnemonic for the memory-mapped hardware component can be used as the operand in place of the actual address location.
- Always use an even-numbered RAM address as the operand in 8-bit direct and indirect addressing.
- With direct addressing, use the RAM address as the instruction operand; with indirect addressing, the instruction specifies a register which contains the operand's address.

ADDRESSING MODES S3C72H8/P72H8

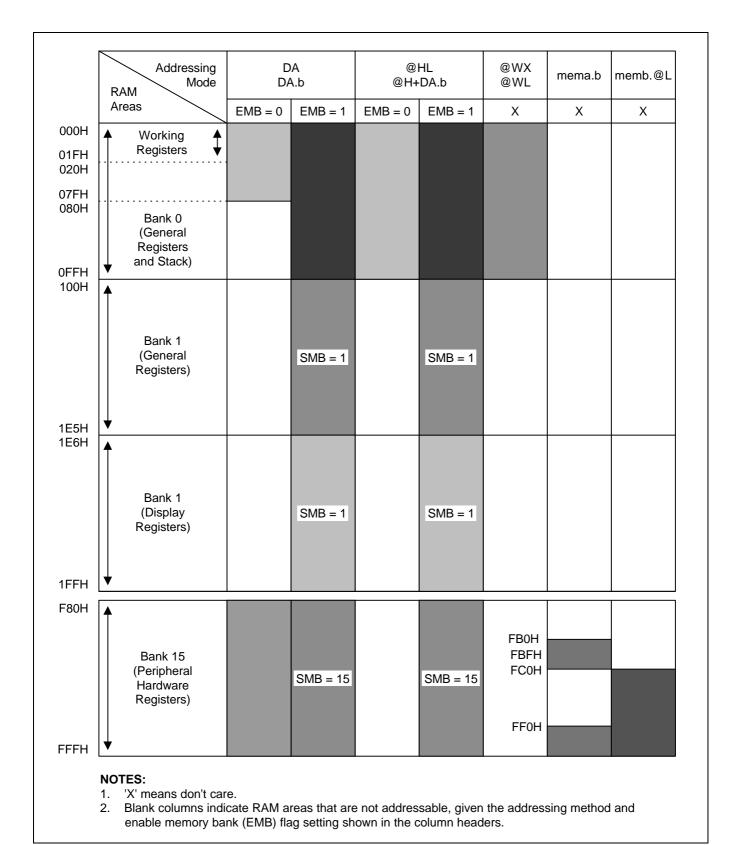


Figure 3-1. RAM Address Structure

S3C72H8/P72H8 ADDRESSING MODES

EMB AND ERB INITIALIZATION VALUES

The EMB and ERB flag bits are set automatically by the values of the RESET vector address and the interrupt vector address. When a RESET is generated internally, bit 7 of program memory address 0000H is written to the EMB flag, initializing it automatically. When a vectored interrupt is generated, bit 7 of the respective vector address table is written to the EMB. This automatically sets the EMB flag status for the interrupt service routine. When the interrupt is serviced, the EMB value is automatically saved to stack and then restored when the interrupt routine has completed.

At the beginning of a program, the initial EMB and ERB flag values for each vectored interrupt must be set by using VENT instruction. The EMB and ERB can be set or reset by bit manipulation instructions (BITS, BITR) despite the current SMB setting.

PROGRAMMING TIP — Initializing the EMB and ERB Flags

The following assembly instructions show how to initialize the EMB and ERB flag settings:

```
ORG
                      0000H
                                     ; ROM address assignment
                      1,0,RESET ; EMB \leftarrow 1, ERB \leftarrow 0, branch RESET
          VENT0
          VENT1
                                     ; EMB \leftarrow 0, ERB \leftarrow 1, branch INTB
                      0,1,INTB
          VENT2
                                     ; EMB \leftarrow 0, ERB \leftarrow 1, branch INT0
                      0,1,INT0
          VENT3
                      0,1,INT1
                                     ; EMB \leftarrow 0, ERB \leftarrow 1, branch INT1
          VENT4
                      0,1,INTG
                                     ; EMB \leftarrow 0, ERB \leftarrow 1, branch INTG
          VENT5
                     0,1,INTT0
                                     ; EMB \leftarrow 0, ERB \leftarrow 1, branch INTT0
          VENT6
                      0,1,INT3
                                     ; EMB \leftarrow 0, ERB \leftarrow 1, branch INT3
RESET
            BITR
                          EMB
```


ADDRESSING MODES S3C72H8/P72H8

ENABLE MEMORY BANK SETTINGS

EMB = "1"

When the enable memory bank flag EMB is set to logic one, you can address the data memory bank specified by the select memory bank (SMB) value (0, 1 or 15) using 1-, 4-, or 8-bit instructions. You can use both direct and indirect addressing modes. The addressable RAM areas when EMB = "1" are as follows:

If SMB = 0, 000H-0FFHIf SMB = 1, 100H-1FFHIf SMB = 15, F80H-FFFH

EMB = "0"

When the enable memory bank flag EMB is set to logic zero, the addressable area is defined independently of the SMB value, and is restricted to specific locations depending on whether a direct or indirect address mode is used.

If EMB = "0", the addressable area is restricted to locations 000H-07FH in bank 0 and to locations F80H-FFFH in bank 15 for direct addressing. For indirect addressing, only locations 000H-0FFH in bank 0 are addressable, regardless of SMB value.

To address the peripheral hardware register (bank 15) using indirect addressing, the EMB flag must first be set to "1" and the SMB value to "15". When a RESET occurs, the EMB flag is set to the value contained in bit 7 of ROM address 0000H.

EMB-Independent Addressing

At any time, several areas of the data memory can be addressed independent of the current status of the EMB flag. These exceptions are described in Table 3-1.

Table 3-1. RAM Addressing Not Affected by the EMB Value

Address	Addressing Method	Affected Hardware	Program Examples	
000H-0FFH	4-bit indirect addressing using WX and WL register pairs; 8-bit indirect addressing using SP	Not applicable	LD A,@WX PUSH POP	
FB0H-FBFH FF0H-FFFH	1-bit direct addressing	PSW, SCMOD, IEx, IRQx, I/O	BITS EMB BITR IE4	
FC0H-FFFH	1-bit indirect addressing using the L register	BSC, I/O	BTST FC3H.@L BAND C,P3.@L	

S3C72H8/P72H8 ADDRESSING MODES

SELECT BANK REGISTER (SB)

The select bank register (SB) is used to assign the memory bank and register bank. The 8-bit SB register consists of the 4-bit select register bank register (SRB) and the 4-bit select memory bank register (SMB), as shown in Figure 3-2.

During interrupts and subroutine calls, SB register contents can be saved to stack in 8-bit units by the PUSH SB instruction. You later restore the value to the SB using the POP SB instruction.

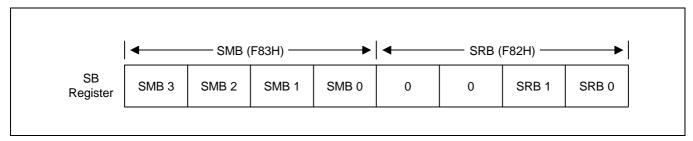


Figure 3-2. SMB and SRB Values in the SB Register

Select Register Bank (SRB) Instruction

The select register bank (SRB) value specifies which register bank is to be used as a working register bank. The SRB value is set by the 'SRB n' instruction, where n = 0, 1, 2, 3.

One of the four register banks is selected by the combination of ERB flag status and the SRB value that is set using the 'SRB n' instruction. The current SRB value is retained until another register is requested by program software. PUSH SB and POP SB instructions are used to save and restore the contents of SRB during interrupts and subroutine calls. RESET clears the 4-bit SRB value to logic zero.

Select Memory Bank (SMB) Instruction

To select one of the four available data memory banks, you must execute an SMB n instruction specifying the number of the memory bank you want (0, 1 or 15). For example, the instruction 'SMB 1' selects bank 1 and 'SMB 15' selects bank 15. (And remember to enable the selected memory bank by making the appropriate EMB flag setting.

The upper four bits of the 12-bit data memory address are stored in the SMB register. If the SMB value is not specified by software (or if a RESET does not occur) the current value is retained. RESET clears the 4-bit SMB value to logic zero.

The PUSH SB and POP SB instructions save and restore the contents of the SMB register to and from the stack area during interrupts and subroutine calls.

ADDRESSING MODES S3C72H8/P72H8

DIRECT AND INDIRECT ADDRESSING

1-bit, 4-bit, and 8-bit data stored in data memory locations can be addressed directly using a specific register or bit address as the instruction operand.

Indirect addressing specifies a memory location that contains the required direct address. The S3C7 instruction set supports 1-bit, 4-bit, and 8-bit indirect addressing. For 8-bit indirect addressing, an even-numbered RAM address must always be used as the instruction operand.

1-BIT ADDRESSING

Table 3-2. 1-Bit Direct and Indirect RAM Addressing

Operand Notation	Addressing Mode Description	EMB Flag Setting	Addressable Area	Memory Bank	Hardware I/O Mapping
			000H-07FH	Bank 0	_
DA.b	Direct: bit is indicated by the RAM address (DA), memory bank selection, and specified bit number (b).	0	F80H-FFFH	Bank 15	All 1-bit addressable peripherals (SMB = 15)
		1	000H-FFFH	SMB = 0, 1, 15	
mema.b	Direct: bit is indicated by addressable area (mema) and bit number (b).	х	FB0H-FBFH FF0H-FFFH	Bank 15	ISO, IS1, EMB, ERB, IEx, IRQx, Pn.n
memb.@L	Indirect: lower two bits of register L as indicated by the upper 10 bits of RAM area (memb) and the upper two bits of register L.	х	FC0H-FFFH	Bank 15	BSCn.x Pn.n
@H + DA.b	Indirect: bit indicated by the lower four bits of the address (DA), memory bank selection, and the H register identifier.	0	000H-0FFH	Bank 0	-
		1	000H-FFFH	SMB = 0, 1,15	All 1-bit addressable peripherals (SMB = 15)

NOTE: 'x' means don't care.

S3C72H8/P72H8 ADDRESSING MODES

PROGRAMMING TIP — 1-Bit Addressing Modes

1-Bit Direct Addressing

```
If EMB = "0":
1.
     AFLAG EQU
                       34H.3
     BFLAG EQU
                       85H.3
      CFLAG EQU
                       0BAH.0
              SMB
                                          ; 34H.3 ← 1
              BITS
                       AFLAG
                                          ; F85H.3 ← 1
              BITS
                       BFLAG
                                          ; If FBAH.0 = 1, skip
              BTST
                       CFLAG
              BITS
                       BFLAG
                                         ; Else if, FBAH.0 = 0, F85H.3 (BMOD.3) \leftarrow 1
                                          ; FF3H.0 (P3.0) \leftarrow 1
              BITS
                       P3.0
2.
      If EMB = "1":
      AFLAG EQU
                       34H.3
      BFLAG EQU
                       85H.3
      CFLAG EQU
                       0BAH.0
              SMB
                       0
                                          ; 34H.3 \leftarrow 1
              BITS
                       AFLAG
                                          ; 85H.3 ← 1
              BITS
                       BFLAG
                                          ; If 0BAH.0 = 1, skip
              BTST
                       CFLAG
              BITS
                       BFLAG
                                          ; Else if 0BAH.0 = 0, 085H.3 \leftarrow 1
              BITS
                       P3.0
                                          ; FF3H.0 (P3.0) \leftarrow 1
```

1-Bit Indirect Addressing

```
If EMB = "0":
1.
     AFLAG EQU
                       34H.3
      BFLAG EQU
                       85H.3
      CFLAG EQU
                       0BAH.0
              SMB
                       0
              LD
                       H,#0BH
                                          ; H ← #0BH
              BTSTZ
                        @H+CFLAG
                                          ; If 0BAH.0 = 1, 0BAH.0 \leftarrow 0 and skip
              BITS
                       CFLAG
                                          ; Else if 0BAH.0 = 0, FBAH.0 \leftarrow 1
2.
     If EMB = "1":
     AFLAG EQU
                       34H.3
     BFLAG EQU
                       85H.3
      CFLAG EQU
                       0BAH.0
              SMB
                       0
                                          ; H \leftarrow \#0BH
                       H,#0BH
              LD
              BTSTZ
                        @H+CFLAG
                                          ; If 0BAH.0 = 1, 0BAH.0 \leftarrow 0 and skip
              BITS
                       CFLAG
                                          ; Else if 0BAH.0 = 0, 0BAH.0 \leftarrow 1
```


ADDRESSING MODES S3C72H8/P72H8

4-BIT ADDRESSING

Table 3-3. 4-Bit Direct and Indirect RAM Addressing

Operand Notation	Addressing Mode Description	EMB Flag Setting	Addressable Area	Memory Bank	Hardware I/O Mapping
			000H-07FH	Bank 0	_
DA	Direct: 4-bit address indicated by the RAM address (DA) and the memory bank selection	0	F80H-FFFH	Bank 15	All 4-bit addressable peripherals
		1	000H-FFFH	SMB = 0, 1,15	(SMB = 15)
@HL	Indirect: 4-bit address indi- cated by the memory bank selection and register HL	0	000H-0FFH	Bank 0	-
		1	000H-FFFH	SMB = 0, 1, 15	All 4-bit addressable peripherals (SMB = 15)
@WX	Indirect: 4-bit address indicated by register WX	Х	000H-0FFH	Bank 0	_
@WL	Indirect: 4-bit address indicated by register WL	Х	000H-0FFH	Bank 0	

NOTE: "x" means don't care.

PROGRAMMING TIP — 4-Bit Addressing Modes

4-Bit Direct Addressing

```
1.
     If EMB = "0":
     ADATA EQU
                      46H
     BDATA EQU
                      8EH
             SMB
                                        ; Non-essential instruction, since EMB = "0"
                      15
             LD
                      A,P3
                                        ; A ← (P3)
                                        ; Non-essential instruction, since EMB = "0"
             SMB
                      0
             LD
                      ADATA,A
                                        ; (046H) ← A
                      BDATA,A
             LD
                                         ; (F8EH (LCON)) \leftarrow A
2.
     If EMB = "1":
     ADATA EQU
                      46H
     BDATA EQU
                      8EH
             SMB
                      15
             LD
                      A,P3
                                        ; A \leftarrow (P3)
             SMB
             LD
                      ADATA,A
                                        ; (046H) ← A
                                        ; (08EH) ← A
             LD
                      BDATA,A
```


S3C72H8/P72H8 ADDRESSING MODES

PROGRAMMING TIP — 4-Bit Addressing Modes (Continued)

4-Bit Indirect Addressing (Example 1)

1. If EMB = "0", compare bank 0 locations 040H-046H with bank 0 locations 060H-066H:

```
ADATA EQU
                46H
BDATA EQU
                66H
       SMB
                                  ; Non-essential instruction, since EMB = "0"
                1
       LD
                HL,#BDATA
       LD
                WX,#ADATA
COMP
       LD
                A,@WL
                                  ; A \leftarrow bank 0 (040H-046H)
       CPSE
                A,@HL
                                  ; If bank 0 (060H-066H) = A, skip
       SRET
       DECS
                COMP
       JR
       RET
```

2. If EMB = "1", compare bank 0 locations 040H-046H to bank 1 locations 160H-166H:

```
ADATA EQU
                46H
BDATA EQU
                66H
       SMB
                1
       LD
                HL,#BDATA
       LD
                WX,#ADATA
COMP
       LD
                A,@WL
                                 ; A \leftarrow bank 0 (040H-046H)
       CPSE
                A,@HL
                                 ; If bank 1 (160H-166H) = A, skip
       SRET
       DECS
       JR
                COMP
       RET
```

ADDRESSING MODES S3C72H8/P72H8

4-Bit Indirect Addressing (Example 2)

1. If EMB = "0", exchange bank 0 locations 040H-046H with bank 0 locations 060H-066H:

ADATA EQU 46H BDATA EQU 66H

SMB 1 ; Non-essential instruction, since EMB = "0"

LD HL,#BDATA LD WX,#ADATA

LD WA,#ADATA

TRANS LD A,@WL ; A \leftarrow bank 0 (040H-046H) XCHD A,@HL ; Bank 0 (060H-066H) \leftrightarrow A

JR TRANS

2. If EMB = "1", exchange bank 0 locations 040H-046H to bank 1 locations 160H-166H:

ADATA EQU 46H BDATA EQU 66H SMB 1

LD HL,#BDATA LD WX,#ADATA

TRANS LD A,@WL ; $A \leftarrow bank 0 (040H-046H)$

XCHD A,@HL ; Bank 1 (160H-166H) \leftrightarrow A

JR TRANS

S3C72H8/P72H8 ADDRESSING MODES

8-BIT ADDRESSING

Table 3-4. 8-Bit Direct and Indirect RAM Addressing

Instruction Notation	Addressing Mode Description	EMB Flag Setting	Addressable Area	Memory Bank	Hardware I/O Mapping
			000H-07FH	Bank 0	_
DA	Direct: 8-bit address indicated by the RAM address (<i>DA</i> = even number) and memory bank selection	0	F80H-FFFH	Bank 15	All 8-bit addressable peripherals
		1	000H-FFFH	SMB = 0, 1, 15	(SMB = 15)
@HL	Indirect: the 8-bit address indicated by the memory bank selection and register HL; (the 4-bit L register value must be an even number)	0	000H-0FFH	Bank 0	_
		1	000H-FFFH	SMB = 0, 1, 15	All 8-bit addressable peripherals (SMB = 15)

PROGRAMMING TIP — 8-Bit Addressing Modes

8-Bit Direct Addressing

1. If EMB = "0":

ADATA EQU 46H BDATA EQU 8EH

SMB 15 ; Non-essential instruction, since EMB = "0"

LD EA,P4 ; $E \leftarrow (P5), A \leftarrow (P4)$

SMB 0

LD ADATA,EA ; (046H) \leftarrow A, (047H) \leftarrow E LD BDATA,EA ; (F8EH) \leftarrow A, (F8FH) \leftarrow E

2. If EMB = "1":

ADATA EQU 46H BDATA EQU 8EH

SMB 15

LD EA,P4 ; $E \leftarrow (P5), A \leftarrow (P4)$

SMB 0

LD ADATA,EA ; (046H) \leftarrow A, (047H) \leftarrow E LD BDATA,EA ; (08EH) \leftarrow A, (08FH) \leftarrow E

ADDRESSING MODES S3C72H8/P72H8

PROGRAMMING TIP — 8-Bit Addressing Modes (Continued)

8-Bit Indirect Addressing

1. If EMB = "0":

ADATA EQU 46H

SMB 1 ; Non-essential instruction, since EMB = "0"

LD HL,#ADATA

LD EA,@HL ; $A \leftarrow (046H), E \leftarrow (047H)$

2. If EMB = "1":

ADATA EQU 46H

SMB 1

LD HL,#ADATA

LD EA,@HL ; $A \leftarrow (146H), E \leftarrow (147H)$

4

MEMORY MAP

OVERVIEW

To support program control of peripheral hardware, I/O addresses for peripherals are memory-mapped to bank 15 of the RAM. Memory mapping lets you use a mnemonic as the operand of an instruction in place of the specific memory location.

Access to bank 15 is controlled by the select memory bank (SMB) instruction and by the enable memory bank flag (EMB) setting. If the EMB flag is "0", bank 15 can be addressed using direct addressing, regardless of the current SMB value. 1-bit direct and indirect addressing can be used for specific locations in bank 15, regardless of the current EMB value.

I/O MAP FOR HARDWARE REGISTERS

Table 4-1 contains detailed information about I/O mapping for peripheral hardware in bank 15 (register locations F80H-FFFH). Use the I/O map as a quick-reference source when writing application programs. The I/O map gives you the following information:

- Register address
- Register name (mnemonic for program addressing)
- Bit values (both addressable and non-manipulable)
- Read-only, write-only, or read and write addressability
- 1-bit, 4-bit, or 8-bit data manipulation characteristics

Table 4-1. I/O Map for Memory Bank 15

Memory Bank 15							Add	ressing N	lode
Address	Register	Bit 3	Bit 2	Bit 1	Bit 0	R/W	1-Bit	4-Bit	8-Bit
F80H	SP	.3	.2	.1	"0"	R/W	No	No	Yes
F81H		.7	.6	.5	.4				
F82H	SB	"0"	"0"	SRB1	SRB0	_	No	No	No
F83H		SMB3	SMB2	SMB1	SMB0				
			Locations	F84H is no	t mapped.				
F85H	BMOD	.3	.2	.1	.0	W	.3	Yes	No
F86H	BCNT	.3	.2	.1	.0	R	No	No	Yes
F87H		.7	.6	.5	.4				
F88H	WMOD	.3	.2	.1	.0	W	No	No	Yes
F89H		.7	"0"	.5	.4				
		Loc	ations F8A	H-F8BH ar	e not map	ped.			
F8CH	LMOD	.3	.2	.1	.0	W	.3	No	Yes
F8DH		"0"	"0"	.5	.4				
F8EH	LCON	.3	"0"	"0"	.0	W	No	Yes	No
		1	Location I	F8FH is no	t mapped.				
F90H	TMOD0	.3	.2	"0"	"0"	W	.3	No	Yes
F91H		"0"	.6	.5	.4				
F92H	TOE	"0"	TOE0	BOE	"0"	R/W	Yes	No	No
F93H	TOL	"0"	"0"	TOL0	"0"	R	Yes	No	No
F94H	TCNT0	.3	.2	.1	.0	R	No	No	Yes
F95H		.7	.6	.5	.4				
F96H	TREF0	.3	.2	.1	.0	W	No	No	Yes
F97H		.7	.6	.5	.4				
F98H	WDMOD	.3	.2	.1	.0	W	No	No	Yes
F99H		.7	.6	.5	.4				
F9AH	WDFLAG	WDTCF	"0"	"0"	"0"	W	Yes	Yes	No
		1	F9BH-FB	FH are not	mapped.				
FA0H	FCMOD	.3	.2	.1	.0	R/W	.4(R)	Yes	Yes
FA1H		"0"	.6	.5	.4(R)		.3/.0 (R/W)		
			F9BH-FA	FH are not	mapped.				
FA4H	FCNTL	.3	.2	.1	.0	R	No	No	Yes
FA5H		.7	.6	.5	.4]			
FA6H	FCNTH	.3	.2	.1	.0	R	No	No	Yes
FA7H		.7	.6	.5	.4]			

Table 4-1. I/O Map for Memory Bank 15 (Continued)

Memory Bank 15 Memory Bank 15								Iressing M	ode
Address							1-Bit	4-Bit	8-Bit
FB0H	PSW	IS1	IS0	EMB	ERB	R/W	Yes	Yes	Yes
FB1H		C (1)	SC2	SC1	SC0	R	No	No	
FB2H	IPR	IME	.2	.1	.0	W	IME	Yes	No
FB3H	PCON	.3	.2	.1	.0	W	No	Yes	No
FB4H	IMOD0	.3	"0"	.1	.0	W	No	Yes	No
FB5H	IMOD1	"0"	"0"	"0"	.0				
FB6H	IMOD2	.3	.2	.1	.0				
FB7H	SCMOD	.3	.2	"0"	.0	W	Yes	No	No
FB8H	INT (A)	"0"	"0"	IEB	IRQB	R/W	Yes	Yes	No
l		1	Location	FB9H is no	t mapped				
FBAH	INT (B)	"0"	"0"	IEW	IRQW	R/W	Yes	Yes	No
FBBH	INT (B1)	"0"	"0"	IE3	IRQ3				
FBCH	INT (C)	"0"	"0"	IET0	IRQT0				
FBDH	INT (D)	"0"	"0"	IES	IRQS				
FBEH	INT (E)	IE1	IRQ1	IE0	IRQ0				
FBFH	INT (F)	"0"	"0"	IE2	IRQ2				
FC0H	BSC0	.3	.2	.1	.0	R/W	Yes	Yes	Yes
FC1H	BSC1	.3	.2	.1	.0				
FC2H	BSC2	.3	.2	.1	.0				
FC3H	BSC3	.3	.2	.1	.0				
FD0H	CLMOD	.3	"0"	.1	.0	W	No	Yes	No
		Loc	ations FD1	H-FD5H aı	e not mapp	oed.			
FD6H	PNE	PNE4.3	PNE4.2	PNE4.1	PNE4.0	W	No	No	Yes
FD7H		_	_	PNE5.1	PNE5.0				
FD8H	IMOD3	.3	.2	.1	.0	W	No	No	Yes
FD9H		"0"	"0"	.5	.4				
		Loc	ations FDA	H-FDBH a	re not map	ped.			
FDCH	PUMOD	PUR.3	PUR.2	"0"	PUR.0	W	No	No	Yes
FDDH		"0"	PUR.6	PUR.5	PUR.4				
Locations FDEH-FDFH are not mapped.									
FE0H	CMOD	.3	.2	.1	.0	R/W	No	Yes	No
FE1H	CMPCON	.3(R)	.2	.1(R)	.0	R/W	No	Yes	No
FE2H	VLDCON	.3(R)	.2	.1	.0	R/W	No	Yes	No
		Loc	ations FE3	H-FE5H ar	e not mapp	oed.			

Table 4-1. I/O Map for Memory Bank 15 (Concluded)

		Add	Iressing N	lode					
Address	Register	Bit 3	Bit 2	Bit 1	Bit 0	R/W	1-Bit	4-Bit	8-Bit
FE6H	PMG0	PM2.3	PM2.2	PM2.1	PM2.0	W	No	No	Yes
FE7H		PM3.3	PM3.2	PM3.1	PM3.0				
FE8H	PMG1	PM5	PM4	ExtRef	PM0	W	No	No	Yes
FE9H		PM6.3	PM6.2	PM6.1	PM6.0				
	Locations FEAH-FEFH are not mapped.								
FF0H	Port 0	"0"	.2	.1	.0	R/W	Yes	Yes	No
			Locations	FF1H is no	t mapped.				
FF2H	Port 2	.3	.2	.1	.0	R/W	Yes	Yes	No
FF3H	Port 3	.3/.7	.2/.6	.1/.5	.0/.4	R/W			
FF4H	Port 4	.3	.2	.1	.0	R/W	Yes	Yes	Yes
FF5H	Port 5	"0"	"0"	.1/.5	.0/.4	R/W	Yes	Yes	
FF6H	Port 6	.3	.2	.1	.0	R/W	Yes	Yes	Yes
		Loc	ations FF7	H-FFFH ar	e not mapp	oed.			

NOTES: The carry flag can be read or written by specific bit manipulation instructions only.

REGISTER DESCRIPTIONS

In this section, register descriptions are presented in a consistent format to familiarize you with the memory-mapped I/O locations in bank 15 of the RAM. Figure 4-1 describes features of the register description format. Register descriptions are arranged in alphabetical order. Programmers can use this section as a quick-reference source when writing application programs.

Counter registers, buffer registers, and reference registers, as well as the stack pointer and port I/O latches, are not included in these descriptions. More detailed information about how these registers are used is included in Part II of this manual, "Hardware Descriptions," in the context of the corresponding peripheral hardware module descriptions.

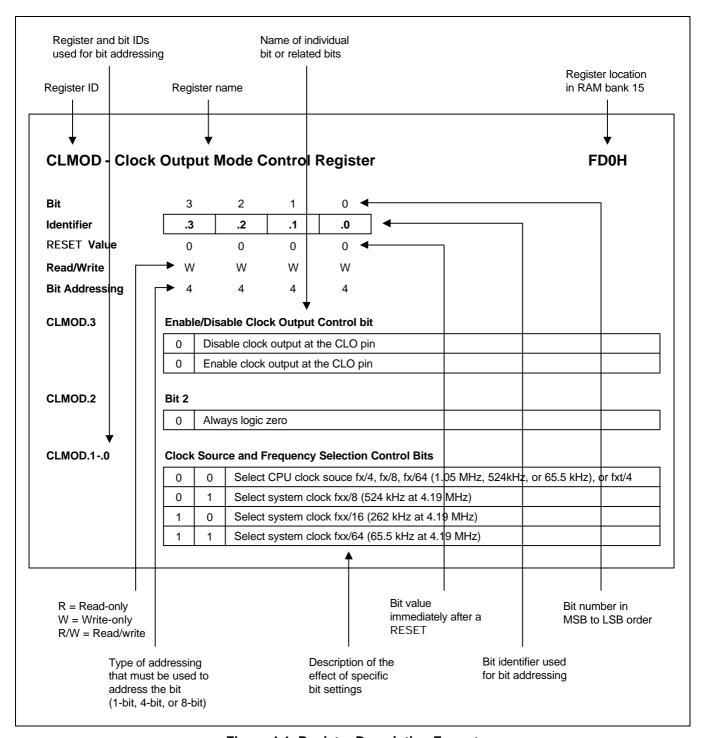


Figure 4-1. Register Description Format

BMOD — Basic Timer Mode Register

F85H

Bit	3	2	1	0
Identifier	.3	.2	.1	.0
RESET Value	0	0	0	0
Read/Write	W	W	W	W
Bit Addressing	1/4	4	4	4

.3 Basic Timer Restart Bit

1	Restart basic timer, then clear IRQB flag, BCNT and BMOD.3 to logic zero
---	--

.2 - .0 Input Clock Frequency and Signal Stabilization Interval Control Bits

0	0	0	Input clock frequency: Signal stabilization interval:	fxx / 2 ¹² (1.02 kHz) 2 ²⁰ / fxx (250 ms)
0	1	1	Input clock frequency: Signal stabilization interval:	fxx / 2 ⁹ (8.18 kHz) 2 ¹⁷ / fxx (31.3 ms)
1	0	1	Input clock frequency: Signal stabilization interval:	fxx / 2 ⁷ (32.7 kHz) 2 ¹⁵ / fxx (7.82 ms)
1	1	1	Input clock frequency: Signal stabilization interval:	fxx / 2 ⁵ (131 kHz) 2 ¹³ / fxx (1.95 ms)

NOTES:

- 1. When a RESET occurs, the oscillation stabilization time is 31.3 ms (2¹⁷/fxx) at 4.19 MHz.
- 2. 'fxx' is the system clock rate given a clock frequency of 4.19 MHz.

CLMOD — Clock Output Mode Register

FD0H

Bit	3	2	1	0
Identifier	.3	"0"	.1	.0
RESET Value	0	0	0	0
Read/Write	W	W	W	W
Bit Addressing	4	4	4	4

.3 Enable/Disable Clock Output Control Bit

0	Disable clock output
1	Enable clock output

.2 Bit 2

0 Always logic zero

.1 - .0 Clock Source and Frequency Selection Control Bits

0	0	Select CPU clock source fx/4, fx/8, fx/64, or fxt/4 (1.05 MHz, 524 kHz, or 65.5 kHz)
0	1	Select system clock fxx/8 (524 kHz)
1	0	Select system clock fxx/16 (262 kHz)
1	1	Select system clock fxx/64 (65.5 kHz)

NOTE: 'fxx' is the system clock, given a clock frequency of 4.19 MHz.

CMOD — Comparator Mode Register

FE0H

Bit	3	2	1	0
Identifier	.3	.2	.1	.0
RESET Value	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W
Bit Addressing	4	4	4	4

.3 Bit 3

0	Select P4.3/C1OUT as a normal I/O port
1	Select P4.3/C1OUT as a comparator output

.2 Bit 2

0	Select P5.0/C1P, P5.1/C1N as normal I/O port			
1	Select P5.0/C1P, P5.1/C1N as comparator output			

.1 Bit 1

0	Select P4.2/C0OUT as a normal I/O port	
1	Select P4.2/C0OUT as a comparator output	

.0 Bit 0

0	Select P4.0/C0P, P4.1/C0N as normal I/O port
1	Select P4.0/C0P, P4.1/C0N as comparator output

CMPCON — Comparator Control Register

FE1H

Bit	3	2	1	0
Identifier	.3	.2	.1	.0
RESET Value	0	0	0	0
Read/Write	R	R/W	R	R/W
Bit Addressing	4	4	4	4

CMPCON.3 Bit 3

0	Comparator 1 (C1OUT) output is low when C1P \leq C1N			
1	Comparator 1 (C1OUT) output is high when C1P > C1N			

CMPCON.2 Bit 2

0	Disable comparator 1	
1	Enable comparator 1	

CMPCON.1 Bit 1

0	Comparator (C0OUT) output is low when C0P ≤ C0N
1	Comparator (C0OUT) output is high when C0P > C0N

CMPCON.0 Bit 0

0	Disable comparator 0
1	Enable comparator 0

FCMOD - Frequency Counter Mode Register

FA1H, FA0H

Bit
Identifier
RESET Value
Read/Write
Bit Addressing

7	6	5	4	3	2	1	0
"0"	FCMOD.6	FCMOD.5	FCMOD.4	FCMOD.3	FCMOD.2	FCMOD.1	FCMOD.0
0	0	0	0	0	0	0	0
R/W	R/W	R/W	R	R/W	R/W	R/W	R/W
4/8	4/8	4/8	1/4/8	1/4/8	4/8	4/8	1/4/8

.7

Bit 7

0	Always logic zero
0	Always logic zero

FCMOD.6 - .5 Bit 6 - 5

0	0	Hold the up-counting operation of FCNT	
0	1	Enable up- counting in FCNT; select FCL pin at falling edge	
1	0	Enable up- counting in FCNT; select C0OUT pin at falling edge	
1	1	Enable up- counting in FCNT; select C1OUT pin at falling edge	

FCMOD.4

Bit 4

0/1 Gate flag	
---------------	--

FCMOD.3

Bit 3

1 Clear FCNT and IRQG. (This bit is automatically cleared to logic zero immediately after counting resumes); Start bit

FCMOD.2 - .0

Bit 2 - 0

0	0	0	Close gate	
0	0	1	Open gate; The writing command will start FC operation after clear FCNT and IRQG; Start bit	
0	1	0	Select the gate time, $fw/2^{10}$ (31.25ms at $fw = 32768$ Hz)	
0	1	1	Select the gate time, fw/2 ¹¹ (62.5ms at fw = 32768 Hz)	
1	0	0	elect the gate time, $fw/2^{12}$ (125ms at $fw = 32768$ Hz)	
1	0	1	lect the gate time, fw/2 ¹³ (250ms at fw = 32768 Hz)	
1	1	0	Select the gate time, fw/2 ¹⁴ (500ms at fw = 32768 Hz)	
1	1	1	Select the gate time, fw/2 ¹⁵ (1000ms at fw = 32768 Hz)	

IEO, 1, IRQO, 1 — INTO, 1 Interrupt Enable/Request Flags

FBEH

Bit
ldentifier
RESET Value
Read/Write
Bit Addressing

3	2	1	0
IE1	IRQ1	IE0	IRQ0
0	0	0	0
R/W	R/W	R/W	R/W
1/4	1/4	1/4	1/4

IE1 INT1 Interrupt Enable Flag

0	Disable interrupt requests at the INT1 pin
1	Enable interrupt requests at the INT1 pin

IRQ1 INT1 Interrupt Request Flag

 Generate INT1 interrupt (This bit is set and cleared by hardware when rising or falling edge detected at INT1 pin.)

IEO INTO Interrupt Enable Flag

0	Disable interrupt requests at the INT0 pin
1	Enable interrupt requests at the INT0 pin

IRQ0 INT0 Interrupt Request Flag

 Generate INT0 interrupt (This bit is set and cleared automatically by hardware when rising or falling edge detected at INT0 pin.)

IE2, IRQ2 — INT2 Interrupt Enable/Request Flags

FBFH

Bit Identifier RESET Value Read/Write Bit Addressing

3	2	1	0
"0"	"0"	IE2	IRQ2
0	0	0	0
R/W	R/W	R/W	R/W
1/4	1/4	1/4	1/4

.3 - .2

Bits 3-2

0	Always	logic	zero
U	Aiways	iogic	2010

IE2

INT2 Interrupt Enable Flag

0	Disable INT2 interrupt requests at the INT2 pin
1	Enable INT2 interrupt requests at the INT2 pin

IRQ2

INT2 Interrupt Request Flag

 Generate INT2 quasi-interrupt (This bit is set and is not cleared automatically by hardware when a rising or falling edge is detected at INT2 or KS0-KS7 respectively. Since INT2 is a quasi-interrupt, IRQ2 flag must be cleared by software.)

IE3, IRQ3 — INT3 Interrupt Enable/Request Flags

FBBH

Bit Identifier RESET Value Read/Write Bit Addressing

3	2	1	0
"0"	"0"	IE3	IRQ3
0	0	0	0
R/W	R/W	R/W	R/W
1/4	1/4	1/4	1/4

.3 - .2 Bits 3-2

0	Always logic zero
---	-------------------

IE3 INT2 Interrupt Enable Flag

0	Disable INT3 interrupt requests at the INT3 pin
1	Enable INT3 interrupt requests at the INT3 pin

IRQ3 INT3 Interrupt Request Flag

- Generate INT3 interrupt (This bit is set and cleared automatically by hardware)

IEB, IRQB — INTB Interrupt Enable/Request Flags

FB8H

Bit Identifier RESET Value Read/Write Bit Addressing

3	2	1	0
"0" "0"		IEB	IRQB
0	0	0	0
R/W	R/W	R/W	R/W
1/4	1/4	1/4	1/4

.3 - .2

Bit 3 - 2

0	Always	logic	zero
U	Aiways	iogic	2010

IEB

INTB Interrupt Enable Flag

0	Disable INTB interrupt requests
1	Enable INTB interrupt requests

IRQB

INTB Interrupt Request Flag

 Generate INTB interrupt (This bit is set and cleared automatically by hardware when reference interval signal received from basic timer.)

IEG, IRQG — INTG Interrupt Enable/Request Flags

FBDH

Bit Identifier RESET Value Read/Write Bit Addressing

3	2	1	0
"0" "0" IEG IR		IRQG	
0	0	0	0
R/W	R/W	R/W	R/W
1/4	1/4	1/4	1/4

.3 - .2 Bits 3-2

0	Always logic zero
---	-------------------

IEG INTG Interrupt Enable Flag

0	Disable INTG interrupt requests
1	Enable INTG interrupt requests

IRQG INTG Interrupt Request Flag

Generate INTG interrupt (This bit is set and cleared automatically by hardware)

IETO, IRQTO — INTTO Interrupt Enable/Request Flags

FBCH

Bit	3	2	1
Identifier	"0"	"0"	IET0
RESET Value	0	0	0
Read/Write	R/W	R/W	R/W
Bit Addressing	1/4	1/4	1/4

.3 - .2 Bits 3-2

0	Always logic zero	Always logic zero

0 IRQT0 0 R/W 1/4

IETO INTTO Interrupt Enable Flag

0	Disable INTT0 interrupt requests
1	Enable INTT0 interrupt requests

IRQT0 INTT0 Interrupt Request Flag

 Generate INTT0 interrupt (This bit is set and cleared automatically by hardware when contents of TCNT0 and TREF0 registers match.)

IEW, IRQW — INTW Interrupt Enable/Request Flags

FBAH

Bit	3	2	1	0
Identifier	"0"	"0"	IEW	IRQW
RESET Value	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W
Bit Addressing	1/4	1/4	1/4	1/4

.3 - .2 Bits 3-2

0	Always logic zero

IEW INTW Interrupt Enable Flag

0	Disable INTW interrupt requests
1	Enable INTW interrupt requests

IRQW INTW Interrupt Request Flag

Generate INTW interrupt (This bit is set when the timer interval is set to 1, 0.5, 0.25 seconds or 3.91 ms.)

NOTE: Since INTW is a quasi-interrupt, the IRQW flag must be cleared by software.

IMOD0 — External Interrupt 0 (INT0) Mode Register

FB4H

Bit 3 2 1 0 .3 "0" .1 Identifier .0 **RESET Value** 0 0 0 Read/Write W W W W **Bit Addressing** 4 4 4 4

.3 Interrupt Sampling Clock Selection Bit

0	Select CPU clock as a sampling clock
1	Select sampling clock frequency of the selected system clock (fxx/64)

.2 Bit 2

0 Always logic zero

.1 - .0 External Interrupt Mode Control Bits

0	0	Interrupt requests are triggered by a rising signal edge
0	1	Interrupt requests are triggered by a falling signal edge
1	0	Interrupt requests are triggered by both rising and falling signal edges
1	1	Interrupt request flag (IRQ0) cannot be set to logic one

IMOD1 — External Interrupt 1 (INT1) Mode Register

FB5H

Bit	3	2	1	0
Identifier	"0"	"0"	"0"	IMOD1.0
RESET Value	0	0	0	0
Read/Write	W	W	W	W
Bit Addressing	4	4	4	4

.3 - .1 Bits 3-1

0	Always logic zero

.0 External Interrupt 1 Edge Detection Control Bit

0	Rising edge detection
1	Falling edge detection

IMOD2 — External Interrupt 2 (INT2) Mode Register

FB6H

Bit	3	2	1	0
Identifier	IMOD2.3	IMOD2.2	IMOD2.1	IMOD2.0
RESET Value	0	0	0	0
Read/Write	W	W	W	W
Bit Addressing	4	4	4	4

IMOD.3 Bits 3

0	Disable INT2 at falling edge of KS3 (P6.3)
1	Enable INT2 at falling edge of KS3 (P6.3)

IMOD.2 Bits 2

0	Disable INT2 at falling edge of KS2 (P6.2)
1	Enable INT2 at falling edge of KS2 (P6.2)

IMOD.1 Bits 1

0	Disable INT2 at falling edge of KS1 (P6.)
1	Enable INT2 at falling edge of KS1 (P6.1)

IMOD.0 Bits 0

	0	Disable INT2 at falling edge of KS0 (P6.0)
ĺ	1	Enable INT2 at falling edge of KS0 (P6.0)

IMOD3 — External Interrupt 3 (INT3) Mode Register

FD9H, FD8H

Bit Identifier RESET Value Read/Write Bit Addressing

7	6	5	4	3	2	1	0	
"0"	"0"	.5	.4	.3	.2	.1	.0	
0	0	0	0	0	0	0	0	
W	W	W	W	W	W	W	W	
8	8	8	8	8	8	8	8	

.7 - .6 Bits 7-6

0	Always logic zero	
---	-------------------	--

.5 - .4 Bits 5-4

0	0	Disable INT3 at C1OUT (CMPCON.3)
0	1	Enable INT3 at falling edge of C1OUT (CMPCON.3)
1	0	Enable INT3 at rising edge of C1OUT (CMPCON.3)
1	0	Enable INT3 at falling/rising edge of C1OUT (CMPCON.3)

.3 - .2 Bits 3-2

0	0	Disable INT3 at C0OUT (CMPCON.1)
0	1	Enable INT3 at falling edge of C0OUT (CMPCON.1)
1	0	Enable INT3 at rising edge of C0OUT (CMPCON.1)
1	1	Enable INT3 at falling/rising edge of C0OUT (CMPCON.1)

.1 - .0 Bits 1-0

0	0	Disable INT3 at VLDOUT (VLDCON.3)
0	1	Enable INT3 at falling edge of VLDOUT (VLDCON.3)
1	0	Enable INT3 at rising edge of VLDOUT (VLDCON.3)
1	1	Enable INT3 at falling/rising edge of VLDOUT (VLDCON.3)

IPR — Interrupt Priority Register

FB2H

Bit Identifier RESET Value Read/Write Bit Addressing

3	2	1	0
IME	.2	.1	.0
0	0	0	0
W	W	W	W
1/4	4	4	4

IME

Interrupt Master Enable Bit

0	Disable all interrupt processing
1	Enable processing for all interrupt service requests

.2 - .0 Interrupt Priority Assignment Bits

0	0	0	Normal interrupt handling according to default priority settings
0	0	1	Process INTB interrupts at highest priority
0	1	0	Process INT0 interrupts at highest priority
0	1	1	Process INT1 interrupts at highest priority
1	0	0	Process INTG interrupts at highest priority
1	0	1	Process INTT0 interrupts at highest priority
1	1	0	Process INT3 interrupts at highest priority

LCON — LCD Output Control Register

F8EH

Bit	3	2	1	0
Identifier	"0"	"0"	"0"	.0
RESET Value	0	0	0	0
Read/Write	W	W	W	W
Bit Addressing	4	4	4	4

.3 Bit 3

0 Always logic zero

.2 Bit 2

0 Always logic zero

.1 Bit 1

0 Always logic zero

.0 LCD Display Control Bit

0	LCD output low, turns display off: cut off current and turn off voltage regulator and booster
	If LMOD.3 = "0": LCD output low; turns display off
	If LMOD.3 = "1": COM and SEG output in display mode; turn display on

NOTES:

- 1. You can manipulate LCON.0, when you try to turn ON/OFF LCD display internally.
- 2. To select the LCD bias, you must properly configure both LMOD register and the external LCD bias circuit connection.

${\color{red}\mathsf{LMOD}}{\color{blue}\mathsf{-}}{\color{blue}\mathsf{LCD}}$ Mode Register

F8DH, F8CH

Bit Identifier RESET Value Read/Write Bit Addressing

3	2	1	0	3	2	1	0
"0"	"0"	.5	.4	.3	.2	.1	.0
0	0	0	0	0	0	0	0
W	W	W	W	W	W	W	W
8	8	8	8	1/8	8	8	8

.7 - .6

Bit 7-6

l 0 I Alwavs logic zer	0	Always logic zero
------------------------	---	-------------------

.5 - .4

LCD Clock (LCDCK) Frequency Selection Bits

0	0	$fw/2^9 = 64 \text{ Hz}$
0	1	$fw/2^8 = 128 Hz$
1	0	$fw/2^7 = 256 Hz$
1	1	$fw/2^6 = 512 Hz$

.3 - .0

Duty and Bias Selection for LCD Display

0	-	_	-	LCD display off
1	0	0	0	1/4 duty, 1/3 bias
1	0	0	1	1/3 duty, 1/3 bias
1	0	1	1	1/3 duty, 1/2 bias
1	0	1	0	1/2 duty, 1/2 bias
1	1	1	0	Static

PCON — Power Control Register

FB3H

Bit	3	2	1	0
Identifier	.3	.2	.1	.0
RESET Value	0	0	0	0
Read/Write	W	W	W	W
Bit Addressing	4	4	4	4

.3 - .2 CPU Operating Mode Control Bits

0	0	Enable normal CPU operating mode
0	1	Initiate idle power-down mode
1	0	Initiate stop power-down mode

.1 - .0 CPU Clock Frequency Selection Bits

0	0	If SCMOD.0 = "0", fx/64; if SCMOD.0 = "1", fxt/4
1	0	If SCMOD.0 = "0", fx/8; if SCMOD.0 = "1", fxt/4
1	1	If SCMOD.0 = "0", fx/4; if SCMOD.0 = "1", fxt/4

NOTE: 'fx' is the main-system clock; 'fxt' is the sub-system clock.

PMG0 — Port I/O Mode Flags (Group 1: Ports 2 and 3)

FE7H, FE6H

Bit	7	6	5	4	3	2	1	0
Identifier	PM3.	3 PM3.2	PM3.1	PM3.0	PM2.3	PM2.2	PM2.1	PM2.0
RESET Value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W
Bit Addressing	8	8	8	8	8	8	8	8
PM3.3	P3.3 I/	O Mode sele	ction Flag					
		et P3.3 to inp						
		et P3.3 to out						
PM3.2	D3 2 I/	O Mode Sele	ction Flag					
1 W.S.Z		et P3.2 to inp						
	-	et P3.2 to imp						
		Ct 1 0.2 to out	parmoac					
PM3.1	P3.1 I/	O Mode Sele	ction Flag					
	0 S	et P3.1 to inp	ut mode					
	1 S	et P3.1 to out	put mode					
PM3.0	P3.0 I/	O Mode Sele	ction Flag					
		et P3.0 to inp						
		et P3.0 to out						
PM2.3	P2.3 I/	O Mode Sele	ction Flag					
		et P2.3 to inp						
	1 S	et P2.3 to out	put mode					
PM2.2	P2.2 I/	O Mode Sele	ction Flag					
		et P2.2 to inp						
	1 S	et P2.2 to out	put mode					
PM2.1	P2.1 I/	O Mode Sele	ction Flag					
		et P2.1 to inp						
	1 S	et P2.1 to out	put mode					
PM2.0	P2.0 I/	O Mode Sele	ction Flag					
		et P2.0 to inp						
	-	et P2.0 to out						

${f PMG1}$ — Port I/O Mode Flags (Group 2: Ports 0, 4, 5, and 6)

FE9H, FE8H

Bit	7	6	5	4	3	2	1	0
Identifier	PM6.3	PM6.2	PM6.1	PM6.0	PM5	PM4	ExtRef (P0.0)	PM0
RESET Value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W
Bit Addressing	8	8	8	8	8	8	8	8

PM6.3 P6.3 I/O Mode Selection Flag

0	Set P6.3 to input mode
1	Set P6.3 to output mode

PM6.2 Bit 6.2

0	Set P6.2 to input mode
1	Set P6.2 to output mode

PM6.1 P6.1 I/O Mode Selection Flag

0	Set P6.1 to input mode
1	Set P6.1 to output mode

PM6.0 P6.0 I/O Mode Selection Flag

0	Set P6.0 to input mode
1	Set P6.0 to output mode

PM5 P5 I/O Mode Selection Flag

0	Set P5 to input mode
1	Set P5 to output mode

PM4 P4 I/O Mode Selection Flag

0	Set P4 to input mode
1	Set P4 to output mode

ExtRef (P0.0) P0.0 I/O Mode Selection Flag

0	Normal I/O mode
1	Set external reference input mode

PM0 P0 I/O Mode Selection Flag

0	Set P0 to input mode
1	Set P0 to output mode

${f PNE}$ — N-Channel Open-Drain Mode Register

FD7H, FD6H

Bit	7	6	5	4	3	2	1	0
Identifier	"0"	"0"	PNE.5	PNE.4	PNE.3	PNE.2	PNE.1	PNE.0
RESET Value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W
Bit Addressing	8	8	8	8	8	8	8	8

.7	6	Bit 7-6

0	Always logic zero	
---	-------------------	--

PNE.5 P5 N-Channel Open-Drain Configurable Bit

	· · · · · · · · · · · · · · · · · · ·
0	Configure P5.1 as a push-pull
1	Configure P5.1 as a n-channel open-drain

PNE.4 P4 N-Channel Open-Drain Configurable Bit

	•
0	Configure P5.0 as a push-pull
1	Configure P5.0 as a n-channel open-drain

PNE.3 P3 N-Channel Open-Drain Configurable Bit

0	Configure P4.3 as a push-pull
1	Configure P4.3 as a n-channel open-drain

PNE.2 P2 N-Channel Open-Drain Configurable Bit

0	Configure P4.2 as a push-pull
1	Configure P4.2 as a n-channel open-drain

PNE.1 P1 N-Channel Open-Drain Configurable Bit

0)	Configure P4.1 as a push-pull
1		Configure P4.1 as a n-channel open-drain

PNE.0 P0 N-Channel Open-Drain Configurable Bit

(0	Configure P4.0 as a push-pull
	1	Configure P4.0 as a n-channel open-drain

PSW — Program Status Word

FB1H, FB0H

Bit
ldentifier
RESET Value
Read/Write
Bit Addressing
Bit Addressing

7	6	5	4	3	2	1	0
С	SC2	SC1	SC0	IS1	IS0	EMB	ERB
(1)	0	0	0	0	0	0	0
R/W	R	R	R	R/W	R/W	R/W	R/W
(2)	8	8	8	1/4/8	1/4/8	1/4/8	1/4/8

С

Carry Flag

_		· •
	0	No overflow or borrow condition exists
	1	An overflow or borrow condition does exist

SC2 - SC0

Skip Condition Flags

0	No skip condition exists; no direct manipulation of these bits is allowed
1	A skip condition exists; no direct manipulation of these bits is allowed

IS1, IS0

Interrupt Status Flags

0	0	Service all interrupt requests
0	1	Service only the high-priority interrupt(s) as determined in the interrupt priority register (IPR)
1	0	Do not service any more interrupt requests
1	1	Undefined

EMB

Enable Data Memory Bank Flag

	Restrict program access to data memory to bank 15 (F80H-FFFH) and to the locations 000H-07FH in the bank 0 only
1	Enable full access to data memory banks 0, 1, 2, and 15

ERB

Enable Register Bank Flag

0	Select register bank 0 as working register area
	Select register banks 0, 1, 2, or 3 as working register area in accordance with the select register bank (SRB) instruction operand

NOTES:

- 1. The value of the carry flag after a RESET occurs during normal operation is undefined. If a RESET occurs during power-down mode (IDLE or STOP), the current value of the carry flag is retained.
- 2. The carry flag can only be addressed by a specific set of 1-bit manipulation instructions. See Section 2 for detailed information.

5

4

3

2

PUMOD — Pull-Up Resistor Mode Register

6

FDDH, FDCH

Identifier	"0	" PUR.6	PUR.5	PUR.4	PUR.3	PUR.2	"0"	PUR.0
RESET Value	0	0	0	0	0	0	0	0
Read/Write	W	w W	W	W	W	W	W	W
Bit Addressing	8	8	8	8	8	8	8	8
.7	Bit 7							
	0	Always logic ze	ro					
PUR.6	Conr	nect/Disconnec	t Port 6 P	ull-Up Res	istor Cont	rol Bit		
	0	Disconnect por	t 6 pull-up i	resistor				
	1	Connect port 6	pull-up res	istor				
PUR.5	Conr	nect/Disconnec	t Port 5 P	ull-Up Res	istor Cont	rol Bit		
	0	Disconnect por	t 5 pull-up i	resistor				
	1	Connect port 5	pull-up res	istor				
PUR.4	Conr	nect/Disconnec	t Port 4 P	ull-Up Res	istor Cont	rol Bit		
	0	Disconnect por	t 4 pull-up i	resistor				
	1	Connect port 4	pull-up res	istor				
PUR.3 Connect/Disconnect Port 3 Pull-Up Resistor Control Bit								
	0	Disconnect por	t 3 pull-up i	resistor				

PUR.2 Connect/Disconnect Port 2 Pull-Up Resistor Control Bit

Connect port 3 pull-up resistor

0	Disconnect port 2 pull-up resistor
1	Connect port 2 pull-up resistor

.1 Bit 1

0 Always logic zero

PUR.0 Connect/Disconnect Port 0 Pull-Up Resistor Control Bit

0	Disconnect port 0 pull-up resistor
1	Connect port 0 pull-up resistor

NOTE: Pull-up resistors for ports 0, 2, 3 and 6 are automatically disabled if they are configured to output mode. But pull-up resistors for ports 4 and 5 are retained its state even though they are configured to output mode.

Bit

SCMOD - System Clock Mode Control Register

FB7H

Bit	3	2	1	0
Identifier	.3	.2	.1	.0
RESET Value	0	0	0	0
Read/Write	W	W	W	W
Bit Addressing	1	1	1	1

.3, .2 and .0

CPU Clock Selection and Main System Clock Oscillation Control Bits

0	0	0	Select main-system clock (fx); enable sub-system clock
0	0	1	Select sub-system clock (fxt); enable main-system clock
0	1	0	Select main-system clock (fx); disable sub-system clock
1	0	1	Select sub-system clock (fxt); disable main-system clock

.1 Bit 1

0	Strong mode
1	Normal mode

NOTE: SCMOD bits 3 and 0 cannot be modified simultaneously by a 4-bit instruction; they can only be modified by separate 1-bit instructions.

MEMORY MAP S3C72H8/P72H8

TMOD0 — Timer/Counter 0 Mode Register

F91H, F90H

Bit Identifier RESET Value Read/Write Bit Addressing

7	6	5	4	3	2	1	0
"0"	.6	.5	.4	.3	.2	"0"	"0"
0	0	0	0	0	0	0	0
W	W	W	W	W	W	W	W
8	8	8	8	1/8	8	8	8

.7

Bit 7

0 Always logic zero

.6 - .4

Timer/Counter 0 Input Clock Selection Bits

0	0	0	External clock input at TCL0 pin on rising edge			
0	0	1	External clock input at TCL0 pin on falling edge			
1	0	0	fxx/2 ¹⁰ (4.09 kHz)			
1	0	1	fxx/2 ⁶ (65.5 kHz)			
1	1	0	fxx/2 ⁴ (262 kHz)			
1	1	1	fxx/(4.19 MHz)			

NOTE: 'fxx' = Selected system clock of 4.19MHz

.3

Clear Counter and Resume Counting Control Bit

1 Clear TCNT0, IRQT0, and TOL0 and resume counting immediately (This bit is cleared automatically when counting starts.)

.2

Enable/Disable Timer/Counter 0 Bit

0	Disable timer/counter 0; retain TCNT0 contents
1	Enable timer/counter 0

.1-.0

Bit 1-0

0 Always logic zero

S3C72H8/P72H8 MEMORY MAP

TOE — Timer Output Enable Flag Register

F92H

Bit Identifier RESET Value Read/Write Bit Addressing

3	2	1	0
"0"	TOE0	BOE	"0"
0	0	0	0
R/W	R/W	R/W	R/W
1/4	1/4	1/4	1/4

.3

Bit3

0	Always	Logic zero
U	Aiways	LUGIC ZCIU

TOE0

Timer/Counter 0 Output Enable Flag

0	Disable timer/counter 0 output at the TCLO0 pin
1	Enable timer/counter 0 output at the TCLO0 pin

BOE

Basic Timer Output Enable Flag

0	Disable basic timer output at the BTCO pin
1	Enable basic timer output at the BTCO pin

.0

Bits 0

0 Always logic zero

MEMORY MAP S3C72H8/P72H8

VLDCON — Voltage Level Detector Control Register

FE2H

Bit 3 2 0 1 Identifier .3 .2 .1 .0 **RESET Value** 0 0 0 0 Read/Write R/W R/W R R/W **Bit Addressing** 4 4 4 4

.3 Bit3

0	V _{IN} > V _{REF} (when VLD is enabled)
1	V _{IN} < V _{REF} (when VLD is enabled)

.2 Bit 2

0	Disable the VLD
1	Enabled the VLD

.1 - .0 Bits 1-0

0	0	$V_{VLD} = 2.2V$
0	1	$V_{VLD} = 2.4V$
1	0	$V_{VLD} = 3.0V$
1	1	$V_{VLD} = 4.0V$

S3C72H8/P72H8 MEMORY MAP

WDFLAG — Watchdog Timer Counter Clear Flag Register

F9AH

Bit	3	2	1	0
Identifier	WDTCF	"0"	"0"	"0"
RESET Value	0	0	0	0
Read/Write	W	W	W	W
Bit Addressing	1/4	1/4	1/4	1/4

WDTCF Watchdog Timer Counter Clear Flag

1 Clears the watchdog timer counter

.2-.0 Bits 2-0

0 Always logic zero

NOTE: After watchdog timer is cleared by writing "1", this bit is cleared to "0" automatically.

MEMORY MAP S3C72H8/P72H8

WDMOD — Watchdog Timer Mode Register

F99H, F98H

Bit	7	6	5	4	3	2	1	0
Identifier	.7	.6	.5	.4	.3	.2	.1	.0
RESET Value	1	0	1	0	0	1	0	1
Read/Write	W	W	W	W	W	W	W	W
Bit Addressing	8	8	8	8	8	8	8	8

WDMOD

Watchdog Timer Enable/Disable Control

5AH	Disable watchdog timer function
Others Enable watchdog timer function	

WMOD — Watch Timer Mode Register

F89H, F88H

Bit
ldentifier
RESET Value
Read/Write
Bit Addressing

7	6	5	4	3	2	1	0
.7	"0"	.5	.4	.3	.2	.1	.0
0	0	0	0	0	0	0	0
W	W	W	W	W	W	W	W
8	8	8	8	8	8	8	8

.7

Enable/Disable Buzzer Output Bit

0	Disable buzzer (BUZ) signal output
1	Enable buzzer (BUZ) signal output

.6

Bit 6

0	Always	logic zero

.5 - .4

Output Buzzer Frequency Selection Bits

0	0	2 kHz buzzer (BUZ) signal output	
0	1	4 kHz buzzer (BUZ) signal output	
1	0	8 kHz buzzer (BUZ) signal output	
1	1	16 kHz buzzer (BUZ) signal output	

.3 - .2

Watch timer speed control

0	0	Sets IRQW to 1 seconds			
0	1	Sets IRQW to 0.5 seconds			
1	0 Sets IRQW to 0.25 seconds				
1	1	Sets IROW to 3.91 ms			

.1

Enable/Disable Watch Timer Bit

0	Disable watch timer and clear frequency dividing circuits
1	Enable watch timer

.0

Watch Timer Clock Selection Bit

0	Select main system clock (fx)/128 as the watch timer clock
1	Select a subsystem clock as the watch timer clock

S3C72H8/P72H8 OSCILLATOR CIRCUITS

OSCILLATOR CIRCUITS

OVERVIEW

The S3C72H8 microcontroller has two oscillator circuits: a main-system clock circuit, and a sub-system clock circuit. The CPU and peripheral hardware operate on the system clock frequency supplied through these circuits. Specifically, a clock pulse is required by the following peripheral modules:

- LCD controller
- Basic timer
- Timer/counter 0
- Watch timer
- Clock output circuit
- Frequency counter

CPU Clock Notation

In this document, the following notation is used for descriptions of the CPU clock:

- fx Main-system clock
- fxt Sub-system clock
- fxx Selected system clock

OSCILLATOR CIRCUITS S3C72H8/P72H8

Clock Control Registers

When the system clock mode control register, SCMOD, and the power control register, PCON, are both cleared to zero after RESET, the normal CPU operating mode is enabled, a main-system clock of fx/64 is selected, and main-system clock oscillation is initiated.

PCON is used to select normal CPU operating mode or one of two power-down modes — stop or idle. Bits 3 and 2 of the PCON register can be manipulated by a STOP or IDLE instruction to engage stop or idle power-down mode.

The system clock mode control register, SCMOD, lets you select the *main-system clock (fx)* or a *sub-system clock (fxt)* as the CPU clock and to start (or stop) main or sub system clock oscillation. The resulting clock source, either main-system clock or sub-system clock, is referred to as the *CPU clock*.

The main-system clock is selected and oscillation started when all SCMOD bits are cleared to logic zero. By setting SCMOD.3, SCMOD.2 and SCMOD.0 to different values, CPU can operate in a sub-system clock source and start or stop main or sub system clock oscillation. To stop main-system clock oscillation, you must use the STOP instruction (assuming the main-system clock is selected) or manipulate SCMOD.3 to "1" (assuming the sub system clock is selected).

The main-system clock frequencies can be divided by 4, 8, or 64 and a sub-system clock frequencies can only be divided by 4. By manipulating PCON bits 1 and 0, you select one of the following frequencies as CPU clock.

fx/4. fxt/4. fx/8. fx/64

Using a Sub-system Clock

If a sub-system clock is being used as the selected system clock, the idle power-down mode can be initiated by executing an IDLE instruction. The sub-system clock can be stopped by setting SCMOD.2 to "1".

The watch timer, buzzer and LCD display operate normally with a sub-system clock source, since they operate at very slow speeds (122 µs at 32.768 kHz) and with very low power consumption.

S3C72H8/P72H8 OSCILLATOR CIRCUITS

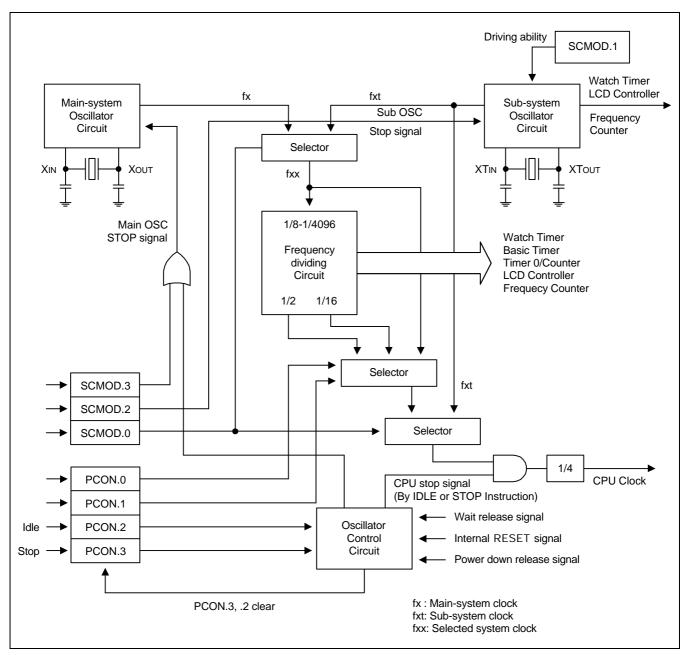


Figure 6-1. Clock Circuit Diagram

OSCILLATOR CIRCUITS S3C72H8/P72H8

MAIN-SYSTEM OSCILLATOR CIRCUITS

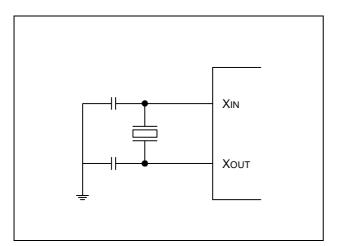
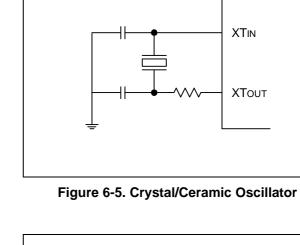



Figure 6-2. Crystal/Ceramic Oscillator

SUB-SYSTEM OSCILLATOR CIRCUITS

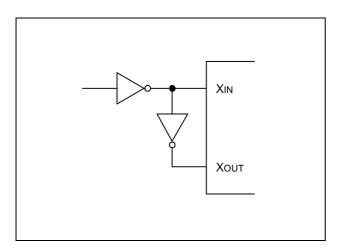


Figure 6-3. External Oscillator

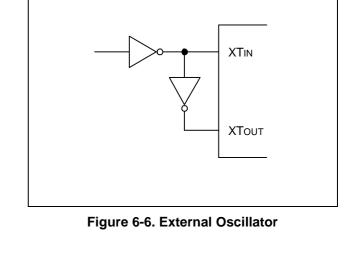


Figure 6-4. RC Oscillator

S3C72H8/P72H8 OSCILLATOR CIRCUITS

POWER CONTROL REGISTER (PCON)

The power control register (PCON) is a 4-bit register that is used to select the CPU clock frequency and to control CPU operating and power-down modes. The PCON can be addressed directly by 4-bit write instructions or indirectly by the instructions IDLE and STOP.

FB3H PCON.3 PCON.2 PCON.1 PCON.0 PCON

PCON.3 and PCON.2 can be addressed only by the STOP and IDLE instructions, respectively, to engage the idle and stop power-down modes. Idle and stop modes can be initiated by these instruction despite the current value of the enable memory bank flag (EMB). PCON bits 1 and 0 can be written only by 4-bit RAM control instruction. PCON is a write-only register. There are three basic choices:

- Divided fx clock frequency of 4, 8, or 64
- Divided fxt clock frequency of 4.

PCON.1 and PCON.0 settings are also connected with the system clock mode control register, SCMOD. If SCMOD.0 = "0", the main-system clock is always selected by the PCON.1 and PCON.0 setting; if SCMOD.0 = "1" the sub-system clock is selected.

RESET clears PCON register values (and SCMOD) to logic zero.

Table 6-1. Power Control Register (PCON) Organization

PCON B	it Settings	Resulting CPU Clock Frequency		
PCON.1 PCON.0		SCMOD.0 = 0	SCMOD.0 = 1	
0	0	fx/64	fxt/4	
1	0	fx/8		
1	1	fx/4		

PCON Bit Settings		Resulting CPU Operating Mode	
PCON.3 PCON.2			
0	0	Normal CPU operating mode	
0	1	IDLE	
1	0	STOP mode	

OSCILLATOR CIRCUITS S3C72H8/P72H8

PROGRAMMING TIP — Setting the CPU Clock

To set the CPU clock to 0.95 µs at 4.19 MHz:

BITS EMB SMB 15 LD A,#3H LD PCON,A

INSTRUCTION CYCLE TIMES

The unit of time that equals one machine cycle varies depending on whether the main-system clock (fx) or a subsystem clock (fxt) is used, and on how the oscillator clock signal is divided (by 4, 8, or 64). Table 6-2 shows corresponding cycle times in microseconds.

Table 6-2. Instruction Cycle Times for CPU Clock Rates

Oscillation Source	Selected CPU Clock	Resulting Frequency	Cycle Time (µs)
fx = 4.19 MHz	fx/64	65.5 kHz	15.3
	fx/8	524.0 kHz	1.91
	fx/4	1.05 MHz	0.95
fxt = 32.768 kHz	fxt/4	8.19 kHz	122.0

S3C72H8/P72H8 OSCILLATOR CIRCUITS

SYSTEM CLOCK MODE REGISTER (SCMOD)

The system clock mode register, SCMOD, is a 4-bit register that is used to select the CPU clock and to control main and sub-system clock oscillation. SCMOD is mapped to the RAM address FB7H.

When main-system clock is used as clock source, main-system clock oscillation can be stopped by STOP instruction or setting SCMOD.3 (not recommended).

When the clock source is sub-system clock, main-system clock oscillation is stopped by setting SCMOD.3. SCMOD.0, SCMOD2, and SCMOD.3 cannot be simultaneously modified. Sub-oscillation goes into stop mode only by SCMOD.2. PCON which revokes stop mode cannot stop the sub-oscillation. The stop of sub-oscillation is released only by reset.

RESET clears all SCMOD values to logic zero, selecting the main-system clock (fx) as the CPU clock and starting clock oscillation. The reset value of the SCMOD is 0.

SCMOD.3, SCMOD.2, and SCMOD.0 bits can be manipulated by 1-bit write instructions (In other words, SCMOD.0, SCMOD.2, and SCMOD.3 cannot be modified simultaneously by a 4-bit write). Bit 1 is always logic zero.

FB7H SCMOD.3	SCMOD.2	SCMOD.1	SCMOD.0	SCMOD
--------------	---------	---------	---------	-------

A sub-system clock (fxt) can be selected as the system clock by manipulating the SCMOD.3 and SCMOD.0 bit settings. If SCMOD.3 = "0" and SCMOD.0 = "1", the sub-system clock is selected and main-system clock oscillation continues. If SCMOD.3 = "1" and SCMOD.0 = "1", fxt is selected, but main-system clock oscillation stops.

If you have selected fx as the CPU clock, setting SCMOD.3 to "1" will stop main-system clock oscillation. But this mode must not be used. To stop main-system clock oscillation safely, main oscillation clock should be stopped only by a STOP instruction in main-system clock mode.

Resulting Clock Selection SCMOD Register Bit Settings SCMOD.2 SCMOD.3 SCMOD.0 fx Oscillation fxt Oscillation CPU Clock (note) 0 0 0 On On fx/4, fx/8, fx/64 0 On Off fx/4, fx/8, fx/64 1 0 0 1 On 0 On fxt/4 Off fxt/4 1 0 1 On

Table 6-3. System Clock Mode Register (SCMOD) Organization

NOTE: CPU clock is selected by PCON register settings.

To decrease stabilization time of sub-oscillator, you can use strong mode. When SCMOD.1 is set to 0 (default value at reset), strong mode is selected. Because the IC consumes a large amount of current during strong mode operation, it is recommended that the strong mode operation should be kept OFF unless it is otherwise necessary.

OSCILLATOR CIRCUITS S3C72H8/P72H8

Table 6-4. Main/Sub Oscillation Stop Mode

Mode	Condition	Method to issue Osc Stop	Osc Stop Release Source (2)
Main Oscillation STOP Mode	Main oscillator runs. Sub oscillator runs (stops). System clock is the main oscillation clock.	STOP instruction: Main oscillator stops. CPU is in idle mode. Sub oscillator still runs (stops).	Interrupt and reset: After releasing stop mode, main oscillation starts and oscillation stabilization time is elapsed. And then the CPU operates. Oscillation stabilization time is 1 / {256 x BT clock (fx)}.
		Set SCMOD.3 to "1" (1) Main oscillator stops, halting the CPU operation. Sub oscillator still runs (stops).	Reset: Interrupt can't start the main oscillation. Therefore, the CPU operation can never be restarted.
	Main oscillator runs. Sub oscillator runs. System clock is the sub oscillation clock.	STOP instruction: (1) Main oscillator stops. CPU is in idle mode. Sub oscillator still runs.	BToverflow and reset: After the overflow of basic timer [1 / {256 x BT clock (fxt)}], CPU operation and main oscillation automatically start.
		Set SCMOD.3 to "1" Main oscillator stops. CPU still operates. Sub oscillator still runs.	Set SCMOD.3 to "0" or reset
Sub oscillation STOP Mode	Main oscillator runs. Sub oscillator runs. System clock is the main oscillation clock.	Set SCMOD.2 to "1" Main oscillator still runs. CPU operates. Sub oscillator stops.	Set SCMOD.2 to "0" or reset
	Main oscillator runs (stops). Sub oscillator runs. System clock is the sub oscillation clock.	Set SCMOD.2 to "1" Main oscillator still runs (stops). Sub oscillator stops, halting the CPU operation.	Reset

NOTES:

- 1. This mode must not be used.
- 2. Oscillation stabilization time by interrupt is 1 / (256 x BT clocks). Oscillation stabilization time by a reset is 31.3 ms at 4.19 MHz, main oscillation clock.

S3C72H8/P72H8 OSCILLATOR CIRCUITS

Table 6-5. System Operating Mode Comparison

Mode	le Condition STOP/IDLE Mode Start Method		Current Consumption	
Main operating mode	Main oscillator runs. Sub oscillator runs (stops). System clock is the main oscillation clock.	_	А	
Main Idle mode	Main oscillator runs. Sub oscillator runs (stops). System clock is the main oscillation clock.	IDLE instruction	В	
Main Stop mode	Main oscillator runs. Sub oscillator runs. System clock is the main oscillation clock.	STOP instruction	D	
Sub operating mode	Main oscillator is stopped by SCMOD.3. Sub oscillator runs. System clock is the sub oscillation clock.	_	С	
Sub Idle Mode	Main oscillator is stopped by SCMOD.3. Sub oscillator runs. System clock is the sub oscillation clock.	IDLE instruction	D	
Sub Stop mode Main oscillator is stopped by SCMOD.3. Sub oscillator runs. System clock is the sub oscillation clock.		Setting SCMOD.2 to "1" This mode can be released only by an external reset.	E	
Main/Sub Stop mode	Main oscillator runs. Sub oscillator is stopped by SCMOD.2. System clock is the main oscillation clock.	STOP instruction: This mode can be released by an interrupt and reset.	E	

NOTE: The current consumption is: A > B > C > D > E.

OSCILLATOR CIRCUITS S3C72H8/P72H8

SWITCHING THE CPU CLOCK

Together, bit settings in the power control register, PCON, and the system clock mode register, SCMOD, determine whether a main-system or a sub-system clock is selected as the CPU clock, and also how this frequency is to be divided. This makes it possible to switch dynamically between main and sub-system clocks and to modify operating frequencies.

SCMOD.3, SCMOD.2, and SCMOD.0 select the main-system clock (fx) or a sub-system clock (fxt) and start or stop main or sub system clock oscillation. PCON.1 and PCON.0 control the frequency divider circuit, and divide the selected fx clock by 4, 8, 64, or fxt clock by 4.

NOTE

A clock switch operation does not go into effect immediately when you make the SCMOD and PCON register modifications — the previously selected clock continues to run for a certain number of machine cycles.

For example, you are using the default CPU clock (normal operating mode and a main-system clock of fx/64) and you want to switch from the fx clock to a sub-system clock and to stop the main-system clock. To do this, you first need to set SCMOD.0 to "1". This switches the clock from fx to fxt but allows main-system clock oscillation to continue. Before the switch actually goes into effect, a certain number of machine cycles must elapse. After this time interval, you can then disable main-system clock oscillation by setting SCMOD.3 to "1".

This same "stepped" approach must be taken to switch from a sub-system clock to the main-system clock: first, clear SCMOD.3 to "0" to enable main-system clock oscillation. Until main osc is stabilized, system clock must not be changed. Then, after a certain number of machine cycles has elapsed, select the main-system clock by clearing all SCMOD values to logic zero.

After RESET, CPU operation starts with the lowest main-system clock frequency of 15.3 µs at 4.19 MHz after the standard oscillation stabilization interval of 31.3 ms has elapsed. Table 6-6 details the number of machine cycles that must elapse before a CPU clock switch modification goes into effect.

S3C72H8/P72H8 OSCILLATOR CIRCUITS

Table 6-6. Elapsed Machine Cycles During CPU Clock Swi
--

	AFTER		SCMOD.0 = 0			SCMOD.0 = 1		
BEFORE		PCON.1 = 0	PCON.0 = 0	PCON.1 = 1	PCON.0 = 0	PCON.1 = 1	PCON.0 = 1	
	PCON.1 = 0	N	/A	1 MACHIN	IE CYCLE	1 MACHIN	NE CYCLE	
	PCON.0 = 0							
SCMOD.0 = 0	PCON.1 = 1	8 MACHINE CYCLES		N.	'A	8 MACHINE CYCLES		N/A
	PCON.0 = 0							
	PCON.1 = 1	16 MACHINE CYCLES		16 MACHIN	IE CYCLES	N	/A	fx/4fxt MACHINE CYCLE
	PCON.0 = 1							
SCMOD.0 = 1		N	/A	N.	'A	fx/4fxt	(M/C)	N/A

NOTES:

- 1. Even if oscillation is stopped by setting SCMOD.3 during main-system clock operation, the stop mode is not entered.
- 2. Since the X_{IN} input is connected internally to V_{SS} to avoid current leakage due to the crystal oscillator in stop mode, do not set SCMOD.3 to "1" or STOP instruction when an external clock is used as the main-system clock.
- 3. When the system clock is switched to the sub-system clock, it is necessary to disable any interrupts which may occur during the time intervals shown in Table 6-6.
- 4. "N/A" means "not available".
- fx: Main–system clock, fxt: Sub–system clock, M/C: Machine Cycle.
 When fx is 4.19 MHz, and fxt is 32.768 kHz.

PROGRAMMING TIP — Switching Between Main-system and Sub-system Clock

1. Switch from the main-system clock to the sub-system clock:

MA2SUB BITS SCMOD.0 Switches to sub-system clock **CALL** DLY80 Delay 80 machine cycles **BITS** SCMOD.3 ; Stop the main-system clock RET DLY80 LD A,#0FH DEL1 NOP NOP **DECS** DEL1 JR RET

2. Switch from the sub-system clock to the main-system clock:

SUB2MA BITR SCMOD.3 ; Start main-system clock oscillation CALL DLY80 ; Delay 80 machine cycles CALL DLY80 ; Delay 80 machine cycles BITR SCMOD.0 ; Switch to main-system clock RET

OSCILLATOR CIRCUITS S3C72H8/P72H8

CLOCK OUTPUT MODE REGISTER (CLMOD)

The clock output mode register, CLMOD, is a 4-bit register that is used to enable or disable clock output to the CLO pin and to select the CPU clock source and frequency. CLMOD is addressable by 4-bit write instructions only.

FD0H CLMOD.3 "0" CLMOD.1 CLMOD.0 CLMOD

RESET clears CLMOD to logic zero, which automatically selects the CPU clock as the clock source (without initiating clock oscillation), and disables clock output.

CLMOD.3 is the enable/disable clock output control bit; CLMOD.1 and CLMOD.0 are used to select one of four possible clock sources and frequencies: normal CPU clock, fxx/8, fxx/16, or fxx/64.

Table 6-7. Clock Output Mode Register (CLMOD) Organization

CLMOD B	it Settings	Resulting Cl	ock Output
CLMOD.1	CLMOD.0	Clock Source	Frequency
0	0	CPU clock (fx/4, fx/8, fx/64, fxt/4)	1.05 MHz, 524 kHz, 65.5 kHz
0	1	fxx/8	524 kHz
1	0	fxx/16	262 kHz
1	1	fxx/64	65.5 kHz

CLMOD.3	Result of CLMOD.3 Setting	
0	Clock output is disabled	
1	Clock output is enabled	

NOTE: Assumes that fxx = 4.19 MHz.

S3C72H8/P72H8 OSCILLATOR CIRCUITS

CLOCK OUTPUT CIRCUIT

The clock output circuit, used to output clock pulses to the CLO pin, has the following components:

- 4-bit clock output mode register (CLMOD)
- Clock selector
- Port mode flag
- CLO output pin (P3.2)

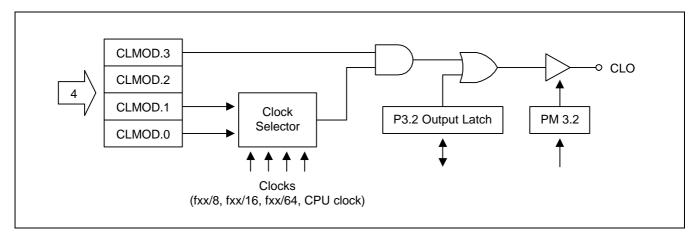


Figure 6-7. CLO Output Pin Circuit Diagram

CLOCK OUTPUT PROCEDURE

The procedure for outputting clock pulses to the CLO pin may be summarized as follows:

- 1. Disable clock output by clearing CLMOD.3 to logic zero.
- 2. Set the clock output frequency (CLMOD.1, CLMOD.0).
- 3. Load "0" to the output latch of the CLO pin (P3.2).
- 4. Set the P3.2 mode flag (PM3.2) to output mode.
- 5. Enable clock output by setting CLMOD.3 to logic one.

OSCILLATOR CIRCUITS S3C72H8/P72H8

$\begin{tabular}{ll} \end{tabular}$ PROGRAMMING TIP — CPU Clock Output to the CLO Pin

To output the CPU clock to the CLO pin:

BITS EMB SMB 15 LD EA,#0F0H

LD PMG2, EA ; P3.2 \leftarrow Output mode BITR P3.2 ; Clear P3.2 pin output latch

LD A,#8H LD CLMOD,A

S3C72H8/P72H8 INTERRUPTS

7 INTERRUPTS

OVERVIEW

The S3C72H8 interrupt control circuit has five functional components:

- Interrupt enable flags (IEx)
- Interrupt request flags (IRQx)
- Interrupt master enable register (IME)
- Interrupt priority register (IPR)
- Power-down release signal circuit

Three kinds of interrupts are supported:

- Internal interrupts generated by on-chip processes
- External interrupts generated by external peripheral devices
- Quasi-interrupts used for edge detection and as clock sources

Table 7-1. Interrupt Types and Corresponding Port Pin(s)

Interrupt Type	Interrupt Name	Corresponding Port Pins
External interrupts	INT0, INT1, INT3	P2.0, P2.1
Internal interrupts	INTB, INTT0, INTG	Not applicable
Quasi-interrupts	INT2 (KS0-KS3)	P6.0 - P6.3
	INTW	Not applicable

INTERRUPTS S3C72H8/P72H8

Vectored Interrupts

Interrupt requests may be processed as vectored interrupts in hardware, or they can be generated by program software. A vectored interrupt is generated when the following flags and register settings, corresponding to the specific interrupt (INTn) are set to logic one:

- Interrupt enable flag (IEx)
- Interrupt master enable flag (IME)
- Interrupt request flag (IRQx)
- Interrupt status flags (IS0, IS1)
- Interrupt priority register (IPR)

If all conditions are satisfied for the execution of a requested service routine, the start address of the interrupt is loaded into the program counter and the program starts executing the service routine from this address.

EMB and ERB flags for RAM memory banks and registers are stored in the vector address area of the ROM during interrupt service routines. The flags are stored at the beginning of the program with the VENT instruction. The initial flag values determine the vectors for resets and interrupts. Enable flag values are saved during the main routine, as well as during service routines. Any changes that are made to enable flag values during a service routine are not stored in the vector address.

When an interrupt occurs, the EMB and ERB flag values before the interrupt is initiated are saved along with the program status word (PSW), and the enable flag values for the interrupt is fetched from the respective vector address. Then, if necessary, you can modify the enable flags during the interrupt service routine. When the interrupt service routine is returned to the main routine by the IRET instruction, the original values saved in the stack are restored and the main program continues program execution with these values.

Software-Generated Interrupts

To generate an interrupt request from software, the program manipulates the appropriate IRQx flag. When the interrupt request flag value is set, it is retained until all other conditions for the vectored interrupt have been met, and the service routine can be initiated.

Multiple Interrupts

By manipulating the two interrupt status flags (ISO and IS1), you can control service routine initialization and thereby process multiple interrupts simultaneously.

If more than four interrupts are being processed at one time, you can avoid possible loss of working register data by using the PUSH RR instruction to save register contents to the stack before the service routines are executed in the same register bank. When the routines have executed successfully, you can restore the register contents from the stack to working memory using the POP instruction.

Power-Down Mode Release

An interrupt (with the exception of INT0) can be used to release power-down mode (stop or idle). Interrupts for power-down mode release are initiated by setting the corresponding interrupt enable flag. Even if the IME flag is cleared to zero, power-down mode will be released by an interrupt request signal when the interrupt enable flag has been set. In such cases, the interrupt routine will not be executed since IME = "0".

S3C72H8/P72H8 INTERRUPTS

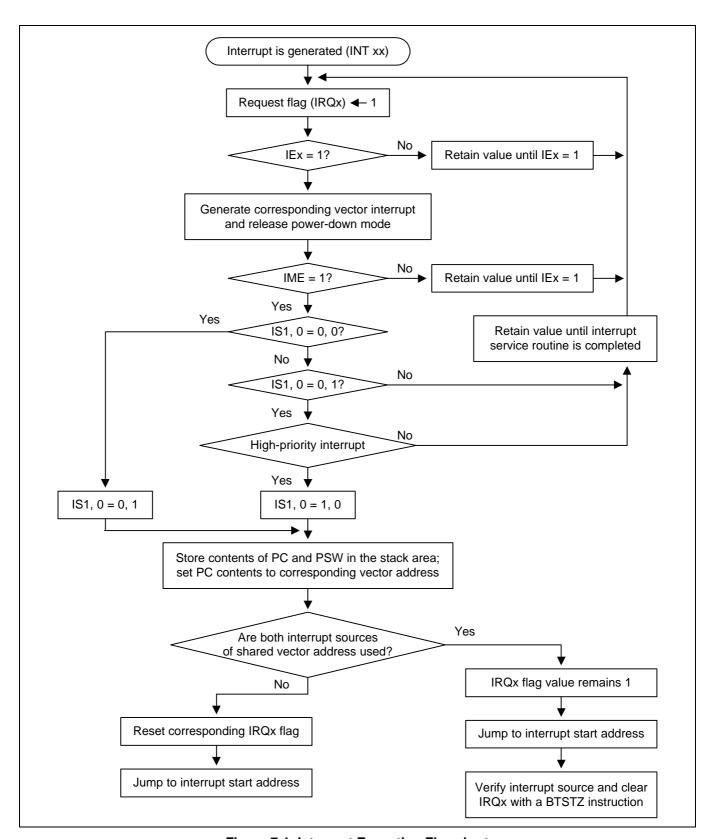


Figure 7-1. Interrupt Execution Flowchart

INTERRUPTS S3C72H8/P72H8

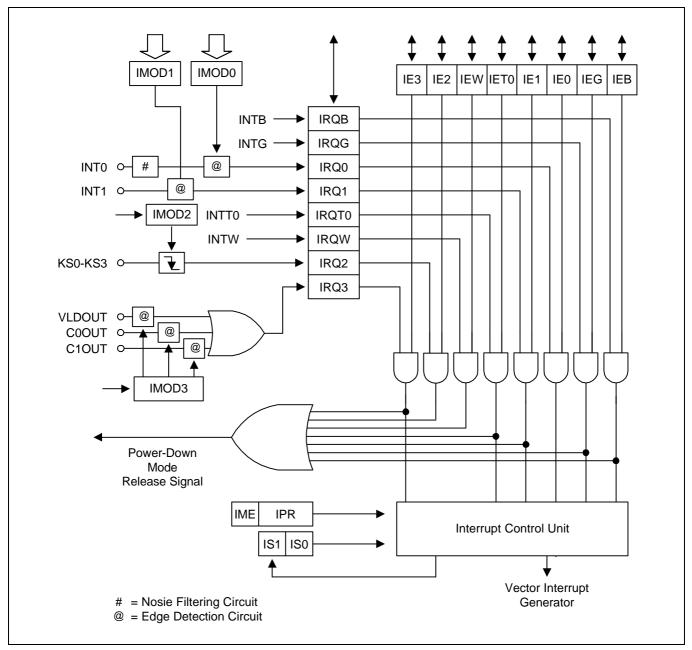


Figure 7-2. Interrupt Control Circuit Diagram

S3C72H8/P72H8 INTERRUPTS

MULTIPLE INTERRUPTS

The interrupt controller can service multiple interrupts in two ways: as two-level interrupts, where either all interrupt requests or only those of highest priority are serviced, or as multi-level interrupts, when the interrupt service routine for a lower-priority request is accepted during the execution of a higher priority routine.

Two-Level Interrupt Handling

Two-level interrupt handling is the standard method for processing multiple interrupts. When the IS1 and IS0 bits of the PSW (FB0H.3 and FB0H.2, respectively) are both logic zero, program execution mode is normal and all interrupt requests are serviced (see Figure 7-3).

Whenever an interrupt request is accepted, IS1 and IS0 are incremented by one and the values are stored in the stack along with the other PSW bits. After the interrupt routine has been serviced, the modified IS1 and IS0 values are automatically restored from the stack by an IRET instruction.

ISO and IS1 can be manipulated directly by 1-bit write instructions, regardless of the current value of the enable memory bank flag (EMB). Before you can modify an interrupt service flag, however, you must first disable interrupt processing with a DI instruction.

When IS1 = "0" and IS0 = "1", all interrupt service routines are inhibited except for the highest priority interrupt currently defined by the interrupt priority register (IPR).

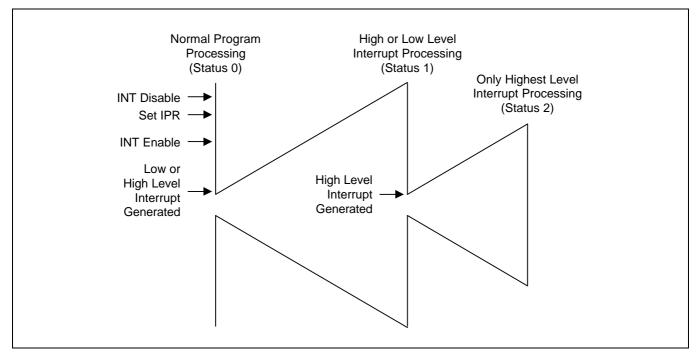


Figure 7-3. Two-Level Interrupt Handling

INTERRUPTS S3C72H8/P72H8

Multi-Level Interrupt Handling

With multi-level interrupt handling, a lower-priority interrupt request can be executed by manipulating the interrupt status flags, ISO and IS1 while a high-priority interrupt is being serviced (see Table 7-2).

When an interrupt is requested during normal program execution, interrupt status flags ISO and IS1 are set to "1" and "0", respectively. This setting allows only highest-priority interrupts to be serviced. When a high-priority request is accepted, both interrupt status flags are then cleared to "0" by software so that a request of any priority level can be serviced. In this way, the high- and low-priority requests can be serviced in parallel (see Figure 7-4).

Process Status	Before INT		Effect of Isx Bit Setting	After IN	IT ACK
	IS1	IS0		IS1	IS0
0	0	0	All interrupt requests are serviced.	0	1
1	0	1	Only high-priority interrupts as determined by the current settings in the IPR register are serviced.	1	0
2	1	0	No additional interrupt requests will be serviced.	_	_
_	1	1	Value undefined	_	_

Table 7-2. IS1 and IS0 Bit Manipulation for Multi-Level Interrupt Handling

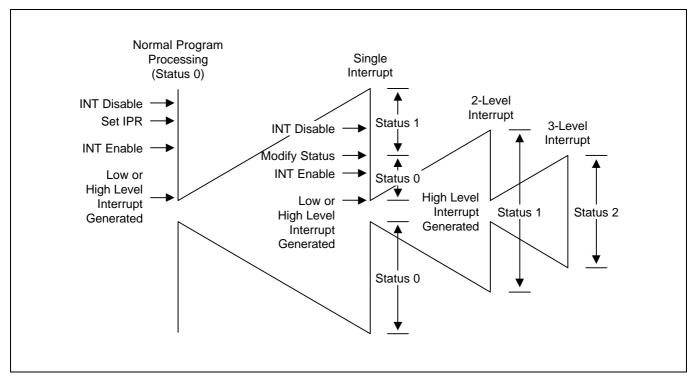


Figure 7-4. Multi-Level Interrupt Handling

S3C72H8/P72H8 INTERRUPTS

INTERRUPT PRIORITY REGISTER (IPR)

The 4-bit interrupt priority register (IPR) is used to control multi-level interrupt handling. Its reset value is logic zero. Before the IPR can be modified by 4-bit write instructions, all interrupts must first be disabled by a DI instruction.

FB2H IME IPR.2 IPR.1	IPR.0
----------------------	-------

By manipulating the IPR settings, you can choose to process all interrupt requests with the same priority level, or you can select one type of interrupt for high-priority processing. A low-priority interrupt can itself be interrupted by a high-priority interrupt, but not by another low-priority interrupt. A high-priority interrupt cannot be interrupted by any other interrupt source.

Interrupt	Default Priority				
INTB	1				
INT0	2				
INT1	3				
INTG	4				
INTT0	5				
INT3	6				

Table 7-3. Standard Interrupt Priorities

The MSB of the IPR, the interrupt master enable flag (IME), enables and disables all interrupt processing. Even if an interrupt request flag and its corresponding enable flag are set, a service routine cannot be executed until the IME flag is set to logic one. The IME flag (mapped FB2H.3) can be directly manipulated by EI and DI instructions, regardless of the current enable memory bank (EMB) value.

IPR.2	IPR.1	IPR.0	Result of IPR Bit Setting
0	0	0	Normal interrupt handling according to default priority settings
0	0	1	Process INTB interrupts at highest priority
0	1	0	Process INT0 interrupts at highest priority
0	1	1	Process INT1 interrupts at highest priority
1	0	0	Process INTG interrupts at highest priority
1	0	1	Process INTT0 interrupts at highest priority
1	1	0	Process INT3 interrupts at highest priority

Table 7-4. Interrupt Priority Register Settings

NOTE: During normal interrupt processing, interrupts are processed in the order in which they occur. If two or more interrupt requests are received simultaneously, the priority level is determined according to the standard interrupt priorities in Table 7-3 (the default priority assigned by hardware when the lower three IPR bits = "0"). In this case, the higher-priority interrupt request is serviced and the other interrupt is inhibited. Then, when the high-priority interrupt is returned from its service routine by an IRET instruction, the inhibited service routine is started.

INTERRUPTS S3C72H8/P72H8

PROGRAMMING TIP — Setting the INT Interrupt Priority

The following instruction sequence sets the INT1 interrupt to high priority:

BITS EMB SMB 15

DI ; IPR.3 (IME) \leftarrow 0

LD A,#3H LD IPR,A

EI ; IPR.3 (IME) \leftarrow 1

EXTERNAL INTERRUPT 0 AND 1 MODE REGISTERS (IMOD0 and IMOD1)

The following components are used to process external interrupts at the INT0 and INT1 pins:

- Noise filtering circuit for INT0
- Edge detection circuit
- Two mode registers, IMOD0, IMOD1 respectively

The mode registers are used to control the triggering edge of the input signal. IMOD0 and IMOD1 settings let you choose either the rising or falling edge of the incoming signal as the INT0 and INT1 pins as the interrupt request trigger.

FB4H	IMOD0.3	"0"	IMOD0.1	IMOD0.0
FB5H	"0"	"0"	"0"	IMOD1.0

IMOD0 and IMOD1 registers are mapped to RAM addresses FB4H (IMOD0), FB5H (IMOD1) respectively, and are addressable by 4-bit write instructions. RESET clears all IMOD values to logic zero, selecting rising edges as the trigger for incoming interrupt requests.

Table 7-5. IMOD0 and IMOD1 Register Organization

Table 7-3. IMODO and IMOD I Register Organization								
IMOD0.3	"0"	IMOD0.1	IMOD0.0	Effect of IMOD0 Settings				
0				Select CPU clock for sampling				
1				Select fxx/64 sampling clock				
		0 0		Rising edge detection				
		0	1	Falling edge detection				
		1	0	Both rising and falling edge detection				
		1	1	IRQ0 flag cannot be set to "1"				
"0"	"0"	"0"	IMOD1.0	Effect of IMOD1 Settings				
			0	Rising edge detection				
			1	Falling edge detection				
	0 1	IMOD0.3 "0" 0 1	IMOD0.3	IMOD0.3				

S3C72H8/P72H8 INTERRUPTS

EXTERNAL INTERRUPTO and INTERRUPT1 MODE REGISTERS (Continued)

When a sampling clock rate of fxx/64 is used for INT0, an interrupt request flag must be cleared before 16 machine cycles have elapsed. Since the INT0 pin has a clock-driven noise filtering circuit built into it, please take the following precautions when you use it:

 To trigger an interrupt, the input signal width at INT0 must be at least two times wider than the pulse width of the clock selected by IMOD0. This is true even when the INT0 pin is used for general-purpose input.

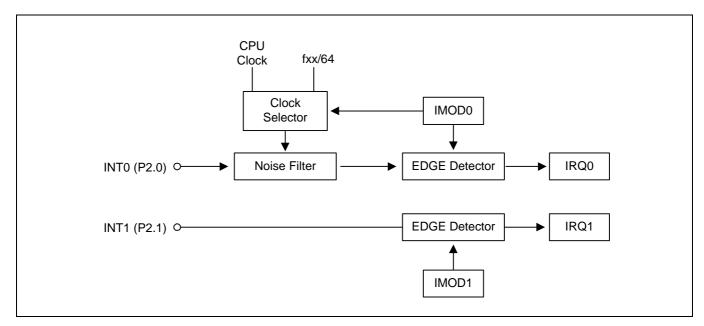


Figure 7-5. Circuit Diagram for INT0 and INT1 Pins

When modifying the IMOD registers, it is possible to accidentally set an interrupt request flag. To avoid unwanted interrupts, take these precautions when writing your programs:

- 1. Disable all interrupts with a DI instruction.
- Modify the IMOD register.
- 3. Clear all relevant interrupt request flags.
- Enable the interrupt by setting the appropriate IEx flag.
- 5. Enable all interrupts with an El instructions.

INTERRUPTS S3C72H8/P72H8

EXTERNAL INTERRUPT 2 MODE REGISTER (IMOD2)

The mode register for external interrupt 2 at the KS0–KS3 pins, IMOD2, is addressable only by 4-bit write instructions. RESET clears all IMOD2 bits to logic zero.

FB6H	IMOD2.3	IMOD2.2	IMOD2.1	IMOD2.0
------	---------	---------	---------	---------

If a falling edge is detected at any one of the selected KS pin by the IMOD2 register, the IRQ2 flag is set to logic one and a release signal for power-down mode is generated.

Table 7-6. IMOD2 Register Organization

IMOD2 IMOD2.3 IMOD2.2		IMOD2.1	IMOD2.0	Effect of IMOD2 Settings	
				0	Disable INT2 at falling edge of KS0 (P6.0)
				1	Enable INT2 at falling edge of KS0 (P6.0)
		0		Disable INT2 at falling edge of KS1 (P6.1)	
			1		Enable INT2 at falling edge of KS1 (P6.1)
		0			Disable INT2 at falling edge of KS2 (P6.2)
		1			Enable INT2 at falling edge of KS2 (P6.2)
	0		•		Disable INT2 at falling edge of KS3 (P6.3)
	1				Enable INT2 at falling edge of KS3 (P6.3)

S3C72H8/P72H8 INTERRUPTS

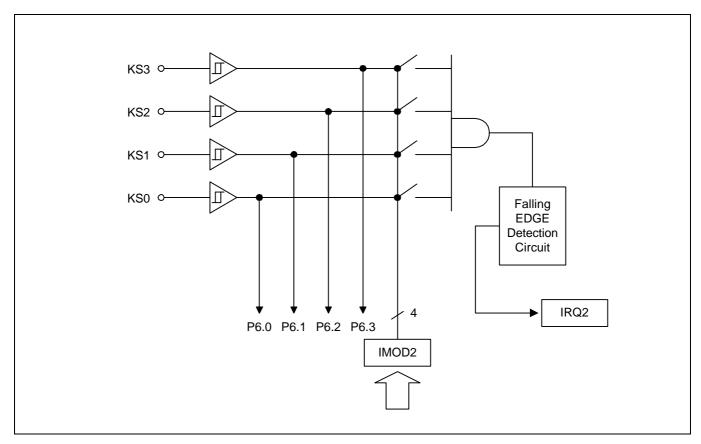


Figure 7-6. INT2 Circuit Diagram for KS0-KS3

INTERRUPTS S3C72H8/P72H8

EXTERNAL INTERRUPT 3 MODE REGISTER (IMOD3)

IMOM3 is addressable only by 8-bit write instructions reset clears all IMOD3 bits to logic zero.

FB8H	.7	.6	.5	.4	.3	.2	.1	.0

If the set condition is occurred, the IRQ3 flag is set to logic one and a release signal for power-down mode is generated.

Table 7-7. IMOD3 Register Organization

IMOD3	0	0	.5	.4	.3	.2	.1	.0	Effect of IMOD3 Settings
•							0 0 Disable INT3 at CLDOUT (CLDCON.3)		
							0	1	Enable INT3 at falling edge of CLDOUT (CLDCON.3)
							1 0 Enable INT3 at rising edge of CLDOUT (CLDCON		Enable INT3 at rising edge of CLDOUT (CLDCON.3)
							1	1	Enable INT3 at falling/rising edge of CLDOUT ()
					0	0			Disable INT3 at C0OUT (CMPCON.1)
					0	1			Enable INT3 at falling edge of C0OUT (CMPCON.1)
					1	0			Enable INT3 at rising edge of C0OUT (CMPCON.1)
					1	1			Enable INT3 at falling/rising edge of C0OUT ()
			0	0				Disable INT3 at C1OUT (CMPCON.3)	
			0	1				Enable INT3 at falling edge of C1OUT (CMPCON.3)	
			1	0			Enable INT3 at rising edge of C1OUT (CMPCON.3)		
			1	1					Enable INT3 at falling/rising edge of C1OUT ()

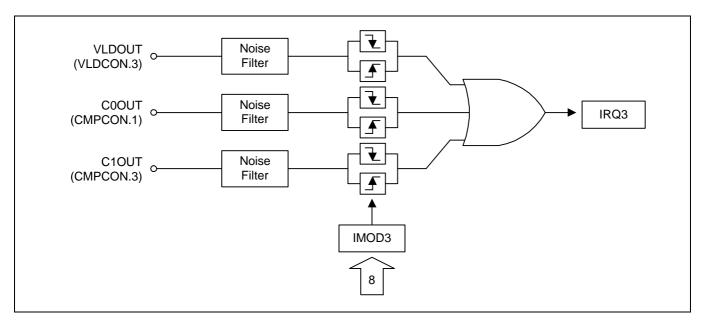


Figure 7-7. INT3 Circuit Diagram for VLDCON.3, CMPCON.1, .3

S3C72H8/P72H8 INTERRUPTS

INTERRUPT FLAGS

There are three types of interrupt flags: interrupt request and interrupt enable flags that correspond to each interrupt, the interrupt master enable flag, which enables or disables all interrupt processing.

Interrupt Master Enable Flag (IME)

The interrupt master enable flag, IME, enables or disables all interrupt processing. Therefore, even when an IRQx flag is set and its corresponding IEx flag is enabled, the interrupt service routine is not executed until the IME flag is set to logic one.

The IME flag is located in the IPR register (IPR.3). It can be directly be manipulated by EI and DI instructions, regardless of the current value of the enable memory bank flag (EMB).

IME	IPR.2	IPR.2 IPR.1 IPR.0		Effect of Bit Settings	
0				Inhibit all interrupts	
1				Enable all interrupts	

Interrupt Enable Flags (IEx)

IEx flags, when set to logical one, enable specific interrupt requests to be serviced. When the interrupt request flag is set to logical one, an interrupt will not be serviced until its corresponding IEx flag is also enabled.

Interrupt enable flags can be read, written, or tested directly by 1-bit instructions. IEx flags can be addressed directly at their specific RAM addresses, despite the current value of the enable memory bank (EMB) flag.

Address	Bit 3	Bit 2	Bit 1	Bit 0
FB8H	0	0	IEB	IRQB
FBAH	0	0	IEW	IRQW
FBBH	0	0	IE3	IRQ3
FBCH	0	0	IET0	IRQT0
FBDH	0	0	IEG	IRQG
FBEH	IE1	IRQ1	IE0	IRQ0
FBFH	0	0	IE2	IRQ2

Table 7-8. Interrupt Enable and Interrupt Request Flag Addresses

NOTES:

- 1. IEx refers to corresponding interrupt enable flags.
- 2. IRQx refers to corresponding interrupt request flags.
- 3. IEx = 0 is interrupt disable mode.
- 4. IEx = 1 is interrupt enable mode.

INTERRUPTS S3C72H8/P72H8

Interrupt Request Flags (IRQx)

Interrupt request flags are read/write addressable by 1-bit or 4-bit instructions. IRQx flags can be addressed directly at their specific RAM addresses, regardless of the current value of the enable memory bank (EMB) flag.

When a specific IRQx flag is set to logic one, the corresponding interrupt request is generated. The flag is then automatically cleared to logic zero when the interrupt has been serviced. Exceptions are the watch timer interrupt request flags, IRQW, and the external interrupt 2 flag IRQ2, which must be cleared by software after the interrupt service routine has executed. IRQx flags are also used to execute interrupt requests from software. In summary, follow these guidelines for using IRQx flags:

- 1. IRQx is set to request an interrupt when an interrupt meets the set condition for interrupt generation.
- 2. IRQx is set to "1" by hardware and then cleared by hardware when the interrupt has been serviced (with the exception of IRQW and IRQ2).
- 3. When IRQx is set to "1" by software, an interrupt is generated.

When two interrupts share the same service routine start address, interrupt processing may occur in one of two ways:

- When only one interrupt is enabled, the IRQx flag is cleared automatically when the interrupt has been serviced.
- When two interrupts are enabled, the request flag is not automatically cleared so that the user has an
 opportunity to locate the source of the interrupt request. In this case, the IRQx setting must be cleared
 manually using a BTSTZ instruction.

Table 7-9. Interrupt Request Flag Conditions and Priorities

Interrupt Source	Internal / External	Pre-condition for IRQx Flag Setting	Interrupt Priority	IRQ Flag Name
INTB	I	Reference time interval signal from basic timer	1	IRQB
INT0	Е	Rising or falling edge detected at INT0 pin	2	IRQ0
INT1	Е	Rising or falling edge detected at INT1 pin	3	IRQ1
INTG	I	Completion signal for gate open time	4	IRQG
INTT0	I	Signals for TCNT0 and TREF0 registers match	5	IRQT0
INT3	E	Suitable set condition for VLD, comparator	5	IRQ3
INT2 ^(note) (KS0-KS3)	Е	Falling edge detected at KS0-KS3	_	IRQ2
INTW	Ī	Time interval of 1s, 0.5 s, 0.25s or 3.19 ms	_	IRQW

NOTE: The quasi-interrupt INT2 is only used for testing incoming signals.

S3C72H8/P72H8 POWER-DOWN

8

POWFR-DOWN

OVERVIEW

The S3C72H8 microcontroller has two power-down modes to reduce power consumption: idle and stop. Idle mode is initiated by the IDLE instruction and stop mode by the instruction STOP. (Several NOP instructions must always follow an IDLE or STOP instruction in a program.) In idle mode, the CPU clock stops while peripherals and the oscillation source continue to operate normally.

When RESET occurs during normal operation or during a power-down mode, a reset operation is initiated and the CPU enters idle mode. When the standard oscillation stabilization time interval (31.3 ms at 4.19 MHz) has elapsed, normal CPU operation resumes.

In main stop mode, main system clock oscillation is halted (assuming main clock is selected as system clock and it is currently operating), and peripheral hardware components are powered-down. In sub stop mode, (assuming sub clock is selected) sub system clock oscillation is halted by setting SCMOD.2 to "1". The effect of stop mode on specific peripheral hardware components — CPU, basic timer, timer/ counter 0, watch timer, and LCD controller, serial I/O — and on external interrupt requests, is detailed in Table 8-1.

NOTE

Do not use stop mode if you are using an external clock source because X_{IN} input must be restricted internally to V_{SS} to reduce current leakage.

Idle or main stop modes are terminated either by a RESET, or by an interrupt which is enabled by the corresponding interrupt enable flag, IEx. When power-down mode is terminated by RESET, a normal reset operation is executed. Assuming that both the interrupt enable flag and the interrupt request flag are set to "1", power-down mode is released immediately upon entering power-down mode. Sub stop mode can be terminated by RESET only.

When an interrupt is used to release power-down mode, the operation differs depending on the value of the interrupt master enable flag (IME):

- If the IME flag = "0", program execution starts immediately after the instruction issuing a request to enter power-down mode is executed. The interrupt request flag remains set to logical one.
- If the IME flag = "1", two instructions are executed after the power-down mode release and the vectored interrupt is then initiated. However, when the release signal is caused by INT2 or INTW, the operation is identical to the IME = "0" condition. Assuming that both interrupt enable flag and interrupt request flag are set to "1", the release signal is generated when power-down mode is entered.

POWER-DOWN S3C72H8/P72H8

Table 8-1. Hardware Operation During Power-Down Modes

Mode	Main Stop	Sub Stop	Main/Sub Stop	Idle	
System clock	Main clock (fx)	Sub clock (fxt)	Main clock (fx) (1)	Main (fx) or sub clock (fxt)	
Instruction	STOP	Setting SCMOD.2 to "1"	STOP	IDLE	
Clock oscillator	Main clock oscillation stops	Sub clock oscillation stops	Main clock oscillation stops	Only CPU clock stops. (2)	
Basic timer	Basic timer stops.	Basic timer stops.	Basic timer stops.	Basic timer operates.	
Timer/counter 0	Operates only if TCL0 is selected as counter clock.	Operates only if TCL0 is selected as counter clock.	Operates only if TCL0 is selected as counter clock.	Timer/counter 0 operates.	
Watch timer	Operates only if sub clock (fxt) is selected as counter clock.	Watch timer stops.	Watch timer stops.	Watch timer operates.	
LCD controller	Operates only if sub clock (fxt) is selected as LCD clock, LCDCK.	LCD controller stops.	LCD controller stops.	LCD controller operates.	
External interrupts	INT1 and INT2 are acknowledged; INT0 is not serviced.	INT0, INT1, and INT2 is not serviced.	INT1 and INT2 are acknowledged; INT0 is not serviced.	INT1 and INT2 are acknowledged; INT0 is not serviced. ⁽³⁾	
CPU	All CPU operations are disabled.				
Mode release signal	Interrupt request signals (except INT0) pre-enabled by IEx or RESET input.	Only RESET input	Interrupt request signals (except INT0) pre-enabled by IEx or RESET input.		

NOTES:

- 1. Sub clock stops by setting SCMOD.2 to "1".
- 2. Main and sub clock oscillation continues.
- 3. If IMOD0.3 is set to 1 (select fxx/64 sampling clock), INT0 can be serviced.

S3C72H8/P72H8 POWER-DOWN

IDLE MODE TIMING DIAGRAMS

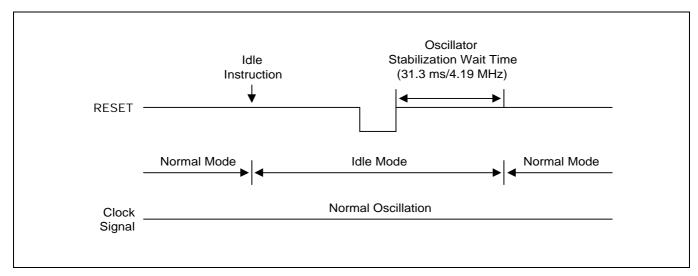


Figure 8-1. Timing When Idle Mode is Released by RESET

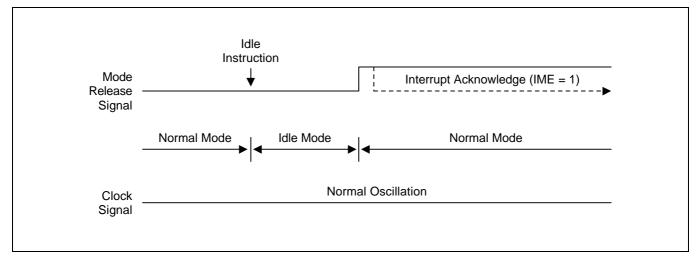


Figure 8-2. Timing When Idle Mode is Released by an Interrupt

POWER-DOWN S3C72H8/P72H8

STOP MODE TIMING DIAGRAMS

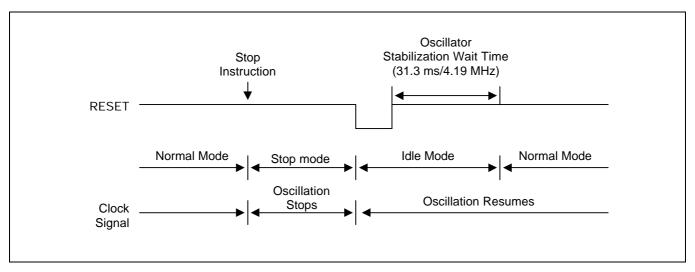


Figure 8-3. Timing When Stop Mode is Released by RESET

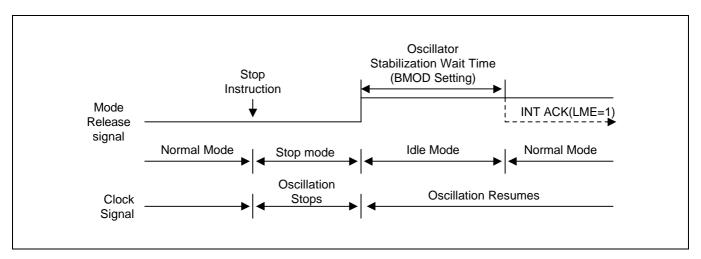


Figure 8-4. Timing When Main Stop or Main/Sub Stop Mode is Release by an Interrupt

S3C72H8/P72H8 POWER-DOWN

PROGRAMMING TIP — Reducing Power Consumption for Key Input Interrupt Processing

The following code shows real-time clock and interrupt processing for key inputs to reduce power consumption. In this example, the system clock source is switched from the main system clock to a subsystem clock and the LCD display is turned on:

KEYCLK	DI CALL SMB LD	MA2SUB 15 EA,#0H	;	$\mbox{Main system clock} \rightarrow \mbox{subsystem clock switch subroutine}$
	LD LD	P3,EA A,#0FH	;	All key strobe outputs to low level
	LD SMB BITR BITR BITS BITS	IMOD2,A 0 IRQW IRQ2 IEW IE2	;	Select KS0–KS3 enable
CLKS1	CALL BTSTZ JR	WATDIS IRQ2 CIDLE	;	Execute clock and display changing subroutine
	CALL	SUB2MA	;	Subsystem clock \rightarrow main system clock switch
subroutine	EI RET			
CIDLE	IDLE NOP NOP NOP		;	Engage idle mode
	JPS	CLKS1		

NOTE

You must program at least three NOP instructions after IDLE and STOP instructions, to avoid flowing of leakage current due to the floating state in the internal bus.

POWER-DOWN S3C72H8/P72H8

PORT PIN CONFIGURATION FOR POWER-DOWN

The following method describes how to configure I/O port pins to reduce power consumption during power-down modes (stop, idle):

Condition 1: If the microcontroller is not configured to an external device:

- 1. Connect unused port pins according to the information in Table 8-2.
- Disable pull-up resistors for input pins configured to V_{DD} or V_{SS} levels in order to check the current input option. Reason: If the input level of a port pin is set to V_{SS} when a pull-up resistor is enabled, it will draw an unnecessarily large current.

Condition 2: If the microcontroller is configured to an external device and the external device's V_{DD} source is turned off in power-down mode.

- 1. Connect unused port pins according to the information in Table 8-2.
- Disable pull-up resistors for input pins configured to V_{DD} or V_{SS} levels in order to check the current input option. Reason: If the input level of a port pin is set to V_{SS} when a pull-up resistor is enabled, it will draw an unnecessarily large current.
- 3. Disable the pull-up resistors of input pins connected to the external device by making the necessary modifications to the PUMOD register.
- 4. Configure the output pins that are connected to the external device to low level. Reason: When the external device's V_{DD} source is turned off, and if the microcontroller's output pins are set to high level, $V_{DD} 0.7$ V is supplied to the V_{DD} of the external device through its input pin. This causes the device to operate at the level $V_{DD} 0.7$ V. In this case, total current consumption would not be reduced.
- 5. Determine the correct output pin state necessary to block current pass in according with the external transistors (PNP, NPN).

S3C72H8/P72H8 POWER-DOWN

RECOMMENDED CONNECTIONS FOR UNUSED PINS

To reduce overall power consumption, please configure unused pins according to the guidelines described in Table 8-2.

Table 8-2. Unused Pin Connections for Reducing Power Consumption

Pin/Share Pin Names	Recommended Connection
P0.0/ExtRef P0.1 P0.2	Input mode: Connect to V _{DD} Output mode: No connection
P2.0/INT0 P2.1/INT1 P2.2/TCL0 P2.3/FCL	Connect to V _{DD} Output mode: No connection
P3.0/TCLO0 P3.1/BTCO P3.2/CLO P3.3/BUZ	Input mode: Connect to V _{DD} Output mode: No connection
P4.0/C0P P4.1/C0N P4.2/C0OUT P4.3/C1OUT	Input mode: Connect to V _{DD} Output mode: No connection
P5.0/C1P P5.1/C1N	Input mode: Connect to V _{DD} Output mode: No connection
P6.0/KS0 P6.1/KS1 P6.2/KS2 P6.3/KS3	Input mode: Connect to V _{DD} Output mode: No connection
SEG0-SEG25 COM0-COM3	No connection
CA, CB	No connection
V _{LC0} -V _{LC2}	No connection
XT _{IN}	Connect XT _{IN} to V _{SS} (Set SCMOD.2 to "1")
XT _{OUT}	No connection
TEST	Connect to V _{SS}

S3C72H8/P72H8 RESET

9

RESET

OVERVIEW

When a reset signal is input during normal operation or power-down mode, a hardware reset operation is initiated and the CPU enters idle mode. Then, when the standard oscillation stabilization interval of 31.3 ms at 4.19 MHz has elapsed, normal system operation resumes.

Regardless of when the reset occurs — during normal operating mode or during a power-down mode — most hardware register values are set to the reset values described in Table 9-1. The current status of several register values is, however, always retained when a reset occurs during idle or stop mode; If a reset occurs during normal operating mode, their values are undefined. Current values that are retained in this case are as follows:

- Carry flag
- Data memory values
- General-purpose registers E, A, L, H, X, W, Z, and Y

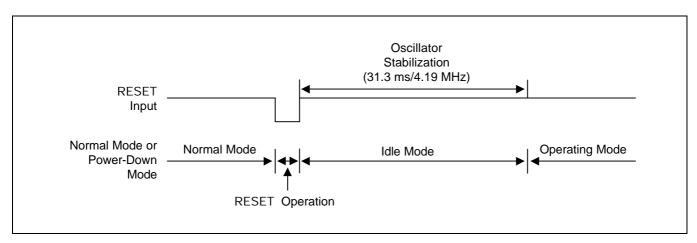


Figure 9-1. Timing for Oscillation Stabilization After Reset

RESET S3C72H8/P72H8

HARDWARE REGISTER VALUES AFTER RESET

Table 9-1 gives you detailed information about hardware register values after a reset occurs during power-down mode or during normal operation.

Table 9-1. Hardware Register Values After Reset

Hardware Component or Subcomponent	If RESET Occurs During Power-Down Mode	If RESET Occurs During Normal Operation
Program counter (PC)	Lower five bits of address 0000H are transferred to PC12-8, and the contents of 0001H to PC7-0.	Lower five bits of address 0000H are transferred to PC12-8, and the contents of 0001H to PC7-0.
Program Status Word (PSW):		
Carry flag (C)	Retained	Undefined
Skip flag (SC0–SC2)	0	0
Interrupt status flags (IS0, IS1)	0	0
Bank enable flags (EMB, ERB)	Bit 6 of address 0000H in program memory is transferred to the ERB flag, and bit 7 of the address to the EMB flag.	Bit 6 of address 0000H in program memory is transferred to the ERB flag, and bit 7 of the address to the EMB flag.
Stack pointer (SP)	Undefined	Undefined
Data Memory (RAM):		
Working registers E, A, L, H, X, W, Z,Y	Values retained	Undefined
Bank selection registers (SMB, SRB)	0, 0	0, 0
BSC register (BSC0–BSC3)	0	0
Clocks:		
Power control register (PCON)	0	0
Clock output mode register (CLMOD)	0	0
System clock control reg (SCMOD)	0	0
Interrupts:		
Interrupt request flags (IRQx)	0	0
Interrupt enable flags (IEx)	0	0
Interrupt priority flag (IPR)	0	0
Interrupt master enable flag (IME)	0	0
INT0 mode register (IMOD0)	0	0
INT1 mode register (IMOD1)	0	0
INT2 mode register (IMOD2)	0	0
INT3 mode register (IMOD3)	0	0

S3C72H8/P72H8 RESET

Table 9-1. Hardware Register Values After Reset (Continued)

Hardware Component or Subcomponent	If Reset Occurs During Power-Down Mode	If Reset Occurs During Normal Operation	
I/O Ports;			
Output buffers	Off	Off	
Output latches	0	0	
Port mode flags (PM)	0	0	
Pull-up resistor mode reg (PUMOD)	0	0	
Port N-ch open drain reg (PNE)	0	0	
Basic Timer:			
Count register (BCNT)	Undefined	Undefined	
Mode register (BMOD)	0	0	
Output enable flags (BOE)	0	0	
Timer/Counters 0			
Count registers (TCNT0)	0	0	
Reference registers (TREF0)	FFH	FFH	
Mode registers (TMOD0)	0	0	
Output enable flags (TOE0)	0	0	
Frequency Counters:			
Counter registers (FCNTH/L)	0	0	
Mode registers (FCMOD)	0	0	
Watchdog Timer:			
WDT mode register (WDMOD)	A5H	A5H	
WDT clear flag (WDTCF)	0	0	
Watch Timer:			
Watch timer mode register (WMOD)	0	0	
LCD Driver/Controller:			
LCD mode register (LMOD)	0	0	
LCD control register (LCON)	0	0	
Display data memory	Values retained	Undefined	
Output buffers	Off	Off	
Comparator:			
Comparator mode register (CMOD)	0	0	
Comparator control reg (CMPCON)	0	0	
Voltage Level Detector:			
VLD control register (VLDCON)	0	0	

S3C72H8/P72H8 I/O PORTS

10 1/0 PORTS

OVERVIEW

The S3C72H8 has 6 ports. There are total of 21 configurable I/O pins.

Pin addresses for all ports are mapped to bank 15 of the RAM. The contents of I/O port pin latches can be read, written, or tested at the corresponding address using bit manipulation instructions.

Port Mode Flags

Port mode flags (PM) are used to configure I/O ports to input or output mode by setting or clearing the corresponding I/O buffer.

Pull-Up Resistor Mode Register (PUMOD)

The pull-up resistor mode registers (PUMOD) are used to assign internal pull-up resistors by software to specific ports. When a configurable I/O port pin is used as an output pin, its assigned pull-up resistor is automatically disabled, even though the pin's pull-up is enabled by a corresponding PUMOD bit setting (except P4, P5).

N-Channel Open-Drain Mode Register (PNE)

The n-channel, open-drain, mode register (PNE) is used to configure outputs as n-channel open-drain outputs or as push-pull outputs.

I/O PORTS S3C72H8/P72H8

Table 10-1. I/O Port Overview

Port	I/O	Pins	Pin Names	Address	Function Description
0	I/O	3	P0.0-P0.2	FF0H	3-bit I/O port. 1-bit and 4-bit read/write and test is possible. Port 0 is software configurable as input or output. 3-bit pull-up resistors are software assignable.
2	I/O	4	P2.0-P2.3	FF2H	4-bit I/O port. 1-bit and 4-bit read/write and test is possible. Individual pins are software configurable as input or output. 4-bit pull-up resistors are software assignable.
3	I/O	4	P3.0-P3.3	FF3H	Same as port2. Port2 and 3 can be addressed by 1-, 4-, and 8-bit read/write and test instruction
4, 5	I/O	6	P4.0-P4.3 P5.0-P5.1	FF4H FF5H	4/2-bit I/O ports. N-channel open-drain or push-pull output. 1-, 4-, and 8-bit read/write and test is possible. Ports 4 and 5 can be paired to support 8-bit data transfer. Pull-up resistors are assignable to port unit by software control.
6	I/O	4	P6.0-P6.3	FF6H	4-bit I/O port. Port 6 pins are individually software configurable as input or output. 1-bit and 4-bit read/write and test is possible. 4-bit pull-up resistors are software assignable.

Table 10-2. Port Pin Status During Instruction Execution

Instruction Type	Example		Input Mode Status	Output Mode Status
1-bit test 1-bit input 4-bit input 8-bit input	BTST LDB LD LD	P0.1 C, P2.3 A, P2 EA, P2	Input or test data at each pin	Input or test data at output latch
1-bit output	BITR	P2.3	Output latch contents undefined	Output pin status is modified
4-bit output 8-bit output	LD LD	P2, A P2, EA	Transfer accumulator data to the output latch	Transfer accumulator data to the output pin

S3C72H8/P72H8 I/O PORTS

PORT MODE FLAGS (PM FLAGS)

Port mode flags (PM) are used to configure I/O ports to input or output mode by setting or clearing the corresponding I/O buffer.

For convenient program reference, PM flags are organized into two groups — PMG0 and PMG1 as shown in Table 10-3. They are addressable by 8-bit write instructions only.

When a PM flag is "0", the port is set to input mode; when it is "1", the port is enabled for output. RESET clears all port mode flags to logical zero, automatically configuring the corresponding I/O ports to input mode.

PM Group ID	Address	Bit 3	Bit 2	Bit 1	Bit 0
PMG0	FE6H	PM2.3	PM2.2	PM2.1	PM2.0
	FE7H	PM3.3	PM3.2	PM3.1	PM3.0
PMG1	FE8H	PM5	PM4	ExtRef (P0.0)	PM0
	FE9H	PM6.3	PM6.2	PM6.1	PM6.0

Table 10-3. Port Mode Group Flags

NOET: If bit = "0" the corresponding I/O pin is set to input mode. If bit = "1", the pin is set to output mode. All flags are cleared to "0" following RESET.

When the PMG1.1 is set, P0.0/ExtRef pin is assigned as external reference input mode and pull-up resistor, P0.0 input and output circuit is disabled.

PROGRAMMING TIP — Configuring I/O Ports to Input or Output

Configure ports 2 and 3 as an output port:

BITS EMB SMB 15 EA,#0FFH LD

LD PMG0,EA

; P2 and P3 ← Output

PULL-UP RESISTOR MODE REGISTER (PUMOD)

The pull-up resistor mode registers (PUMOD) are used to assign internal pull-up resistors by software to specific ports. When a configurable I/O port pin is used as an output pin, its assigned pull-up resistor is automatically disabled, even though the pin's pull-up is enabled by a corresponding PUMOD bit setting.

PUMOD is addressable by 8-bit write instructions only. RESET clears PUMOD register values to logic zero, automatically disconnecting all software-assignable port pull-up resistors.

Table 10-4. Pull-Up Resistor Mode Register (PUMOD) Organization

Address	Bit 3	Bit 2	Bit 1	Bit 0
FDCH	PUR3	PUR2	"0"	PUR0
FDDH	"0"	PUR6	PUR5	PUR4

NOTE: When bit = "1", a pull-up resistor is assigned to the corresponding I/O port: PUMOD.0 for port 0, PUMOD.2 for port2 and so on.

VO PORTS \$3C72H8/P72H8

PROGRAMMING TIP — Enabling and Disabling I/O Port Pull-up Resistors

P2 and P3 are enabled to be pull-up resistors.

BITS EMB
SMB 15
LD EA,#0CH
LD PUMOD,EA

; enable the pull-up resistors of P2 and P3

N-CHANNEL OPEN-DRAIN MODE REGISTER (PNE)

The n-channel open-drain mode register, PNE, is used to configure port4, 5 to n-channel open-drain or push-pull modes. When a bit in the PNE register is set to "1", the corresponding output pin is configured to n-channel open-drain; when set to "0", the output pin is configured to push-pull mode. The PNE register consists of an 8-bit register, as shown below, PNE can be addressed by 8-bit write instructions only.

Table 10-5. N-Channel Open Drain Mode Register (PNE) Setting

ID	ADDRESS	Bit 3	Bit 2	Bit 1	Bit 0		
PNE	FD6H	PNE.3 (P4.3)	PNE.3 (P4.2)	PNE.3 (P4.1)	PNE.3 (P4.0)		
	FD7H	_	_	PNE.3 (P5.1)	PNE.3 (P5.0)		
Bit setting	Description	Description					
0	C-MOS push-pull output mode.						
1	N-ch open drain	N-ch open drain output mode.					

S3C72H8/P72H8 I/O PORTS

COMPARATOR MODE REGISTER (CMOD)

The comparator mode register, CMOD, is used to port 4,5 to normal I/O ports or comparator I/O. When a bit of the CMOD register is set to "1", the corresponding I/O pin is configured to comparator I/O; when set to "0", the I/O pin is configured to normal I/O. The CMOD register consists of an 4-bit register, as shown below, CMOD can be addressed by 4-bit read/write instructions only.

FEOH CMOD.3 CMOD.2 CMOD.1 CMOD.0	FE0H	CMOD.3	CMOD.2	CMOD.1	CMOD.0
--	------	--------	--------	--------	--------

CMOD	CMOD.3	CMOD.2	CMOD.1	CMOD.0	Effect of CMOD Settings
				0	Select P4.0/C0P, P4.1/C0N as normal I/O ports
				1	Select P4.0/C0P, P4.1/C0N as comparator inputs
			0		Select P4.2/C0OUT as a normal I/O port
			1		Select P4.2/C0OUT as a output
		0			Select P5.0/C1P, P5.1/C1N as normal I/O port
		1			Select P5.0/C1P, P5.1/C1N as comparator input
	0				Select P4.3/C1OUT as a normal I/O port
	1				Select P4.3/C1OUT as a comparator output

NOTE: When bit "1", a pull-up resistor, output and input circuit to the corresponding I/O port: P4 and P5 are disabled for comparator own operation.

I/O PORTS S3C72H8/P72H8

PORT 0 CIRCUIT DIAGRAM

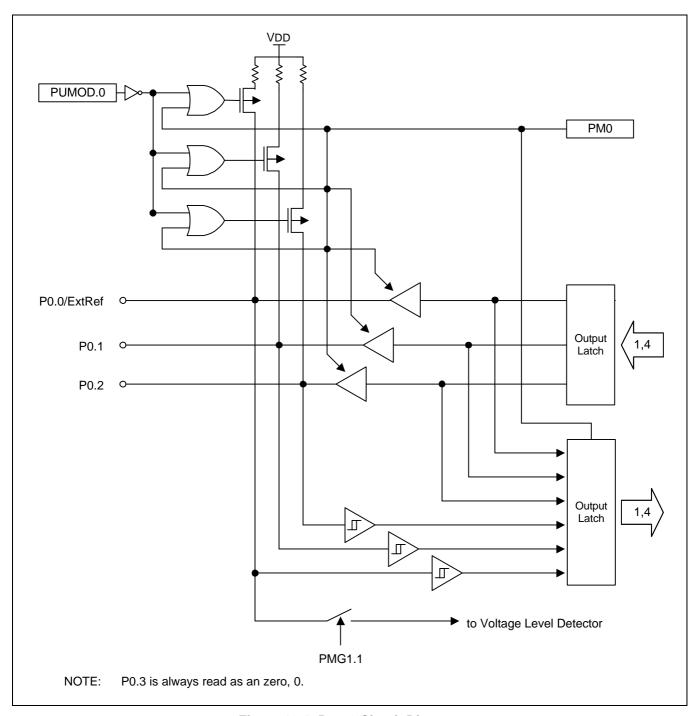


Figure 10-1. Port 0 Circuit Diagram

S3C72H8/P72H8 I/O PORTS

PORT 2 CIRCUIT DIAGRAM

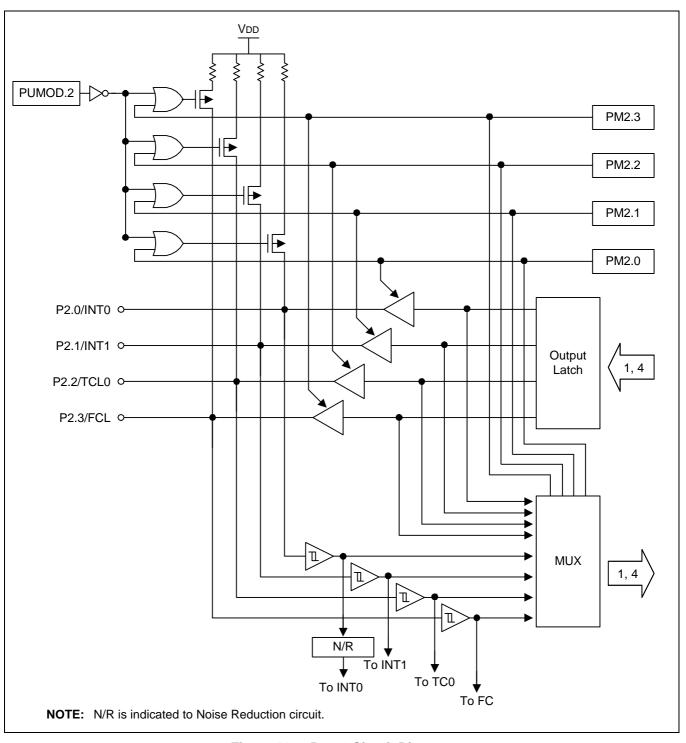


Figure 10-2. Port 2 Circuit Diagram

I/O PORTS S3C72H8/P72H8

PORT 3 CIRCUIT DIAGRAM



Figure 10-3. Port 3 Circuit Diagram

S3C72H8/P72H8 I/O PORTS

PORT 4 CIRCUIT DIAGRAM

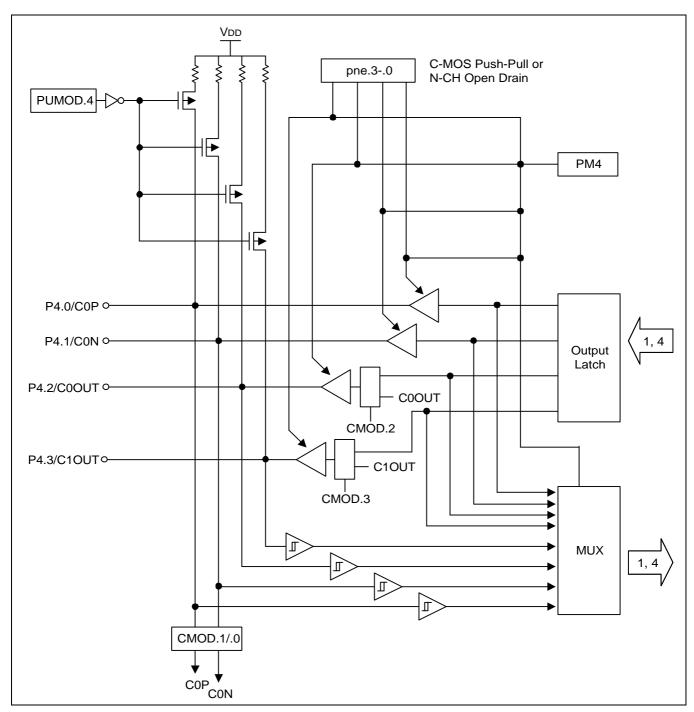


Figure 10-4. Port 4 Circuit Diagram

NOTE: When the corresponding bit of CMOD is "1", each pin is configured to comparator pin, a pull-up resistor, output and input circuit to the corresponding I/O port: P4.0, P4.1 are disabled for comparator own operation.

VO PORTS S3C72H8/P72H8

PORT 5 CIRCUIT DIAGRAM

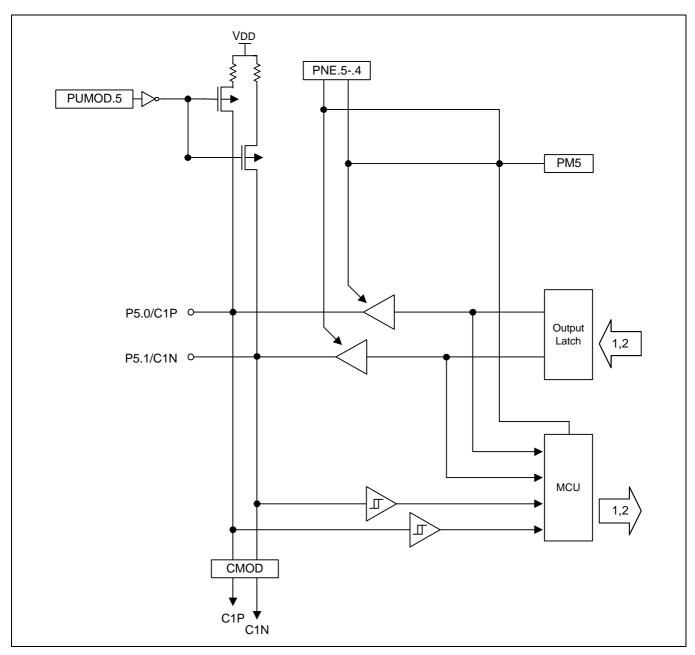


Figure 10-5. Port 5 Circuit Diagram

NOTE: When the corresponding bit of CMOD is "1", each pin is configured to comparator pin, a pull-up resistor, output and input circuit to the corresponding I/O port: P5 is disabled for comparator own operation.

PORT 6 CIRCUIT DIAGRAM

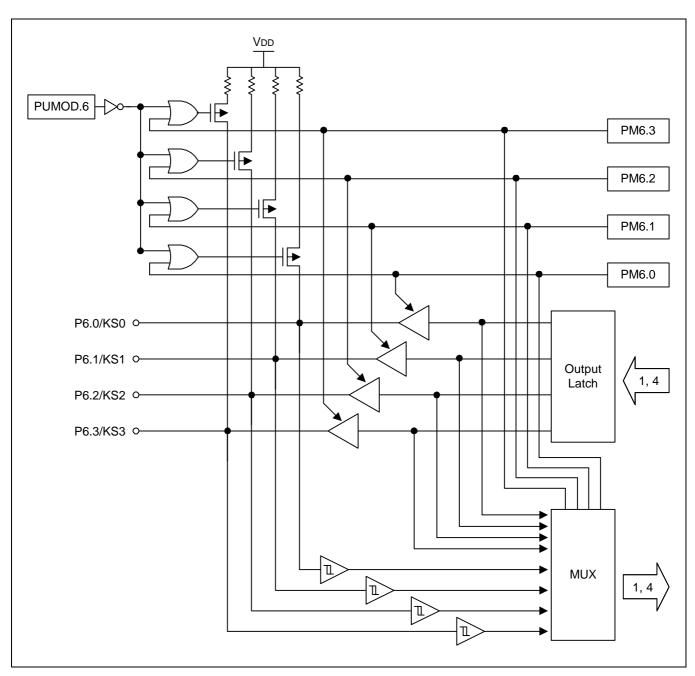


Figure 10-6. Port 6 Circuit Diagram

11

TIMERS AND COUNTER

OVERVIEW

The S3C72H8microcontroller has four timer and timer/counter modules:

- 8-bit basic timer (BT)
- 8-bit timer/counter (TC0)
- 16-bit frequency counter (FC)
- Watch timer (WT)

The 8-bit basic timer (BT) is the microcontroller's main interval timer. It generates an interrupt request at a fixed time interval when the appropriate modification is made to its mode register. When the contents of the basic timer counter register BCNT overflows, a pulse is output to the basic timer output pin, BTCO. The basic timer also functions as a 'watchdog' timer and is used to determine clock oscillation stabilization time when stop mode is released by an interrupt and after a RESET.

The 8-bit timer/counter (TC0) is programmable timer/counter that is used primarily for event counting and for clock frequency modification and output. The 16-bit frequency counter(FC) is an up-counter that is used primarily for event counting of comparator output or FCL input.

The watch timer (WT) module consists of an 8-bit watch timer mode register, a clock selector, and a frequency divider circuit. Watch timer functions include real-time and watch-time measurement, main and subsystem clock interval timing, buzzer output generation. It also generates a clock signal for the LCD controller.

TIMERS AND COUNTER S3C72H8/P72H8

BASIC TIMER AND WATCH DOG TIMER(BT & WDT)

OVERVIEW

The 8-bit basic timer (BT) and 3-bit watch dog timer (WDT) has five functional components:

- Clock selector logic
- 4-bit mode register (BMOD)
- 8-bit counter register (BCNT)
- 3-bit counter register (WDCNT)
- 8-bit mode register (WDMOD)

The basic timer generates interrupt requests at precise intervals, based on the frequency of the system clock. The pulses are inputted to watch dog timer's counter when an overflow occurs in the counter register BCNT. You can use the basic timer as a "watchdog" timer for monitoring system events or use BT output to stabilize clock oscillation when stop mode is released by an interrupt and following RESET. Bit settings in the basic timer mode register BMOD turns the BT module on and off, selects the input clock frequency, and controls interrupt or stabilization intervals.

Interval Timer Function

The basic timer's primary function is to measure elapsed time intervals. The standard time interval is equal to 256 basic timer clock pulses. To restart the basic timer, one bit setting is required: bit 3 of the mode register BMOD is set to logic one. The input clock frequency and the interrupt and stabilization interval are selected by loading the appropriate bit values to BMOD.2 - BMOD.0.

The 8-bit counter register, BCNT, is incremented each time a clock signal is detected that corresponds to the frequency selected by BMOD. BCNT continues incrementing as it counts BT clocks until an overflow occurs (255). An overflow causes the BT interrupt request flag (IRQB) to be set to logic one to signal that the designated time interval has elapsed. An interrupt request is then generated, BCNT is cleared to logic zero, and counting continues from 00H.

Watchdog Timer Function

The basic timer can also be used as a "watchdog" timer to detects an undefined program loop, that is, system or program operation error. For this purpose, instruction that clears the watch-dog timer(BITS WDTCF) within a given period should be executed at proper time in a program. If an instruction that clears the watch-dog timer is not done within the period and the watch-dog timer overflows, reset signal is generated and system is restarted with reset status. An operation of watch-dog timer is as follows:

- Write some value(except #5AH) to Watch-Dog Timer Mode register, WDMOD.
- Each time BCNT overflows, an overflow signal is sent to the watch-dog timer counter, WDCNT.
- If WDCNT overflows, system reset is generated.

Oscillation Stabilization Interval Control

Bits 2-0 of the BMOD register are used to select the input clock frequency for the basic timer. This setting also determines the time interval (also referred to as wait time) required to stabilize clock signal oscillation when power-down mode is released by an interrupt. When a RESET signal is input, the standard stabilization interval for system clock oscillation following the RESET is 31.3 ms at 4.19 MHz.

Table 11-1. I	Basic	Timer	Register	Overview
---------------	-------	-------	----------	----------

Register Name	Туре	Description	Size	RAM Address	Addressing Mode	Reset Value
BMOD	Control	Controls the clock frequency (mode) of the basic timer; also, the oscillation stabilization interval after power-down mode release or RESET	4-bit	F85H	4-bit write-only; BMOD.3: 1-bit write-only	"O"
BCNT	Counter	Counts clock pulses matching the BMOD frequency setting	8-bit	F86H-F87H	8-bit read-only	"U" (note)
WDMOD	Control	Controls watchdog timer operation.	8-bit	F98H-F99H	8-bit write-only	A5H
WDTCF	Control	Clear the watchdog timer's counter.	1-bit	F9AH.3	1-bit write-only	"0"

NOTE: "U" means that the value is undetermined after a RESET.

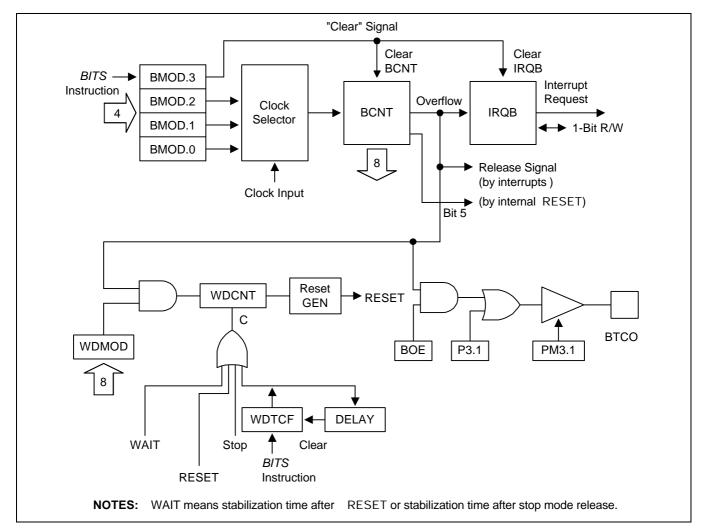


Figure 11-1. BT and WDT Block Diagram

TIMERS AND COUNTER S3C72H8/P72H8

BASIC TIMER MODE REGISTER (BMOD)

The basic timer mode register, BMOD, is a 4-bit write-only register. Bit 3, the basic timer start control bit, is also 1-bit addressable. All BMOD values are set to logic zero following RESET and interrupt request signal generation is set to the longest interval. (BT counter operation cannot be stopped.) BMOD settings have the following effects:

- Restart the basic timer:
- Control the frequency of clock signal input to the basic timer;
- Determine time interval required for clock oscillation to stabilize following the release of stop mode by an interrupt.

By loading different values into the BMOD register, you can dynamically modify the basic timer clock frequency during program execution. Four BT frequencies, ranging from fxx/2¹² to fxx/2⁵, are selectable. Since BMOD's reset value is logic zero, the default clock frequency setting is fxx/2¹².

The most significant bit of the BMOD register, BMOD.3, is used to restart the basic timer. When BMOD.3 is set to logic one (enabled) by a 1-bit write instruction, the contents of the BT counter register (BCNT) and the BT interrupt request flag (IRQB) are both cleared to logic zero, and timer operation is restarted.

The combination of bit settings in the remaining three registers — BMOD.2, BMOD.1, and BMOD.0 — determines the clock input frequency and oscillation stabilization interval.

Table 11-2. Basic Timer Mode Register (BMOD) Organization

BMOD.3	Basic Timer Restart Bit
1	Restart basic timer; clear IRQB, BCNT, and BMOD.3 to "0"

BMOD.2	BMOD.1	BMOD.0
0	0	0
0	1	1
1	0	1
1	1	1

Basic Timer Input Clock	Interval Time
fxx/2 ¹² (1.02 kHz)	2 ²⁰ /fxx (250 ms)
fxx/2 ⁹ (8.18 kHz)	2 ¹⁷ /fxx (31.3 ms)
fxx/2 ⁷ (32.7 kHz)	2 ¹⁵ /fxx (7.82 ms)
fxx/2 ⁵ (131 kHz)	2 ¹³ /fxx (1.95 ms)

NOTES:

- 1. Clock frequencies and stabilization intervals assume a system oscillator clock frequency (fxx) of 4.19 MHz.
- 2. fxx = selected system clock frequency.
- 3. Oscillation stabilization time is the time required to stabilize clock signal oscillation after stop mode is released. The data in the table column "Oscillation Stabilization" can also be interpreted as "Interrupt Interval Time."
- 4. The standard stabilization time for system clock oscillation following a RESET is 31.3 ms at 4.19 MHz.

BASIC TIMER COUNTER (BCNT)

BCNT is an 8-bit counter for the basic timer. It can be addressed by 8-bit read instructions.

RESET leaves the BCNT counter value undetermined. BCNT is automatically cleared to logic zero whenever the BMOD register control bit (BMOD.3) is set to "1" to restart the basic timer. It is incremented each time a clock pulse of the frequency determined by the current BMOD bit settings is detected.

When BCNT has incremented to hexadecimal "FFH" (255 clock pulses), it is cleared to "00H" and an overflow is generated. The overflow causes the interrupt request flag, IRQB, to be set to logic one. When the interrupt request is generated, BCNT immediately resumes counting with incoming clock signal.

NOTE

Always execute a BCNT read operation twice to eliminate the possibility of reading unstable data while the counter is incrementing. If, after two consecutive reads, the BCNT values match, you can select the latter value as valid data. Until the results of the consecutive reads match, however, the read operation must be repeated until the validation condition is met.

BASIC TIMER OPERATION SEQUENCE

The basic timer's sequence of operations may be summarized as follows:

- 1. Set counter buffer bit (BMOD.3) to logic one to restart the basic timer.
- 2. BCNT is then incremented by one per each clock pulse corresponding to BMOD selection.
- 3. BCNT overflows if BCNT = 255 (BCNT = FFH).
- 4. When an overflow occurs, the IRQB flag is set by hardware to logic one.
- 5. The interrupt request is generated.
- 6. BCNT is then cleared by hardware to logic zero.
- 7. Basic timer resumes counting clock pulses.

BT OUTPUT ENABLE FLAG (BOE)

The basic timer output enable flag BOE controls output from basic timer to the BTCO pin. BOE is mapped to RAM location F92H.1 and is addressable by 1-bit read and write instructions.

	Bit 3	Bit 2	Bit 1	Bit 0
F92H	0	TOE0	BOE	0

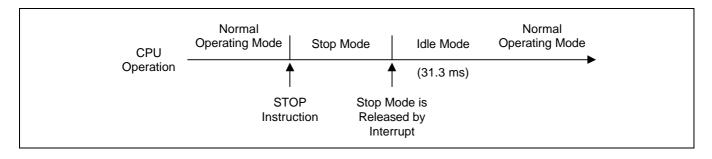
TIMERS AND COUNTER S3C72H8/P72H8

PROGRAMMING TIP — Using the Basic Timer

1. To read the basic timer count register (BCNT):

	BITS	EMB
	SMB	15
BCNTR	LD	EA,BCNT
	LD	YZ,EA
	LD	EA,BCNT
	CPSE	EA,YZ
	JR	BCNTR

2. When stop mode is released by an interrupt, set the oscillation stabilization interval to 31.3 ms at 4.19 MHz:


BITS EMB SMB 15 LD A,#0BH

BMOD,A LD ; Wait time is 31.3 ms

NOP **STOP** NOP

; Get into stop for power-down mode

NOP NOP

3. To set the basic timer interrupt interval time to 1.95 ms (at 4.19 MHz):

BITS EMB SMB 15 LD A.#0FH LD BMOD,A ΕI

; Basic timer interrupt enable flag is set to "1" **BITS IEB**

4. Clear BCNT and the IRQB flag and restart the basic timer:

BITS EMB SMB 15 **BITS** BMOD.3

WATCHDOG TIMER MODE REGISTER (WDMOD)

The watchdog timer mode register, WDMOD, is a 8-bit write-only register located at RAM address F98H–F99H. WDMOD register controls to enable or disable the watchdog function. WDMOD values are set to logic "A5H" following RESET and this value enables the watchdog timer, and watchdog timer is set to the longest interval because BT overflow signal is generated with the longest interval.

WDMOD	Watchdog Timer Enable/Disable Control
5AH	Disable watchdog timer function
Any other value	Enable watchdog timer function

WATCHDOG TIMER COUNTER (WDCNT)

The watchdog timer counter, WDCNT, is a 3-bit counter. WDCNT is automatically cleared to logic zero, and restarts whenever the WDTCF register control bit is set to "1". RESET, stop, and wait signal clears the WDCNT to logic zero also.

WDCNT increments each time a clock pulse of the overflow frequency determined by the current BMOD bit setting is generated. When WDCNT has incremented to hexadecimal "07H", it is cleared to "00H" and an overflow is generated. The overflow causes the system RESET.

WATCHDOG TIMER COUNTER CLEAR FLAG (WDTCF)

The watchdog timer counter clear flag, WDTCF, is a 1-bit write instruction. When WDTCF is set to one, it clears the WDCNT to zero and restarts the WDCNT. WDTCF register bits 2–0 are always logic zero.

BMOD	BT Input Clock (frequency)	WDCNT Input Clock (frequency)	WDT Interval Time	Main Clock	Sub Clock
x000b	fxx/2 ¹²	$fxx/(2^{12} \times 2^{8)}$	$fxx/2^{12} \times 2^8 \times 2^3$	2 sec	256 sec
x011b	fxx/2 ⁹	$fxx/(2^9 \times 2^8)$	$fxx/2^9 \times 2^8 \times 2^3$	250 ms	32 sec
x101b	fxx/2 ⁷	$fxx/(2^7 \times 2^8)$	$fxx/2^7 \times 2^8 \times 2^3$	62.5 ms	8 sec
x111b	fxx/2 ⁵	$fxx/(2^5 \times 2^8)$	$fxx/2^5 \times 2^8 \times 2^3$	15.6 ms	2 sec

Table 11-3. Watchdog Timer Interval Time

NOTES:

- 1. Clock frequencies assume a system oscillator clock frequency (fxx) of: 4.19 MHz Main clock or 32.768 kHz Sub clock
- 2. fxx = system clock frequency.
- If the WDMOD changes such as disable and enable, you must set WDTCF flag to "1" for starting WDCNT from zero state.

TIMERS AND COUNTER S3C72H8/P72H8

${\color{red} \textbf{FROGRAMMING TIP}-\textbf{Using the Watchdog Timer}}$

RESET	DI BITS SMB LD LD	EMB 15 EA,#00H SP,EA •	
		•	
	LD LD	• A,#0DH BMOD,A •	; WDCNT input clock is 7.82 ms
MAIN	BITS	• WDTCF •	; Main routine operation period must be shorter than; watchdog; timer's period
	JP	• MAIN	

8-BIT TIMER/COUNTER 0 (TC0)

OVERVIEW

Timer/counter 0 (TC0) is used to count system "events" by identifying the transition (high-to-low or low-to-high) of incoming square wave signals. To indicate that an event has occurred, or that a specified time interval has elapsed, TC0 generates an interrupt request. By counting signal transitions and comparing the current counter value with the reference register value, TC0 can be used to measure specific time intervals.

TC0 has a reloadable counter that consists of two parts: an 8-bit reference register (TREF0) into which you write the counter reference value, and an 8-bit counter register (TCNT0) whose value is automatically incremented by counter logic.

An 8-bit mode register, TMOD0, is used to activate the timer/counter and to select the basic clock frequency to be used for timer/counter operations. To dynamically modify the basic frequency, new values can be loaded into the TMOD0 register during program execution.

TC0 FUNCTION SUMMARY

8-bit programmable timer	Generates interrupts at specific time intervals based on the selected clock frequency.
External event counter	Counts various system "events" based on edge detection of external clock signals at the TC0 input pin, TCL0. To start the event counting operation, TMOD0.2 is set to "1" and TMOD0.6 is cleared to "0".
Arbitrary frequency output	Outputs selectable clock frequencies to the TC0 output pin, TCLO0.
External signal divider	Divides the frequency of an incoming external clock signal according to a modifiable reference value (TREF0), and outputs the modified frequency to the TCLO0 pin.

TIMERS AND COUNTER S3C72H8/P72H8

TC0 COMPONENT SUMMARY

Mode register (TMOD0) Activates the timer/counter and selects the internal clock frequency or the

external clock source at the TCL0 pin.

Reference register (TREF0) Stores the reference value for the desired number of clock pulses between in-

terrupt requests.

Counter register (TCNT0) Counts internal or external clock pulses based on the bit settings in TMOD0

and TREF0.

Clock selector circuit Together with the mode register (TMOD0), lets you select one of four internal

clock frequencies or an external clock.

8-bit comparator Determines when to generate an interrupt by comparing the current value of

the counter register (TCNT0) with the reference value previously programmed

into the reference register (TREF0).

Output latch (TOL0) Where a TC0 clock pulse is stored pending output to the TC0 output pin,

TCLO0. When the contents of the TCNT0 and TREF0 registers coincide, the timer/counter interrupt request flag (IRQT0) is set to "1", the status of TOL0 is

inverted, and an interrupt is generated.

Output enable flag (TOE0) Must be set to logic one before the contents of the TOL0 latch can be output to

TCLO0.

Interrupt request flag (IRQT0) Cleared when TC0 operation starts and the TC0 interrupt service routine is

executed and enabled whenever the counter value and reference value

coincide.

Interrupt enable flag (IET0) Must be set to logic one before the interrupt requests generated by

timer/counter 0.

Table 11-	4. TC0	Register	Overview
-----------	--------	----------	----------

Register Name	Туре	Description	Size	RAM Address	Addressing Mode	Reset Value
TMOD0	Control	Controls TC0 enable/disable (bit 2); clears and resumes counting operation (bit 3); sets input clock and clock frequency (bits 6–4)	8-bit	F90H-F91H	8-bit write-only; (TMOD0.3 is also 1-bit writeable)	"O"
TCNT0	Counter	Counts clock pulses matching the TMOD0 frequency setting	8-bit	F94H-F95H	8-bit read-only	"0"
TREF0	Reference	Stores reference value for the timer/counter 0 interval setting	8-bit	F96H-F97H	8-bit write-only	FFH
TOE0	Flag	Controls timer/counter 0 output to the TCLO0 pin	1-bit	F92H.2	1-bit write-only	"0"
TOL0	Latch	Where a clock pulse is stored pending out.	1-bit	F93H.1	1-bit write-only	"0"

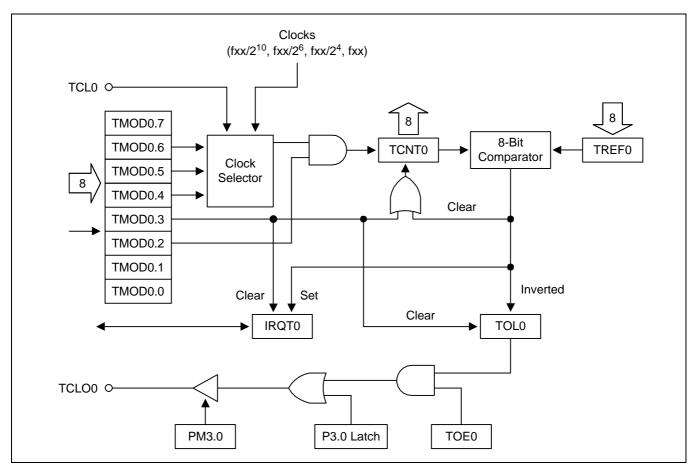


Figure 11-2. TC0 Circuit Diagram

TIMERS AND COUNTER S3C72H8/P72H8

TC0 ENABLE/DISABLE PROCEDURE

Enable Timer/Counter 0

- Set TMOD0.2 to logic one
- Set the TC0 interrupt enable flag IET0 to logic one
- Set TMOD0.3 to logic one

TCNT0, IRQT0, and TOL0 are cleared to logic zero, and timer/counter operation starts.

Disable Timer/Counter 0

Set TMOD0.2 to logic zero

Clock signal input to the counter register TCNT0 is halted. The current TCNT0 value is retained and can be read if necessary.

TC0 PROGRAMMABLE TIMER/COUNTER FUNCTION

Timer/counter 0 can be programmed to generate interrupt requests at various intervals based on the selected system clock frequency. Its 8-bit TC0 mode register TMOD0 is used to activate the timer/counter and to select the clock frequency.

The reference register TREF0 stores the value for the number of clock pulses to be generated between interrupt requests. The counter register, TCNT0, counts the incoming clock pulses, which are compared to the TREF0 value as TCNT0 is incremented. When there is a match (TREF0 = TCNT0), an interrupt request is generated.

To program timer/counter 0 to generate interrupt requests at specific intervals, choose one of four internal clock frequencies (divisions of the system clock, fxx) and load a counter reference value into the TREF0 register. TCNT0 is incremented each time an internal counter pulse is detected with the reference clock frequency specified by TMOD0.4–TMOD0.6 settings.

To generate an interrupt request, the TC0 interrupt request flag (IRQT0) is set to logic one, the status of TOL0 is inverted, and the interrupt is generated. The content of TCNT0 is then cleared to 00H and TC0 continues counting. The interrupt request mechanism for TC0 includes an interrupt enable flag (IET0) and an interrupt request flag (IRQT0).

TC0 OPERATION SEQUENCE

The general sequence of operations for using TC0 can be summarized as follows:

- 1. Set TMOD0.2 to "1" to enable TC0.
- 2. Set TMOD0.6 to "1" to enable the system clock (fxx) input.
- 3. Set TMOD0.5 and TMOD0.4 bits to desired internal frequency (fxx/2ⁿ).
- 4. Load a value to TREF0 to specify the interval between interrupt requests.
- 5. Set the TC0 interrupt enable flag (IET0) to "1".
- 6. Set TMOD0.3 bit to "1" to clear TCNT0, IRQT0, and TOL0, and start counting.
- 7. TCNT0 increments with each internal clock pulse.
- 8. When the comparator shows TCNT0 = TREF0, the IRQT0 flag is set to "1" and an interrupt request is generated.
- 9. Output latch (TOL0) logic toggles high or low.
- 10. TCNT0 is cleared to 00H and counting resumes.
- Programmable timer/counter operation continues until TMOD0.2 is cleared to "0".

TIMERS AND COUNTER S3C72H8/P72H8

TC0 EVENT COUNTER FUNCTION

Timer/counter 0 can monitor or detect system "events" by using the external clock input at the TCL0 pin as the counter source. The TC0 mode register selects rising or falling edge detection for incoming clock signals. The counter register TCNT0 is incremented each time the selected state transition of the external clock signal occurs.

With the exception of the different TMOD0.4–TMOD0.6 settings, the operation sequence for TC0's event counter function is identical to its programmable timer/counter function. To activate the TC0 event counter function,

- Set TMOD0.2 to "1" to enable TC0;
- Clear TMOD0.6 to "0" to select the external clock source at the TCL0 pin;
- Select TCL0 edge detection for rising or falling signal edges by loading the appropriate values to TMOD0.5 and TMOD0.4.

Table 11-5. TMOD0 Settings for TCL0 Edge Detection

TMOD0.5	TMOD0.4	TCL0 Edge Detection	
0	0	Rising edges	
0	1	Falling edges	

TC0 CLOCK FREQUENCY OUTPUT

Using timer/counter 0, a modifiable clock frequency can be output to the TC0 clock output pin, TCLO0. To select the clock frequency, load the appropriate values to the TC0 mode register, TMOD0. The clock interval is selected by loading the desired reference value into the reference register TREF0. To enable the output to the TCLO0 pin, the following conditions must be met:

- TC0 output enable flag TOE0 must be set to "1"
- I/O mode flag for P3.0 must be set to output mode ("1")
- Output latch value for P3.0 must be set to "0"

In summary, the operational sequence required to output a TC0-generated clock signal to the TCLO0 pin is as follows:

- 1. Load a reference value to TREF0.
- 2. Set the internal clock frequency in TMOD0.
- 3. Initiate TC0 clock output to TCLO0 (TMOD0.2 = "1").
- 4. Set P3.0 mode flag to "1".
- 5. Clear P3.0 output latch to "0".
- 6. Set TOE0 flag to "1".

Each time TCNT0 overflows and an interrupt request is generated, the state of the output latch TOL0 is inverted and the TC0-generated clock signal is output to the TCLO0 pin.

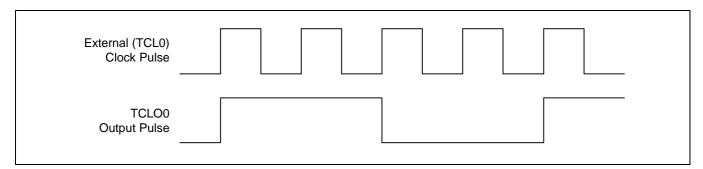
; P3.0 ← output mode ; Clear P3.0 output latch

PROGRAMMING TIP — TC0 Signal Output to the TCLO0 Pin

Output a 30 ms pulse width signal to the TCLO0 pin:

BIIS	EMB	
SMB	15	
LD	EA,#79H	
LD	TREF0,EA	
LD	EA,#4CH	
LD	TMOD0,EA	
LD	EA,#10H	
LD	PMG1,EA	
BITR	P3.0	
BITS	TOE0	

TIMERS AND COUNTER S3C72H8/P72H8


TC0 EXTERNAL INPUT SIGNAL DIVIDER

By selecting an external clock source and loading a reference value into the TC0 reference register, TREF0, you can divide the incoming clock signal by the TREF0 value and then output this modified clock frequency to the TCLO0 pin. The sequence of operations used to divide external clock input can be summarized as follows:

- 1. Load a signal divider value to the TREF0 register.
- 2. Clear TMOD0.6 to "0" to enable external clock input at the TCL0 pin.
- 3. Set TMOD0.5 and TMOD0.4 to desired TCL0 signal edge detection.
- 4. Set port 3.0 mode flag (PM3.0) to output ("1").
- 5. Clear P3.0 output latch to "0".
- 6. Set TOE0 flag to "1" to enable output of the divided frequency to the TCLO0 pin

PROGRAMMING TIP — External TCL0 Clock Output to the TCL00 Pin

Output external TCL0 clock pulse to the TCLO0 pin (divided by four):

BITS	EMB
SMB	15
LD	EA,#01H
LD	TREF0,EA
LD	EA,#0CH
LD	TMOD0,EA
LD	EA,#10H
LD	PMG1,EA
	_

BITS TOE0

TC0 MODE REGISTER (TMOD0)

TMOD0 is the 8-bit mode control register for timer/counter 0. It is located at RAM addresses F90H-F91H and is addressable by 8-bit write instructions. One bit, TMOD0.3, is also 1-bit writeable. RESET clears all TMOD0 bits to logic zero and disables TC0 operations.

F90H	TMOD0.3	TMOD0.2	"0"	"0"
F91H	"0"	TMOD0.6	TMOD0.5	TMOD0.4

TMOD0.2 is the enable/disable bit for timer/counter 0. When TMOD0.3 is set to "1", the contents of TCNT0, IRQT0, and TOL0 are cleared, counting starts from 00H, and TMOD0.3 is automatically reset to "0" for normal TC0 operation. When TC0 operation stops (TMOD0.2 = "0"), the contents of the TC0 counter register TCNT0 are retained until TC0 is re-enabled.

The TMOD0.6, TMOD0.5, and TMOD0.4 bit settings are used together to select the TC0 clock source. This selection involves two variables:

- Synchronization of timer/counter operations with either the rising edge or the falling edge of the clock signal input at the TCL0 pin, and
- Selection of one of four frequencies, based on division of the incoming system clock frequency, for use in internal TC0 operation.

Bit Name Setting **Resulting TC0 Function Address** TMOD0.7 0 Always logic zero TMOD0.6 F91H TMOD_{0.5} Specify input clock edge and internal frequency 0,1 TMOD_{0.4} Clear TCNT0, IRQT0, and TOL0 and resume counting TMOD0.3 1 immediately (This bit is automatically cleared to logic zero immediately after counting resumes.) TMOD_{0.2} 0 Disable timer/counter 0; retain TCNT0 contents F90H 1 Enable timer/counter 0 0 TMOD_{0.1} Always logic zero

Table 11-6. TC0 Mode Register (TMOD0) Organization

TMOD0.0

0

Always logic zero

TIMERS AND COUNTER S3C72H8/P72H8

Table 11-7. TMOD0.6, TMOD0.5, and TMOD0.4 Bit Settings

TMOD0.6	TMOD0.5	TMOD0.4	Resulting Counter Source and Clock Frequency		
0	0	0	External clock input (TCL0) on rising edges		
0	0	1	External clock input (TCL0) on falling edges		
1	0	0	fxx/2 ¹⁰ (4.09 kHz)		
1	0	1	fxx /2 ⁶ (65.5 kHz)		
1	1	0	fxx/2 ⁴ (262 kHz)		
1	1	1	fxx (4.19 MHz)		

NOTE: "fxx" = selected system clock of 4.19 MHz.

PROGRAMMING TIP — Restarting TC0 Counting Operation

1. Set TC0 timer interval to 4.09 kHz:

BITS EMB SMB 15 LD EA,#4CH

LD EA,#4CH LD TMOD0,EA

ΕI

BITS IET0

2. Clear TCNT0, IRQT0, and TOL0 and restart TC0 counting operation:

BITS EMB SMB 15

BITS TMOD0.3

S3C72H8/P72H8 TIMERS AND COUNTER

TC0 COUNTER REGISTER (TCNT0)

The 8-bit counter register for timer/counter 0, TCNT0, is read-only and can be addressed by 8-bit RAM control instructions. RESET sets all TCNT0 register values to logic zero (00H).

Whenever TMOD0.3 is enabled, TCNT0 is cleared to logic zero and counting resumes. TCNT0 register value is incremented at the selected edge each time an incoming pulse with reference clock specified by TMOD0 register (specifically, TMOD0.6, TMOD0.5, and TMOD0.4) is input.

Each time TCNT0 is incremented, the new value is compared with the reference value stored in the TC0 reference buffer, TREF0. When TCNT0 = TREF0, an match signal occurs in the comparator, the interrupt request flag, IRQT0, is set to logic one, and an interrupt request is generated to indicate that the specified timer/counter interval has elapsed.

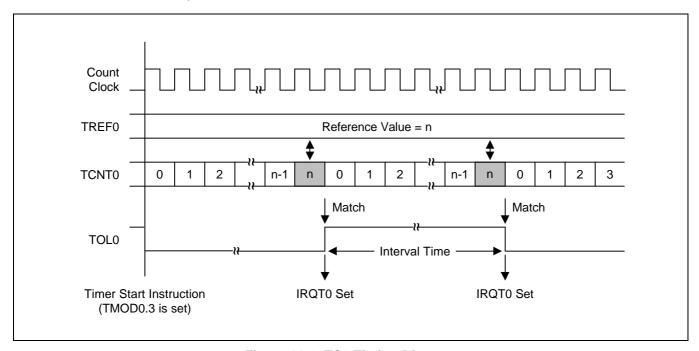


Figure 11-3. TC0 Timing Diagram

TIMERS AND COUNTER S3C72H8/P72H8

TC0 REFERENCE REGISTER (TREF0)

The TC0 reference register TREF0 is an 8-bit write-only register. It is addressable by 8-bit RAM control instructions. RESET initializes the TREF0 value to "FFH".

TREF0 is used to store a reference value to be compared to the incrementing TCNT0 register in order to identify an elapsed time interval. Reference values will differ depending upon the specific function that TC0 is being used to perform — as a programmable timer/counter, event counter, clock signal divider, or arbitrary frequency output source.

During timer/counter operation, the value loaded into the reference register is compared to the TCNT0 value. When TCNT0 = TREF0, the TC0 output latch (TOL0) is inverted and an interrupt request is generated to signal the interval or event. The TREF0 value, together with the TMOD0 clock frequency selection, determines the specific TC0 timer interval. Use the following formula to calculate the correct value to load to the TREF0 reference register:

TC0 timer interval =
$$(TREF0 \text{ value} + 1) \times \frac{1}{TMOD0 \text{ frequency setting}}$$

 $(TREF0 \text{ value} \neq 0)$

TC0 OUTPUT ENABLE FLAG (TOE0)

The 1-bit timer/counter 0 output enable flag TOE0 controls output from timer/counter 0 to the TCLO0 pin. TOE0 is mapped to RAM location F92H.2 and is addressable by 1-bit read and write instructions.

	Bit 3	Bit 2	Bit 1	Bit 0
F92H	0	TOE0	BOE	0

When you set the TOE0 flag to "1", the contents of TOL0 can be output to the TCLO0 pin. Whenever a RESET occurs, TOE0 is automatically set to logic zero, disabling TC0 output.

TC0 OUTPUT LATCH (TOL0)

TOL0 is the output latch for timer/counter 0. When the 8-bit comparator detects a correspondence between the value of the counter register TCNT0 and the reference value stored in the TREF0 buffer, the TOL0 value is inverted the latch toggles high-to-low or low-to-high. Whenever the state of TOL0 is switched, the TC0 signal is output. TC0 output may be directed to the TCLO0 pin at I/O port 3.0.

Assuming TC0 is enabled, when bit 3 of the TMOD0 register is set to "1", the TOL0 latch is cleared to logic zero, along with the counter register TCNT0 and the interrupt request flag, IRQT0, and counting resumes immediately. When TC0 is disabled (TMOD0.2 = "0"), the contents of the TOL0 latch are retained and can be read, if necessary.

	Bit 3	Bit 2	Bit 1	Bit 0
F93H	0	0	TOL0	0

S3C72H8/P72H8 TIMERS AND COUNTER

PROGRAMMING TIP — Setting a TC0 Timer Interval

To set a 30 ms timer interval for TC0, given fxx = 4.19 MHz, follow these steps.

1. Select the timer/counter 0 mode register with a maximum setup time of 62.5 ms (assume the TC0 counter clock = $fxx/2^{10}$, and TREF0 is set to FFH):

2. Calculate the TREF0 value:

$$30 \text{ ms} = \frac{\text{TREF0 value} + 1}{4.09 \text{ kHz}}$$

TREF0 + 1 =
$$\frac{30 \text{ ms}}{244 \text{ µs}}$$
 = 122.9 = 7AH

TREF0 value =
$$7AH - 1 = 79H$$

3. Load the value 79H to the TREF0 register:

BITS	EMB
SMB	15
LD	EA,#79H
LD	TREF0,EA
LD	EA,#4CH
LD	TMOD0,EA

TIMERS AND COUNTER S3C72H8/P72H8

16-BIT FREQUENCY COUNTER (FC)

OVERVIEW

The 16-bit frequency counter (FC) has three functional components:

- 8-bit mode register (FCMOD)
- 16-bit counter register (FCNT)
- Gate Control Logic

The frequency counter measures the input frequency at precise intervals. The pulses are inputted to frequency counter during a gate is opened. The gate control circuit, which controls the frequency counting time, is programmed using the FCMOD register. Six different gate time can be selected using FCMOD register setting.

During gate time, the 16-bit FC counts the input frequency at the FCL, C0OUT, or C1OUT pins. The counting input for the 16-bit frequency counter is selected by FCMOD register.

The 16-bit binary counter(FCNTH - FCNTL) can be read by an 8-bit RAM control instruction only.

By setting FCMOD register, the gate is opened for the selected periods and gate flag is cleared. During the open period of the gate, input frequency is counted by the 16-bit counter. When the gate is closed, the counting operation is complete, gate flag is set, and an interrupt is generated.

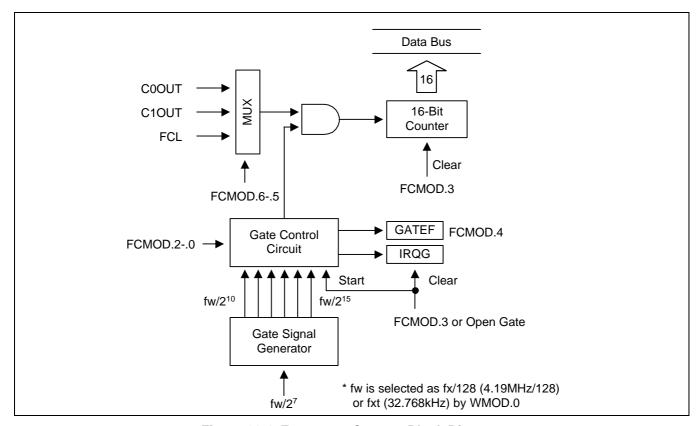


Figure 11-4. Frequency Counter Block Diagram

S3C72H8/P72H8 TIMERS AND COUNTER

FC COMPONENT SUMMARY

Mode register (FCMOD) Activates the counter and selects the clock input for the measure frequency.

(FCL pin, C0OUT, or C1OUT).

Counter register (FCNT) Counts clock pulses at the selected input.

Gate signal generator Together with the mode register (FCMOD), lets you select one gate time of

internal clock frequencies.

Gate control circuit Generate an interrupt, IRQG after gate period is over. Also manipulates the

gate flag(GATEF) on the gate control signal.

Gate Flag (GATEF)

(read only)

When the gate is opened and start the FC operation, GATEF is automatically cleared. GATEF will set after gate time elapsed. Programmer can know the

finishing time of FC operation by reading gate flag.(GATEF)

Interrupt request flag (IRQG) Cleared when FC operation starts and set to logic one whenever the gate time

is elapsed.

Interrupt enable flag (IEG) Must be set to logic one before the interrupt requests generated by frequency

counter can be processed.

Table 11-8. FCMOD Register Overview

Register Name	Type	Description	Size	RAM Address	Addressing Mode	Reset Value
FCMOD	Control	Controls FC; clears and resumes counting operation; sets input and the gate open time.	8-bit	FA0H-FA1H	4/8-bit read/write; 1-bit read/write for .4/.3/.0 (but FCMOD.4 is read only)	"0"
FCNT	Counter	Counts clock pulses	16-bit	FA4H-FA5H, FA6H-FA7H	8-bit read-only	"0"
IRQG	Flag	Gate interrupt request flag	1-bit	FBDH.0	1-bit	"0"

TIMERS AND COUNTER S3C72H8/P72H8

FC MODE REGISTER (FCMOD)

FCMOD is the 8-bit mode register for frequency counter. It is located at RAM addresses FA0H-FA1H and is addressable by 4/8-bit write instructions. The FCMOD.4/3/0 bit is also 1-bit write or read addressable. RESET clears all FCMOD bits to logic zero. Following a RESET, the frequency is disabled.

FA0H	FCMOD.3	FCMOD.2	FCMOD.1	FCMOD.0
FA1H	"0"	FCMOD.6	FCMOD.5	FCMOD.4

Table 11-9. FC Mode Register (FCMOD) Organization

Bit Name	Setting	Resulting FC Function	Address
FCMOD.7	0	Always logic zero	
FCMOD.65	0 0	Hold the up-counting operation of FCNT.	
	0 1	Enable up-counting in FCNT; select FCL pin at falling edge	FA1H
	1 0	Enable up-counting in FCNT; select C0OUT pin at falling edge	
	1 1	Enable up-counting in FCNT; select C1OUT pin at falling edge	
FCMOD.4	0/1	Gate flag (GATEF) Read only	
FCMOD.3	1	Clear FCNT and IRQG. (This bit is automatically cleared to logic zero immediately after counting resumes.); Start bit	
FCMOD.20	0 0 0	Close gate	FA0H
	0 0 1	Open gate; The writing command will start FC operation after clear FCNT and IRQG. ; Start bit	
	0 1 0	Select the gate time, fw/2 ¹⁰ . (31.25ms at fw=32768Hz)	
	0 1 1	Select the gate time, fw/2 ¹¹ . (62.5ms at fw=32768Hz)	
	1 0 0	Select the gate time, fw/2 ¹² . (125ms at fw=32768Hz)	
	1 0 1	Select the gate time, fw/2 ¹³ . (250ms at fw=32768Hz)	
	1 1 0	Select the gate time, fw/2 ¹⁴ . (500ms at fw=32768Hz)	
	1 1 1	Select the gate time, fw/2 ¹⁵ . (1000ms at fw=32768Hz)	

S3C72H8/P72H8 TIMERS AND COUNTER

GATE TIMES

When you writes a value to FCMOD, the FC gate is open for a selected interval, starting a falling clock edge. When the gate is open, the frequency at the FCL, C0OUT or C1OUT pin is counted by the 16-bit counter. When the gate closes, the gate flag(GATEF) is set to one. An interrupt is then generated and the gate interrupt request flag(IRQG) is set.

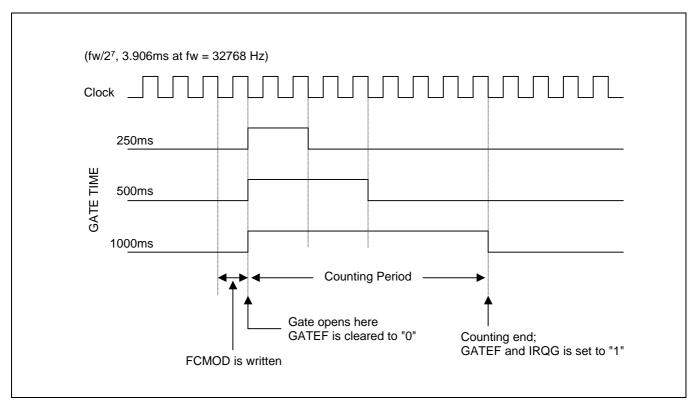


Figure 11-5. Gate Timing Diagram

TIMERS AND COUNTER S3C72H8/P72H8

WATCH TIMER

OVERVIEW

The watch timer is a multi-purpose timer which consists of three basic components:

- 8-bit watch timer mode register (WMOD)
- Clock selector
- Frequency divider circuit

Watch timer functions include real-time and watch-time measurement and interval timing for the main and subsystem clock. It is also used as a clock source for the LCD controller, VLD, voltage booster and for generating buzzer (BUZ) output.

Real-Time and Watch-Time Measurement

To start watch timer operation, set bit 2 and 3 of the watch timer mode register (WMOD.2, .3) to logic one or zero. The watch timer starts, the interrupt request flag IRQW is automatically set to logic one, and interrupt requests commence in 1, 0.5 or 0.25-second or 3.91mili-second intervals.

Since the watch timer functions as a quasi-interrupt instead of a vectored interrupt, the IRQW flag should be cleared to logic zero by program software as soon as a requested interrupt service routine has been executed.

Using a Main System or Subsystem Clock Source

The watch timer can generate interrupts based on the main system clock frequency or on the subsystem clock. When the zero bit of the WMOD register is set to "1", the watch timer uses the subsystem clock signal (fxt) as its source; if WMOD.0 = "0", the main system clock (fx) is used as the signal source, according to the following formula:

Watch timer clock (fw) =
$$\frac{\text{System clock (fxx)}}{128}$$
 = 32.768 kHz (assuming fx = 4.19 MHz)

This feature is useful for controlling timer-related operations during stop mode. When stop mode is engaged, the main system clock (fx) is halted, but the subsystem clock continues to oscillate. By using the subsystem clock as the oscillation source during stop mode, the watch timer can set the interrupt request flag IRQW to "1", thereby releasing stop mode.

Clock Source Generation for LCD Controller

The watch timer supplies the clock frequency for the LCD controller (fLCD). Therefore, if the watch timer is disabled, the LCD controller does not operate.

Buzzer Output Frequency Generator

The watch timer can generate a steady 2 kHz, 4 kHz, 8 kHz, or 16 kHz signal to the BUZ pin. To select the desired BUZ frequency, load the appropriate value to the WMOD register. This output can then be used to actuate an external buzzer sound. To generate a BUZ signal, three conditions must be met:

- The WMOD.7 register bit (F89H.3) must be set to "1"
- The output latch for I/O port 3.3 must be cleared to "0"
- The port 3.3 output mode flag (PM3.3) must be set to 'output' mode

S3C72H8/P72H8 TIMERS AND COUNTER

Timing Tests in High-Speed Mode

By setting WMOD.2 and 3 (F88H.2-3) to "11", the watch timer will function in high-speed mode, generating an interrupt every 3.91 ms. High-speed mode is useful for timing events for program debugging sequences.

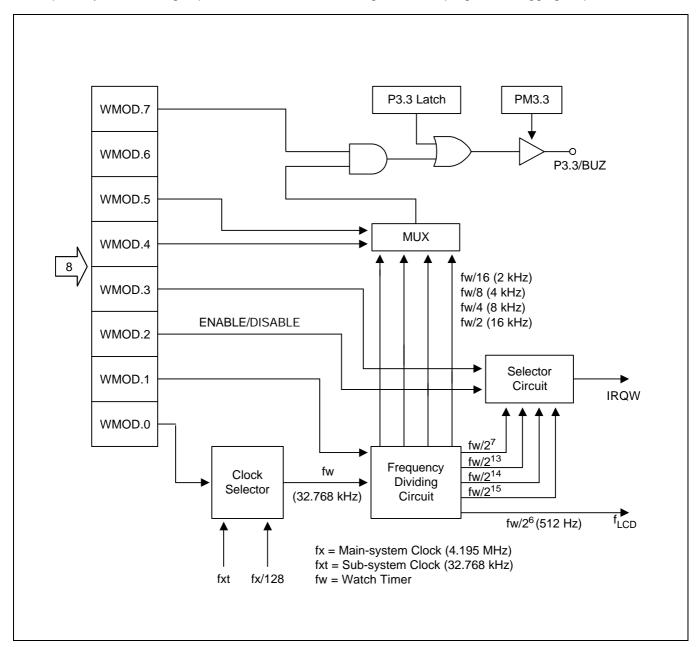


Figure 11-6. Watch Timer Circuit Diagram

TIMERS AND COUNTER S3C72H8/P72H8

WATCH TIMER MODE REGISTER (WMOD)

The watch timer mode register WMOD is used to select specific watch timer operations. It is mapped to RAM locations F88H-F89H and is 8-bit write-only addressable. A RESET automatically all WMOD bits to logic zero.

F88H	WMOD.3	WMOD.2	WMOD.1	WMOD.0
F89H	WMOD.7	"0"	WMOD.5	WMOD.4

In summary, WMOD settings control the following watch timer functions:

- Watch timer clock selection (WMOD.0)
- Enable/disable watch timer (WMOD.1)
- Watch timer speed control (WMOD.2 and WMOD.3)
- Buzzer frequency selection (WMOD.4 and WMOD.5)
- Enable/disable buzzer output (WMOD.7)

Table 11-10. Watch Timer Mode Register (WMOD) Organization

Bit Name	Values		Function	Address
WMOD.7	0		Disable buzzer (BUZ) signal output	
	,	1	Enable buzzer (BUZ) signal output	
WMOD.6	()	Always logic zero	
WMOD.54	0	0	2 kHz buzzer (BUZ) signal output	F89H
	0	1	4 kHz buzzer (BUZ) signal output	
	1	0	8 kHz buzzer (BUZ) signal output	
	1 1		16 kHz buzzer (BUZ) signal output	
WMOD.32	0 0		Sets IRQW to 1 seconds	
	0 1		Sets IRQW to 0.5 seconds	
	1	0	Sets IRQW to 0.25 seconds	
	1 1		Sets IRQW to 3.91 mili-seconds	F88H
WMOD.1	0		Disable watch timer; clear frequency dividing circuits	
	1		Enable watch timer	
WMOD.0	0		Select (fx/128) as the watch timer clock	
		1	Select subsystem clock as watch timer clock	

NOTE: Main system clock frequency (fx) is assumed to be 4.19 MHz.

S3C72H8/P72H8 TIMERS AND COUNTER

PROGRAMMING TIP — Using the Watch Timer

1. Select a subsystem clock as the LCD display clock, a 0.5 second interrupt, and 2 kHz buzzer enable:

BITS EMB
SMB 15
LD EA,#80H

LD PMG1,EA ; P3.3 \leftarrow output mode

BITR P3.3 LD EA,#87H LD WMOD,EA BITS IEW

2. Sample real-time clock processing method:

• ; Yes, 0.5 second interrupt generation

•

• ; Increment HOUR, MINUTE, SECOND

S3C72H8/P72H8 COMPARATOR

12 COMPARATOR

OVERVIEW

The S3C72H8 micro-controller has a built-in comparator circuit which allows comparison of a non-inverting and a inverting input. This comparator specially is used in thermostat controller application. It is very useful in Resistor-to-Frequency conversion method where resistor value converts to frequency using as an RC oscillator, to detect analog value instead of Analog-to-Digital converter.

The comparator block works only when CMPCON.2 is set. If non-inverting input level is lower than the inverting input voltage, CMPCON.3 will be cleared. If non-inverting input level is higher, CMPCON.3 will be set. This comparator output can be clock source for frequency counter block. Please do not operate the comparator block in order to minimize power current consumption.

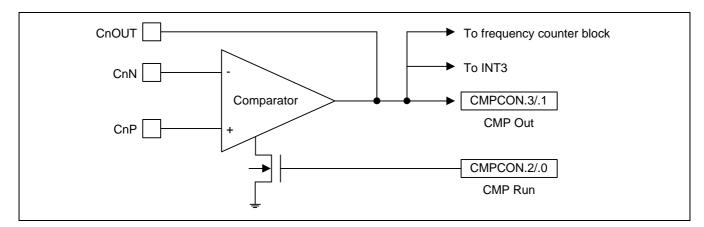


Figure 12-1. Block diagram for Comparator

Table 12-1. Control Register Description

FE1H CMPCON

Bit	Description
CMPCON.3 (Read only)	0 : Comparator 1 (C1Out) Output is low when C1P ≤ C1N 1 : Comparator 1 (C1Out) Output is high when C1P > C1N
CMPCON.2 0 : Disable Comparator 1	
	1 : Enable Comparator 1
CMPCON.1 (Read only)	0 : Comparator 0 (C0Out) Output is low when C0P ≤ C0N 1 : Comparator 0 (C0Out) Output is high when C0P > C0N
CMPCON.0	0 : Disable Comparator 0
	1 : Enable Comparator 0

COMPARATOR S3C72H8/P72H8

Table 12-2. Control Register Description

FD6H PNE

	Bit	Description
		0 : Comparator 0 (C0Out) Output is C-MOS push-pull port. 1 : Comparator 0 (C0Out) Output is N-Ch open drain port.
PNE.3 0 : Comparator 1 (C1Out) Output is C-MOS push-pull port. 1 : Comparator 1 (C1Out) Output is N-Ch open drain port.		0 : Comparator 1 (C1Out) Output is C-MOS push-pull port. 1 : Comparator 1 (C1Out) Output is N-Ch open drain port.

Table 12-3. Characteristics of Comparator Circuit

 $(T_A = -40 \, ^{\circ}C \text{ to } + 85 \, ^{\circ}C)$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operating Voltage of Comparator	V _{DDCOM}	-	1.8	-	5.5	V
Comparator Input	V_{CP}	Non-inverted input(CnP)	V _{SS} -0.3	ı	V _{DD} +0.3	V
Voltage	V_{CN}	Inverted input(CnN)	V _{SS} -0.3	ı	V _{DD} +0.3	
Comparator Offset Voltage	V _{OF}	VI = 0.5 V to 2.5 V when $V_{DD} = 3 V$	_	-	15	mV
Response Time	T _{DA}	When $V_{DD} = 5 \text{ V}$, $V_{CP} = 2.5 \text{ V}$, $V_{CN} = \text{VCP} \pm 15 \text{ mV}$	_	_	3	uS
Output low current	I _{OL}	When $V_{DD} = 5 \text{ V}$, $V_{OL} = 0.5 \text{ V}$	-6	-12	_	mA
Output high current	I _{ОН}	When $V_{DD} = 5 V$, $V_{OH} = 4.5 V$	+4	+10	_	

13

VOLTAGE LEVEL DETECTOR

OVERVIEW

The S3C72H8 micro-controller has a built-in VLD (Voltage Level Detector) circuit which allows detection of power voltage drop or external input level through software. Turning the VLD operation on and off can be controlled by software. Because the IC consumes a large amount of current during VLD operation. It is recommended that the VLD operation should be kept OFF unless it is otherwise necessary. Also the VLD criteria voltage can be set by the software. The criteria voltage can be set by matching to one of the 4 kinds of voltage below that can be used.

2.2 V, 2.4 V, 3.0 V or 4.0 V (V_{DD} reference voltage), or external input level (external reference voltage)

The VLD block works only when VLDCON.2 is set. If V_{DD} level is lower than the reference voltage selected with VLDCON.1-.0, VLDCON.3 will be set. If V_{DD} level is higher, VLDCON.3 will be cleared. Please do not operate the VLD block in order to minimize power current consumption.

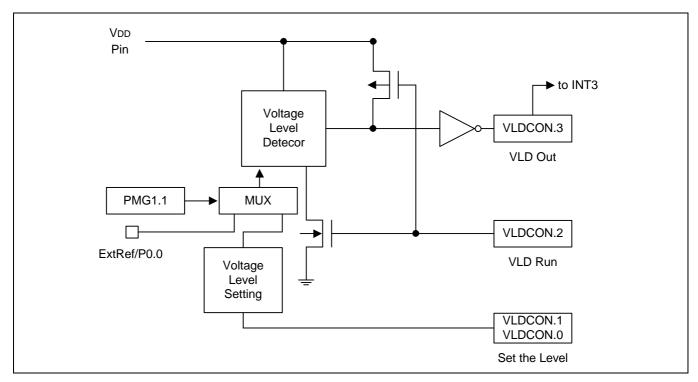


Figure 13-1. Block Diagram for Voltage Level Detect

When VLDCON.2 = 1 and V_{DD} level is lower than VLDCON.0, .1 setting level, VLDCON.3 = 1. When VLDCON.2 = 1 and V_{DD} level is higher than VLDCON.0, .1 setting level, VLDCON.3 = 0.

VOLTAGE LEVEL DETECTOR S3C72H8/P72H8

VOLTAGE LEVEL DETECTOR CONTROL REGISTER(VLDCON)

The bit 2 of VLDCON controls to run or disable the operation of Voltage level detect. Basically this VVLD is set as 2.2V by system reset and it can be changed in 4 kind voltage by selecting Voltage Level Detect Control register(VLDCON). When you write 2 bit data value to VLDCON, an established resistor string is selected and the VVLD is fixed in accordance with this resistor. Table 13-1 shows specific VVLD of 4 levels.

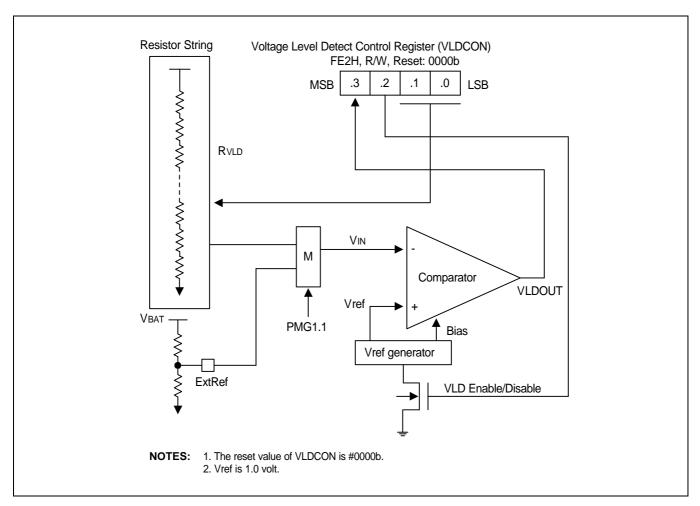


Figure 13-2. Voltage Level Detect Circuit and Control Register

Table 13-1. VLDCON value and Detection level.

VLDCON.1, .0	V_{VLD}	VLDOUT (VLDCON.3)
0 0	2.2V	
0 1	2.4V	Low(0), when VLD is enabled and $\mathbf{V}_{IN} > \mathbf{V}_{REF}$.
1 0	3.0V	High(1), when VLD is enabled and $\mathbf{V}_{IN} < \mathbf{V}_{REF}$.
1 1	4.0V	

Table 13-2. PMG1.1 value and reference input.

PMG1.1	Reference input				
0	Internal reference mode (P0.0 in/out circuit and pull-up resistor can be assigned by program.)				
1	External reference mode (P0.0 in/out circuit and pull-up resistor are automatically disabled.)				

Table 13-3. Characteristics of Voltage Level Detect circuit

 $(T_A = 25 \,^{\circ}C)$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operating Voltage of VLD	V_{DDVLD}	_	1.8	_	5.5	V
Voltage of VLD	V_{VLD}	VLDCON = 00b	2.05	2.2	2.35	V
		VLDCON = 01b	2.23	2.4	2.57	
		VLDCON = 10b	2.78	3.0	3.22	
		VLDCON = 11b	3.65	4.0	4.35	
Current consumption	I_{VLD}	VLD on $V_{DD} = 5.5 \text{ V}$		17	25	uA
		V _{DD} = 3.0 V	_	10	13	
		V _{DD} = 2.2 V		6.5	8.1	
		V _{DD} = 1.8 V		4.7	5.7	
Hysteresys Voltage of	ΔV	VLDCON = 00b	_	10	100	mV
VLD		VLDCON = 11b				
Response time of VLD	TV	fw = 32.768kHz			1.0	ms

NOTE: To use VLD, Watch timer must be enabled.

S3C72H8/P72H8 VOLTAGE BOOSTER

14

VOLTAGE BOOSTER

OVERVIEW

This voltage booster works for the power control of LCD: generates 3 x V_R (V_{LC2}), 2 x V_R (V_{LC1}), 1 x V_R (V_{LC0}) for 1/3 bias LCD, or 2 x V_R (V_{LC2} , V_{LC1}), 1 x V_R (V_{LC0}) for 1/2 bias LCD. This voltage booster allows low voltage operation of LCD display with high quality. This voltage booster circuit provides constant LCD contrast level even though battery power supply was lowered.

This voltage booster include voltage regulator, and voltage charge/pump circuit.

FUNCTION DESCRIPTION

The voltage booster has built for driving the LCD. The voltage booster provides the capability of directly connecting an LCD panel to the MCU without having to separately generate and supply the higher voltages required by the LCD panel. The voltage booster operates on an internally generated and regulated LCD system voltage and generates a doubled and a tripled voltage levels to supply the LCD drive circuit. External capacitor are required to complete the power supply circuits.

The V_{DD} power line is regulated to get the V_{LC0} (V_R) level, which become a base level for voltage boosting. Then a doubled and a tripled voltage will be made by capacitor charge and pump circuit.

LCON.0 control the voltage booster operation. See the 15. LCD CONTROLLER/DRIVER for detail information.

VOLTAGE BOOSTER S3C72H8/P72H8

BLOCK DIAGRAM

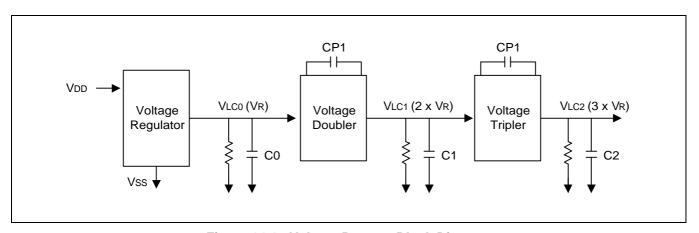


Figure 14-1. Voltage Booster Block Diagram

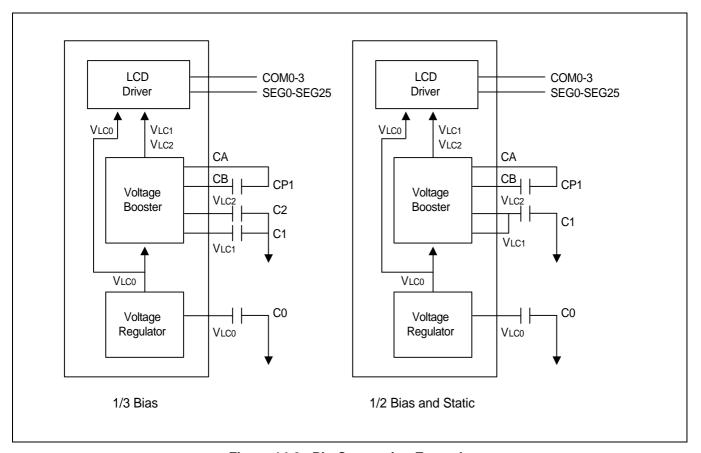


Figure 14-2. Pin Connection Example

S3C72H8/P72H8 VOLTAGE BOOSTER

Table 14-1. Voltage booster Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply Voltage	V _{DD}	- 0.3 - 6.5	V
Operating Temperature Range	T _{OPR}	- 40 - + 85	°C
Storage Temperature Range	T _{STG}	- 65 - + 150	°C

Table 14-2. Voltage booster Electrical Characteristics

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Operating Voltage	V_{DD}		1.8	-	5.5	V
Regulated Voltage	V _{LC0}	I _{LC0} = 5 uA, 1/3bias mode	0.9	1.0	1.1	V
Booster Voltage	V _{LC1}	V_{LC1} Connect 1M Ω load between V_{SS} and V_{LC1}		-	2V _{LC0} + 0.1	V
	V _{LC2}	Connect 1M Ω load between V_{SS} and V_{LC2}	3V _{LC0} - 0.1	-	3V _{LC0} + 0.1	V
Regulated Voltage	V _{LC0}	I _{LC0} = 5 uA, 1/2bias mode	1.45	1.60	1.75	V
Booster Voltage	V _{LC1}	Connect 1M Ω load between V _{SS} and V _{LC1}	2V _{LC0} - 0.1	-	2V _{LC0} + 0.1	V
	V_{LC2}	Connect 1M Ω load between V _{SS} and V _{LC2}				
Operating current consumption	I _{VB}	$V_{\rm DD}$ =3.0V, without load at $V_{\rm LC0}$, $V_{\rm LC1}$, and $V_{\rm LC2}$	_	3	6	uA

NOTES:

- 1. To use voltage booster, watch timer must be enabled.
- 2. We recommend $0.1\mu F$ for external capacitor.

15 LCD CONTROLLER/DRIVER

OVERVIEW

The S3C72H8 microcontroller can directly drive an up-to-13-digit (104-segment) LCD panel. The LCD module has the following components:

- LCD controller/driver
- Display RAM (1E6H-1FFH) for storing display data
- 26 segment output pins (SEG0 SEG25)
- Four common output pins (COM0 COM3)
- Three LCD operating power supply pins (V_{LC0} -V_{LC2})

Bit settings in the LCD mode register, LMOD, determine the LCD frame frequency, duty and bias, and the segment pins used for display output. When a subsystem clock is selected as the LCD clock source, the LCD display is enabled even during stop and idle modes.

The LCD control register LCON turns the LCD display on and off and switches current to the charge-pump circuits for the display. LCD data stored in the display RAM locations are transferred to the segment signal pins automatically without program control.

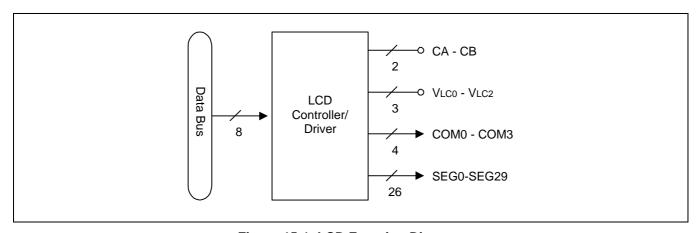


Figure 15-1. LCD Function Diagram

LCD CONTROLLER/DRIVER S3C72H8/P72H8

LCD CIRCUIT DIAGRAM

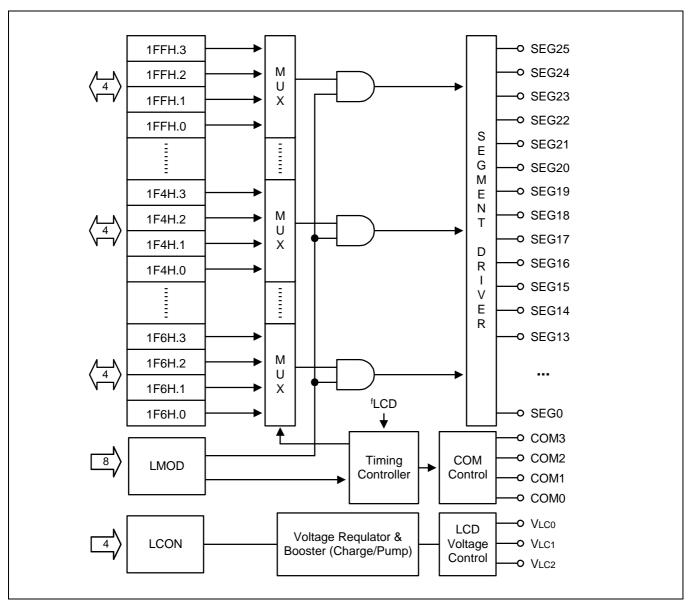


Figure 15-2. LCD Circuit Diagram

S3C72H8/P72H8 LCD CONTROLLER/DRIVER

LCD RAM ADDRESS AREA

RAM addresses 1E6H - 1FFH are used as LCD data memory. These locations can be addressed by 1-bit or 4-bit instructions. When the bit value of a display segment is "1", the LCD display is turned on; when the bit value is "0", the display is turned off.

Display RAM data are sent out through segment pins SEG0-SEG25 using a direct memory access (DMA) method that is synchronized with the ^fLCD signal. RAM addresses in this location that are not used for LCD display can be allocated to general-purpose use.

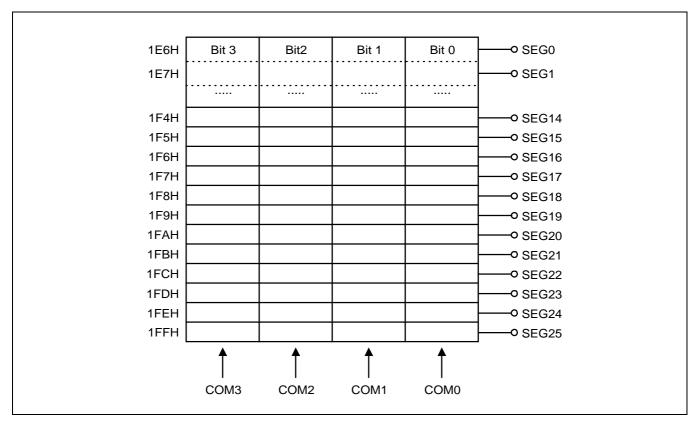


Figure 15-3. LCD Display Data RAM Organization

Table 15-1. Display RAM Bits and Sync Clock per Duty Cycle

LCD Duty Cycle	Display RAM Bits (1E6H-1FFH)	Display Synchronization Clock (f _{LCD})
Static	Bit 0	СОМО
1/2	Bits 0-1	COM0-COM1
1/3	Bits 0-2	COM0-COM2
1/4	Bits 0-3	COM0-COM3

LCD CONTROLLER/DRIVER S3C72H8/P72H8

LCD CONTROL REGISTER (LCON)

LCON is a 4-bit write-only register that is mapped to RAM address F8EH. Bit values in the LCON register turn the LCD display on and off and control the flow of current to charge-pump circuits in the LCD circuit. After a RESET, all LCON values are cleared to "0". (This turns the LCD display off and stops the pumping operation of voltage booster.)

Only one bit in the LCON register is used for LCD display control the LSB, LCON.0. The effect of the LCON.0 setting is dependent upon the current setting of the third bit of the LMOD register, LMOD.3:

- If LCON.0 is "1" and LMOD.3 is "0", the LCD display is turned off;
- If LCON.0 is "1" and LMOD.3 is "1", the LCD display is turned on and the COM and SEG signal outputs operate in normal display mode.

When LCON.0 is logic zero, the LCD display is turned off and the current to the charge/pump circuit is turned off, despite the current LMOD.3 value.

LCON Bit	Setting	Description		
LCON.3	0	Always logic zero.		
LCON.2	0	ways logic zero.		
LCON.1	0	Always logic zero.		
LCON.0	0	LCD output low; turn display off and turn off voltage regulator & booster.		
	1	Turn on voltage regulator & booster		
		If LMOD.3 = "0": LCD output low; turn display off. If LMOD.3 = "1": COM and SEG output in display mode; turn display on.		

Table 15-2. LCD Control Register (LCON) Organization

Table 15-3. Relationship of LCON.0 and LMOD.3 Bit Settings

LCON.0	LMOD.3	COM0-COM3	SEG0-SEG25	Voltage Reg. & Booster
0	х	Output low; LCD display off	Output low; LCD display off	Off, cut off current path in Voltage regulator & booster
1	0	Output low; LCD display off	Output low; LCD display off	On, turn on current path in
	1	COM output corresponds to display mode	SEG output corresponds to display mode	Voltage regulator & booster

NOTE: 'x' means 'don't care.

S3C72H8/P72H8 LCD CONTROLLER/DRIVER

LCD MODE REGISTER (LMOD)

The LCD mode control register LMOD is mapped to RAM addresses F8CH-F8DH. Although the LMOD register can be manipulated using 8-bit write instructions, bit 3 (LMOD.3) can be also written by 1-bit instructions.

F8CH	LMOD.3	LMOD.2	LMOD.1	LMOD.0
F8DH	0	0	LMOD.5	LMOD.4

LMOD controls these LCD functions:

- LCD enable/disable (LMOD.3)
- Duty selection (LMOD.2-LMOD.0)
- LCDCK clock frequency selection (LMOD.5-LMOD.4)

The LCD clock signal, LCDCK, determines the frequency of COM signal scanning of each segment output. This is also referred to as the 'frame frequency.' Since LCDCK is generated by dividing the watch timer clock (fw), the watch timer must be enabled when the LCD display is turned on. RESET clears the LMOD register values to logic zero. This produces the following LCD control settings:

- Display is turned off
- LCDCK frequency is the watch timer clock (fw)/29 = 64 Hz

The LCD display can continue to operate during idle and stop modes if a subsystem clock is used as the watch timer source.

1/2 Duty 1/4 Duty **LCDCK Frequency Static** 1/3 Duty fw/29 (64 Hz) 64 32 21 16 fw/28 (128 Hz) 128 64 43 32 fw/27 (256 Hz) 256 128 85 64 fw/26 (512 Hz) 512 256 171 128

Table 15-4. LCD Clock Signal (LCDCK) Frame Frequency

NOTES:

- 1. 'fw' is the watch timer clock frequency of 32.768 kHz.
- 2. The watch timer clock frequency for LCDCK is shown in parentheses in column one.

LCD CONTROLLER/DRIVER S3C72H8/P72H8

Table 15-5. LCD Mode Control Register (LMOD) Organization

LMOD.7	LMOD.6	
0	0	Always 0.

LMOD.5	LMOD.4	LCD Clock (LCDCK) Frequency		
0	0	2.768 kHz watch timer clock (fw)/ $2^9 = 64 \text{ Hz}$		
0	1	$fw/2^8 = 128 Hz$		
1	0	$fw/2^7 = 256 Hz$		
1	1	$fw/2^6 = 512 Hz$		

LMOD.3	LMOD.2	LMOD.1	LMOD.0	Duty and Bias Selection for LCD Display
0	Х	Х	х	LCD display off
1	0	0	0	1/4 duty, 1/3 bias
1	0	0	1	1/3 duty, 1/3 bias
1	0	1	1	1/3 duty, 1/2 bias
1	0	1	0	1/2 duty, 1/2 bias
1	1	1	0	Static

NOTE: 'x' means 'don't care.'

Table 15-6. Maximum Number of Display Digits Per Duty Cycle

LCD Duty	LCD Bias	COM Output Pins	Maximum Seg Display
Static	Static	COM0	26
1/2	1/2	COM0-COM1	26 x 2
1/3	1/3 or 1/2	COM0-COM2	26 x 3
1/4	1/3	COM0-COM3	26 x 4

S3C72H8/P72H8 LCD CONTROLLER/DRIVER

LCD DRIVE VOLTAGE

The LCD display is turned on only when the voltage difference between the common and segment signals is greater than V_{LCD} . The LCD display is turned off when the difference between the common and segment signal voltages is less than V_{LCD} . The turn-on voltage, + V_{LCD} or - V_{LCD} , is generated only when both signals are the selected signals of the bias. Table 15-7 shows LCD drive voltages for static mode and 1/3 bias.

Table 15-7. LCD Drive Voltage Values

LCD Power Supply	Static Mode	1 / 2 Bias	1 / 3 Bias
V_{LC2}	V _{LCD}	V _{LCD}	V_{LCD}
V _{LC1}	-	V _{LCD}	2/3 V _{LCD}
V _{LC0}	-	1/2 V _{LCD}	1/3 V _{LCD}
V _{SS}	0 V	0 V	0 V

NOTE

The LCD panel display may deteriorate if a DC voltage is applied that lies between the common and segment signal voltage. Therefore, always drive the LCD panel with AC voltage.

LCD CONTROLLER/DRIVER S3C72H8/P72H8

LCD SEG/COM SIGNALS

The 26 LCD segment signal pins are connected to corresponding display RAM locations at 1E6H-1FFH. Bits 0-3 of the display RAM are synchronized with the common signal output pins COM0, COM1, COM2, and COM3.

When the bit value of a display RAM location is "1", a select signal is sent to the corresponding segment pin. When the display bit is "0", a 'no-select' signal is sent to the corresponding segment pin. Each bias has select and no-select signals.

Table 15-8. Select/No-Select Signals for LCD Static Display Mode

SEG	Select	Non-select
COM	V_{LC2}/V_{SS}	V_{SS}/V_{LC2}
V _{SS} / V _{LC2}	- V _{LCD} / + V _{LCD}	0 V / 0 V

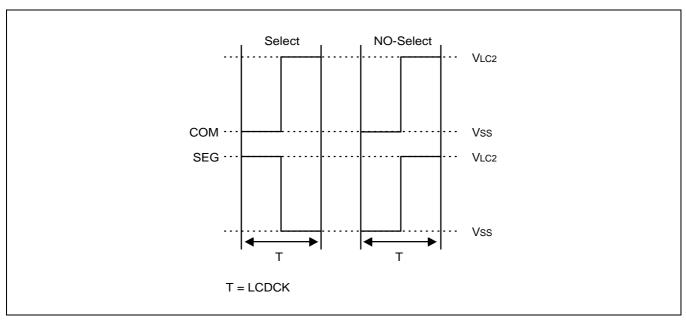


Figure 15-4. Select/No-Select Bias Signals in Static Display Mode

S3C72H8/P72H8 LCD CONTROLLER/DRIVER

Table 15-9. Select/No-Select Signals for LCD 1/2 Bias Display Mode Table

	SEG	Select	Non-select
COM		$V_{LC1,2} / V_{SS}$	V _{SS} / V _{LC1,2}
Select	V _{SS} / _{VLC1,2}	- V _{LCD} / + V _{LCD}	0 V / 0 V
Non-select	V _{LC0}	- 1/2 V _{LCD} / + 1/2 V _{LCD}	+ 1/2 V _{LCD} / - 1/2 V _{LCD}

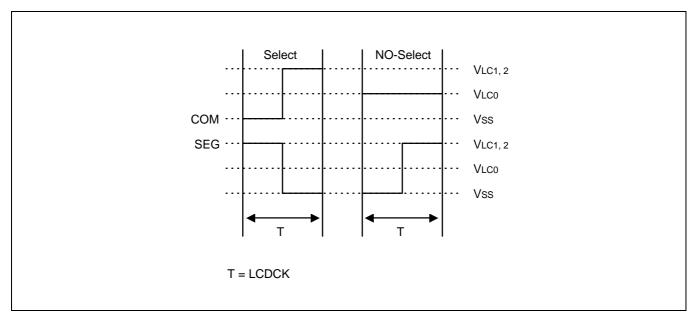


Figure 15-5. Select/No-select Bias Signals in 1/2 Bias Display Mode

LCD CONTROLLER/DRIVER S3C72H8/P72H8

Table 15-10. Select/No-Select Signals for LCD 1/3 Bias Display Mode

	SEG	Select	Non-select
COM		V_{LC2}/V_{SS}	V _{LC0} / V _{LC1}
Select	V _{SS} / V _{LC2}	- V _{LCD} / + V _{LCD}	- 1/3 V _{LCD} / + 1/3 V _{LCD}
Non-select	V _{LC1} / V _{LC0}	- 1/3 V _{LCD} / + 1/3 V _{LCD}	+ 1/3 V _{LCD} / - 1/3 V _{LCD}

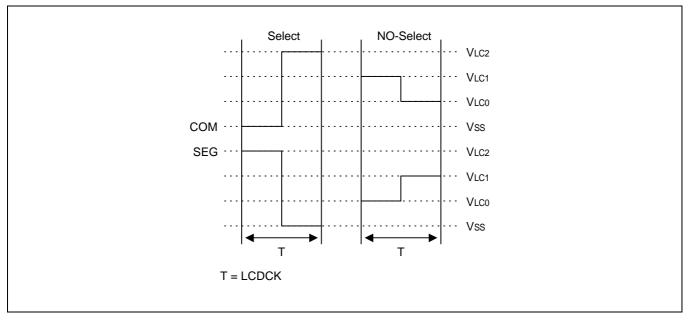


Figure 15-6. Select/No-Select Signals in 1/3 Bias Display Mode

S3C72H8/P72H8 ELECTRICAL DATA

16 ELECTRICAL DATA

OVERVIEW

In this section, information on S3C72H8 electrical characteristics is presented as tables and graphics. The information is arranged in the following order:

Standard Electrical Characteristics

- Absolute maximum ratings
- D.C. electrical characteristics
- Main system clock oscillator characteristics
- Subsystem clock oscillator characteristics
- I/O capacitance
- A.C. electrical characteristics
- Operating voltage range

Miscellaneous Timing Waveforms

- A.C timing measurement point
- Clock timing measurement at X_{IN}
- Clock timing measurement at XT_{IN}
- TCL timing
- Input timing for RESET
- Input timing for external interrupts

Stop Mode Characteristics and Timing Waveforms

- RAM data retention supply voltage in stop mode
- Stop mode release timing when initiated by RESET
- Stop mode release timing when initiated by an interrupt request

ELECTRICAL DATA S3C72H8/P72H8

Table 16-1. Absolute Maximum Ratings

 $(T_A = 25 \,^{\circ}C)$

Parameter	Symbol	Conditions	Rating	Units
Supply Voltage	V_{DD}	_	- 0.3 to + 6.5	V
Input Voltage	V _{IN}	-	- 0.3 to V _{DD} + 0.3	
Output Voltage	Vo	All I/O ports	-0.3 to $V_{DD} + 0.3$	
Output Current High	I _{OH}	One I/O pin active	-7	mA
		All I/O ports active	- 40	
Output Current Low	I _{OL}	One I/O pin active	+ 15	mA
		Total pin circuit	+ 60	
Operating Temperature	T _A	_	- 40 to + 85	°C
Storage Temperature	T _{STG}	_	- 65 to + 150	

Table 16-2. D.C. Electrical Characteristics

 $(T_A = -40 \, ^{\circ}\text{C to} + 85 \, ^{\circ}\text{C}, \, V_{DD} = 1.8 \, \text{V to} \, 5.5 \, \text{V})$

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Operation	V_{DD}	F _{OSC} = 6 MHz	2.7	-	5.5	V
voltage		(CPU clock = 1.25 MHz)				
		F _{OSC} = 4.19 MHz	2.0		5.5	
		(Instruction clock = 1.04 MHz)				
		F _{OSC} = 3 MHz	1.8		5.5	
		(CPU clock = 0.75 MHz)				
Input High	V _{IH1}	P0, P2, P3, P4, P5 and P6	0.8 V _{DD}	-	V_{DD}	
voltage	V_{IH2}	RESET	0.85 V _{DD}		V_{DD}	
	V _{IH3}	X _{IN}	V _{DD} -0.1		V_{DD}	
Input low	V _{IL1}	P0, P2, P3, P4, P5 and P6		_	0.2 V _{DD}	
voltage	V _{IL2}	RESET			0.3 V _{DD}	
	V _{IL3}	X _{IN}			0.1	
Output high	V _{OH1}	V _{DD} = 5.0V	V _{DD} – 1.0	_	_	V
voltage		$I_{OH} = -1 \text{ mA}$				
		All output pins				
		$I_{OH} = -100 \mu\text{A}$	V _{DD} - 0.5			
Output low	V _{OL1}	$V_{DD} = 5.0 \text{ V}, I_{OL} = 2 \text{ mA}$	_	0.4	0.5	
voltage		All output pins except V _{OL2}				
	V _{OL2}	V _{DD} = 5.0 V, I _{OL} = 15 mA		0.4	1.0	
		Ports 2,3, and 4				

S3C72H8/P72H8 ELECTRICAL DATA

Table 16-2. D.C. Electrical Characteristics (Continued)

 $(T_A = -40 \,^{\circ}\text{C to} + 85 \,^{\circ}\text{C}, \, V_{DD} = 1.8 \,\,\text{V to} \,\, 5.5 \,\,\text{V})$

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Input high leakage current (note)	I _{LIH1}	V _{IN} = V _{DD} All input pins	-	I	3	μA
Input low leakage current (note)	I _{LIL1}	$V_{IN} = V_{DD}$; All input pins except RESET	-	1	-3	
Output high leakage current (note)	I _{LOH}	V _{OUT} = V _{DD} All I/O pins and output pins	-	-	3	
Output low leakage current (note)	I _{LOL}	V _{OUT} = 0 V All I/O pins and output pins	-	-	-3	
Pull-up resistors	R _{L1}	$V_{IN} = 0 \text{ V}, V_{DD} = 5 \text{ V}$ $T_A = 25 \text{ °C}, \text{ Ports } 0\text{-}6$	25	47	100	ΚΩ
		V _{DD} = 3 V	50	90	150	
	R _{L2}	$V_{IN} = 0 \text{ V}; V_{DD} = 5.0 \text{ V}$ $T_A = 25 \text{ °C}, \text{ RESET}$	150	250	350	
Oscillator feed back resistors	R _{OSC1}	$V_{DD} = 5.0 \text{ V}, T_{A} = 25 ^{\circ}\text{C}$ $X_{IN} = V_{DD}, X_{OUT} = 0\text{V}$	400	700	1200	
	R _{OSC2}	$V_{DD} = 5.0 \text{ V}, T_{A} = 25 ^{\circ}\text{C}$ $XT_{IN} = V_{DD}, XT_{OUT} = 0V$	1000	1500	3000	-
V _{LC1} -COMi Voltage Drop (I = 0-3)	V _{DC}	-15 uA per common pin	-	_	120	mV
V _{LC1} -SEGi Voltage Drop (I = 0-25)	V _{DS}	-15 uA per segment pin	-	-	120	

 $\textbf{NOTE} : \mathsf{Except} \ \mathsf{X}_{\mathsf{IN}}, \ \mathsf{X}_{\mathsf{OUT}}, \ \mathsf{XT}_{\mathsf{IN}}, \ \mathsf{XT}_{\mathsf{OUT}}$

ELECTRICAL DATA S3C72H8/P72H8

Table 16-2. D.C. Electrical Characteristics (Continued)

 $(T_A = -40 \,^{\circ}\text{C to} + 85 \,^{\circ}\text{C}, \, V_{DD} = 1.8 \,\text{V to} \, 5.5 \,\text{V})$

Parameter	Symbol	Conditions		Min	Тур	Max	Units
Supply Current ^(note)	I _{DD1}	Main operation mode: V _{DD} = 5 V ± 10%, 6-MHz cry	Main operation mode: V _{DD} = 5 V ± 10%, 6-MHz crystal			8	mA
		V _{DD} = 5 V ± 10%, 4.19 MHz			2.5	5.5	
		$V_{DD} = 3 \text{ V} \pm 10\%, 6\text{-MHz cry}$	/stal		1.6	4	
		V _{DD} = 3 V ± 10%, 4.19 MHz			1.2	3	
	I _{DD2}	Main Idle mode: V _{DD} = 5 V ± 10%, 6-MHz cry	/stal	_	1.8	3.5	
		$V_{DD} = 5 \text{ V} \pm 10\%, 4.19 \text{ MHz}$			1.4	3.0	
		$V_{DD} = 3 V \pm 10\%, 6-MHz cry$	/stal		0.6	1.2	
		$V_{DD} = 3 V \pm 10\%, 4.19 MHz$		0.5	1.1		
	I _{DD3}	Sub operation mode: $V_{DD} = 3 \text{ V}$, 32768Hz Main OSC stop, except I_{VB} , I_{VLD} , Icomp, I_{LCD} and external load.		1	15	30	uA
	I _{DD4}	Sub Idle mode; V _{DD} = 3.0, 32768Hz Main OSC stop, except I _{VB} , I _{VLD} , Icomp, I _{I CD} and external load.		-	6	15	
	I _{DD5}	Stop mode; Main & Sub OSC stop, V _{DD} =5 V ± 10% except I _{VD} , I _{VLD} , Icomp and external load.	SCMOD = 0100B XT _{IN} = 0V-	-	0.3	3	uA
		Stop & Sub OSC stop, $V_{DD} = 3 \text{ V, except I}_{VD,}$ $I_{VLD,}$ Lcomp and external load.			0.1	1	

NOTE: Supply current does not include current drawn through internal pull-up resistors or external output current loads. I_{LCD} is LCD controller/driver operating current, I_{VB} is voltage booster current, Icomp is comparator current and I_{VLD} is voltage level detector current.

Table 16-3. Data Retention Supply Voltage in Stop Mode

 $(T_A = -40 \, ^{\circ}C \text{ to } + 85 \, ^{\circ}C)$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Data retention supply voltage	V _{DDDR}		1.0	-	5.5	V
Data retention supply current	I _{DDDR}	V _{DDDR} = 1.0 V Stop mode; Main & Sub OSC stop. except I _{VB} , I _{VLD} , I _{LCD} and external load.	-	-	1	uA

S3C72H8/P72H8 ELECTRICAL DATA

Table 16-4. Main System Clock Oscillator Characteristics

$$(T_A = -40 \,^{\circ}\text{C} + 85 \,^{\circ}\text{C}, \, V_{DD} = 1.8 \,\text{V to } 5.5 \,\text{V})$$

Oscillator	Clock Configuration	Parameter	Test Condition	Min	Тур	Max	Units
Ceramic Oscillator	XIN XOUT C1 C2	Oscillation frequency (1)		0.4	1	6.0	MHz
		Stabilization time (2)	Stabilization occurs when V _{DD} is equal to the minimum oscillator voltage range.	-	I	4	ms
Crystal Oscillator	XIN XOUT C1 C2	Oscillation frequency (1)		0.4	1	6	MHz
		Stabilization time (2)	$V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}$	_	-	10	ms
			$V_{DD} = 2.0 \text{ V to } 4.5 \text{ V}$	_	-	30	
External Clock	XIN XOUT	X _{IN} input frequency ⁽¹⁾	_	0.4	I	6.0	MHz
		X _{IN} input high and low level width (t _{XH} , t _{XL})	_	83.3	-	-	ns
RC Oscillator	XIN XOUT	Frequency (1)	$V_{DD} = 5 \text{ V}$ $R = 25 \text{ K}, V_{DD} = 5 \text{ V}$ $R = 50 \text{ K}, V_{DD} = 3 \text{ V}$	0.4	- 2.0 1.0	2.5	MHz

NOTES:

- 1. Oscillation frequency and \mathbf{X}_{IN} input frequency data are for oscillator characteristics only.
- 2. Stabilization time is the interval required for oscillator stabilization after a power-on occurs, or when stop mode is terminated.

ELECTRICAL DATA S3C72H8/P72H8

Table 16-5. Subsystem Clock Oscillator Characteristics

$$(T_A = -40 \,^{\circ}\text{C} + 85 \,^{\circ}\text{C}, \, V_{DD} = 1.8 \,\text{V to } 5.5 \,\text{V})$$

Oscillator	Clock Configuration	Parameter	Test Condition	Min	Тур	Max	Units
Crystal Oscillator	XTIN XTOUT C1 C2	Oscillation frequency (1)		32	32.768	35	kHz
		Stabilization time (2)	$V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}$	-	1.0	2	s
			$V_{DD} = 1.8 \text{ V to } 4.5 \text{ V}$	-	_	10	
External Clock	XTIN XTOUT	XT _{IN} input frequency ⁽¹⁾	_	32	ı	100	kHz
		XT _{IN} input high and low level width (t _{XTL} , t _{XTH})	-	5	-	15	us

NOTES:

- 1. Oscillation frequency and XT_{IN} input frequency data are for oscillator characteristics only.
- 2. Stabilization time is the interval required for oscillating stabilization after a power-on occurs.

Table 16-6. A.C. Electrical Characteristics

$$(T_A = -40 \,^{\circ}\text{C to} + 85 \,^{\circ}\text{C}, \, V_{DD} = 1.8 \,\,\text{V to} \,\, 5.5 \,\,\text{V})$$

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Instruction cycle	^t CY	$V_{DD} = 2.7 \text{ V} \text{ to } 5.5 \text{ V}$	0.67	_	64	μs
time ⁽¹⁾		V _{DD} = 1.8 V to 5.5 V	1.33	_	64	
TCL0, FCL input	fTIO, fTIO	$V_{DD} = 2.7 \text{ V} \text{ to } 5.5 \text{ V}$	0	_	1.5	MHz
frequency		$V_{DD} = 1.8 \text{ V} \text{ to } 5.5 \text{V}$			1	
TCL0, FCL input	tTIH0, tTIL0	V _{DD} = 2.7 V to 5.5 V	150	-	-	ns
high, low width	^t FCH, ^t FCL	$V_{DD} = 1.8 \text{ V} \text{ to } 5.5 \text{ V}$	250			
Interrupt input	^t INTH,	INT0	(2)	-	-	μs
high, low width	^t INTL	INT1, INT2 (KS0-KS3)	10			
RESET Input Low Width	^t RSL	Input	10	_	_	μs

NOTES

- 1. Unless otherwise specified, Instruction Cycle Time condition values assume a main system clock (fx) source.
- 2. Minimum value for INT0 is based on a clock of 2t_{CY} or 128/fx as assigned by the IMOD0 register setting.

S3C72H8/P72H8 ELECTRICAL DATA

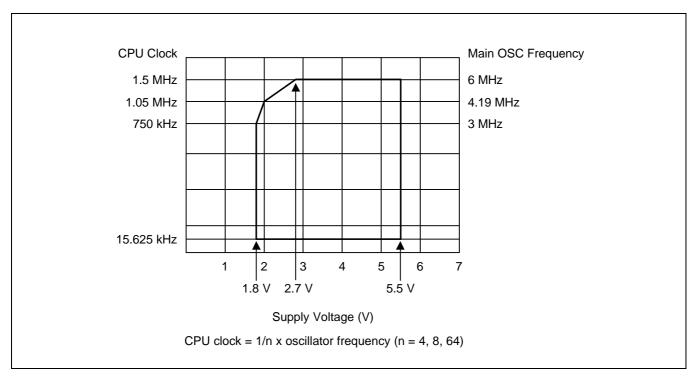


Figure 16-1. Standard Operating Voltage Range

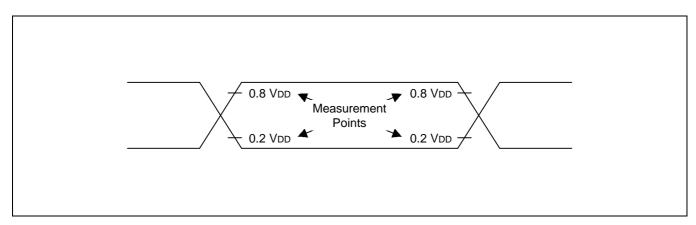


Figure 16-2. A.C Timing Measure Pints (Except for X_{IN} and XT_{IN})

ELECTRICAL DATA S3C72H8/P72H8

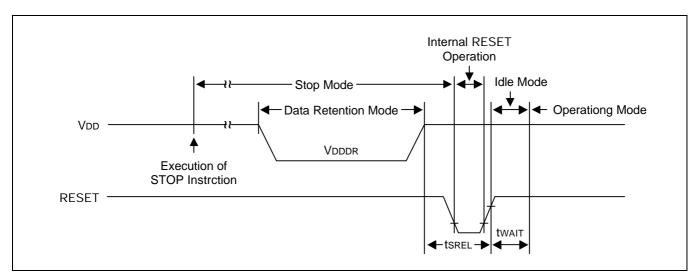


Figure 16-3. Stop Mode Release Timing When Initiated By RESET

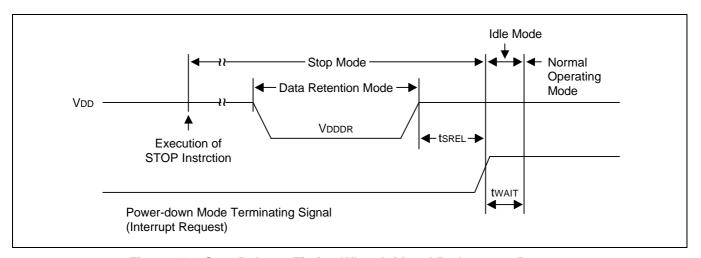


Figure 16-4.Stop Release Timing When Initiated By Interrupt Request

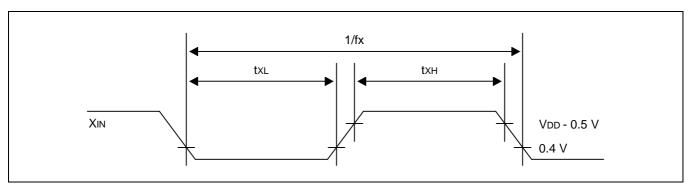


Figure 16-5. Clock Timing Measurement at XIN

S3C72H8/P72H8 ELECTRICAL DATA

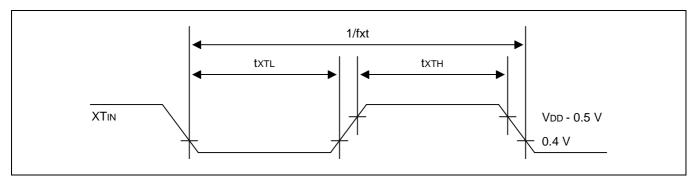


Figure 16-6. Clock Timing Measurement at $\mathrm{XT}_{\mathrm{IN}}$

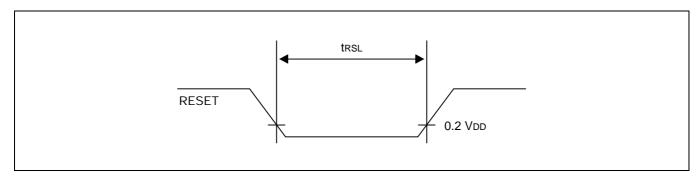


Figure 16-7. Input Timing for RESET Signal

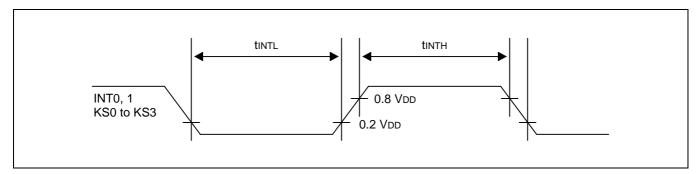


Figure 16-8. Input Timing External Interrupt

S3C72H8/P72H8 MECHANICAL DATA

17

MECHANICAL DATA

OVERVIEW

The S3C72H8/P72H8 microcontroller is available in a 64-pin QFP package (Samsung: 64-QFP-1420F) Package dimensions are shown in Figure 17-1

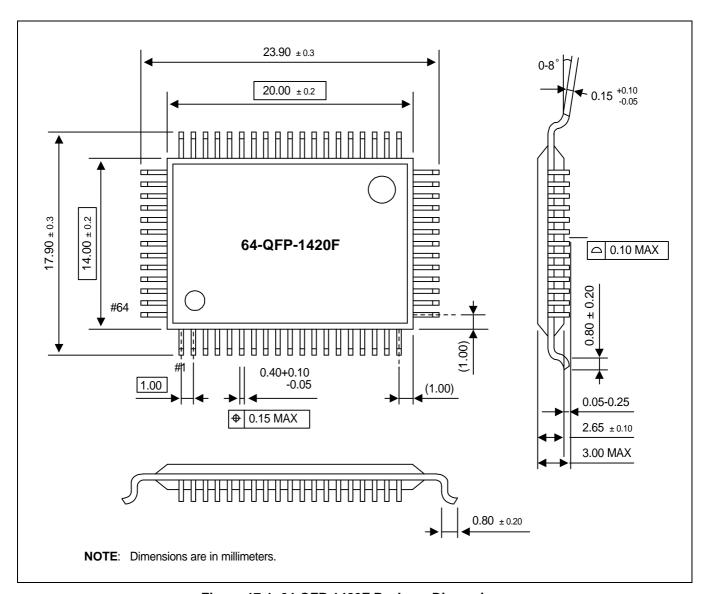


Figure 17-1. 64-QFP-1420F Package Dimensions

S3C72H8/P72H8 S3P72H8 OTP

18

S3P72H8 OTP

OVERVIEW

The S3P72H8 single-chip CMOS microcontroller is the OTP (One Time Programmable) version of the S3C72H8 microcontroller. It has an on-chip EPROM instead of masked ROM. The EPROM is accessed by a serial data format.

The S3P72H8 is fully compatible with the S3C72H8, both in function and in pin configuration. Because of its simple programming requirements, the S3P72H8 is ideal for use as an evaluation chip for the S3C72H8.

S3P72H8 OTP S3C72H8/P72H8

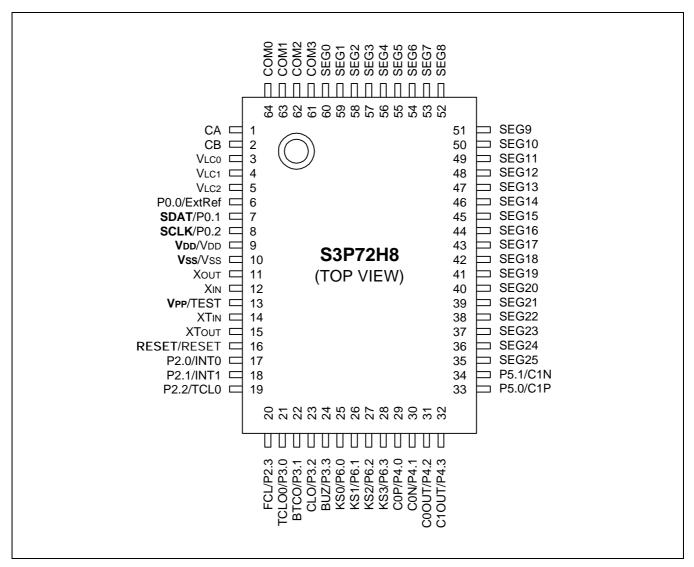


Figure 18-1. S3P72H8 Pin Assignments

S3C72H8/P72H8 S3P72H8 OTP

Table 18-1. Pin Descriptions Used to Read/Write the EPROM

Main Chip	During Programming				
Pin Name	Pin Name	Pin No.	I/O	Function	
P0.1	SDAT	7	I/O	Serial data pin. Output port when reading and input port when writing can be assigned as Input/push-pull output port respectively.	
P0.2	SCLK	8	I/O	Serial clock pin. Input only pin.	
TEST	V _{PP} (TEST)	13	I	Power supply pin for EPROM cell writing (indicates that OTP enters into the writing mode). When 12.5 V is applied, OTP is in writing mode and when 5 V is applied, OTP is in reading mode. (Option)	
RESET	RESET	16	I	Chip initialization	
$V_{\rm DD}/V_{\rm SS}$	V _{DD} / V _{SS}	9/10	I	Logic power supply pin. V _{DD} should be tied to + 5 V during programming.	

Table 18-2. Comparison of S3P72H8 and S3C72H8 Features

Characteristic	S3P72H8	S3C72H8		
Program Memory	8 K-byte EPROM	8 K-byte mask ROM		
Operating Voltage (V _{DD})	1.8 V to 5.5 V	1.8 V to 5.5 V		
OTP Programming Mode	$V_{DD} = 5 \text{ V}, V_{PP} \text{ (TEST)} = 12.5 \text{ V}$	-		
Pin Configuration	64 QFP	64 QFP		
EPROM Programmability	User Program 1 time	Programmed at the factory		

OPERATING MODE CHARACTERISTICS

When 12.5 V is supplied to the V_{PP} (TEST) pin of the S3P72H8, the EPROM programming mode is entered. The operating mode (read, write, or read protection) is selected according to the input signals to the pins listed in Table 18-3 below.

Table 18-3. Operating Mode Selection Criteria

V_{DD}	V _{PP} (TEST)	REG/ MEM	Address (A15-A0)	R/W	Mode
5 V	5 V	0	0000H	1	EPROM read
	12.5V	0	0000H	0	EPROM program
	12.5V	0	0000H	1	EPROM verify
	12.5V	1	0E3FH	0	EPROM read protection

NOTE: "0" means low level; "1" means high level.

S3P72H8 OTP S3C72H8/P72H8

Table 18-4. D.C. Electrical Characteristics

(T_A = -40 °C to + 85 °C, V_{DD} = 1.8 V to 5.5 V)

Parameter	Symbol	Conditions		Min	Тур	Max	Units
Supply Current ^(note)	I _{DD1}	Main operation mode: V _{DD} = 5 V ± 10%, 6-MHz crystal		-	3.5	8	mA
		$V_{DD} = 5 \text{ V} \pm 10\%, 4.19 \text{ MHz}$		2.5	5.5		
		$V_{DD} = 3 \text{ V} \pm 10\%, 6\text{-MHz cry}$	ystal		1.6	4	
		$V_{DD} = 3 \text{ V} \pm 10\%, 4.19 \text{ MHz}$		1.2	3		
	I _{DD2}	Main Idle mode: V _{DD} = 5 V ± 10%, 6-MHz cry	-	1.8	3.5		
		$V_{DD} = 5 \text{ V} \pm 10\%, 4.19 \text{ MHz}$		1.4	3.0		
		$V_{DD} = 3 \text{ V} \pm 10\%, 6\text{-MHz cry}$	ystal		0.6	1.2	
		$V_{DD} = 3 V \pm 10\%, 4.19 MHz$		0.5	1.1		
	I _{DD3}	Sub operation mode: V _{DD} = 3 V, 32768Hz Main OSC stop, except I _{VB} , Icomp, I _{LCD} and external loa	-	15	30	uA	
	I _{DD4}	Sub Idle mode; $V_{DD} = 3.0, 32768 Hz$ Main OSC stop, except I_{VB} , Icomp, I_{LCD} and external load	-	6	15		
	I _{DD5}	Stop mode; Main & Sub OSC stop, V _{DD} =5 V ± 10% except I _{VD} , I _{VLD} , Icomp and external load.	SCMOD = 0100B	-	0.3	3	uA
		Stop & Sub OSC stop, $V_{DD} = 3 \text{ V, except } I_{VD,}$ $I_{VLD,}$ Lcomp and external load.			0.1	1	

NOTE: Supply current does not include current drawn through internal pull-up resistors or external output current loads. I_{LCD} is LCD controller/driver operating current, I_{VB} is voltage booster current, Icomp is comparator current, and I_{VLD} is voltage level detector current.

S3C72H8/P72H8 S3P72H8 OTP

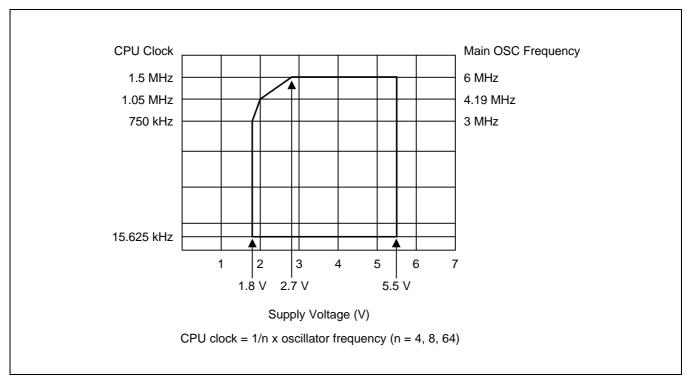


Figure 18-2. Standard Operating Voltage Range

S3P72H8 OTP S3C72H8/P72H8

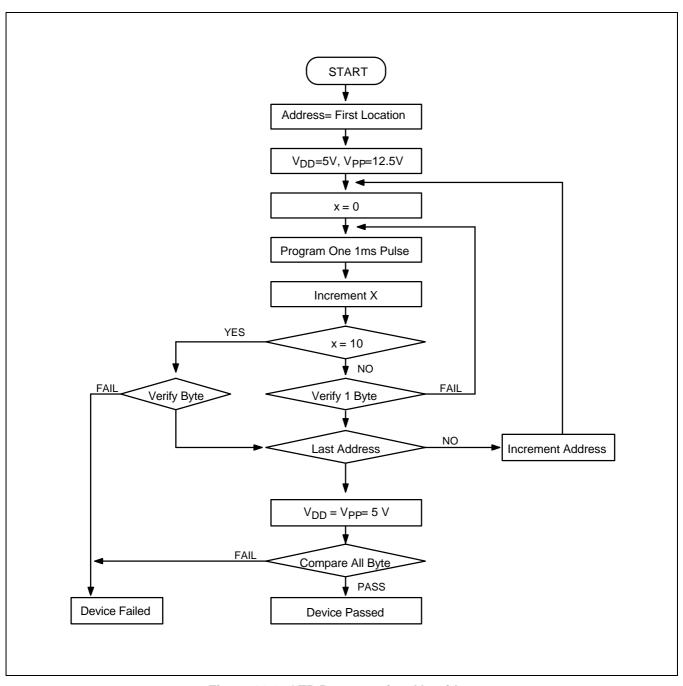


Figure 18-3. OTP Programming Algorithm

S3C72H8/P72H8 DEVELOPMENT TOOLS

19 DEVELOPMENT TOOLS

OVERVIEW

Samsung provides a powerful and easy-to-use development support system in turnkey form. The development support system is configured with a host system, debugging tools, and support software. For the host system, any standard computer that operates with MS-DOS as its operating system can be used. One type of debugging tool including hardware and software is provided: the sophisticated and powerful in-circuit emulator, SMDS2+, for S3C7, S3C8, S3C9 families of microcontrollers. The SMDS2+ is a new and improved version of SMDS2. Samsung also offers support software that includes debugger, assembler, and a program for setting options.

SHINE

Samsung Host Interface for In-Circuit Emulator, SHINE, is a multi-window based debugger for SMDS2+. SHINE provides pull-down and pop-up menus, mouse support, function/hot keys, and context-sensitive hyper-linked help. It has an advanced, multiple-windowed user interface that emphasizes ease of use. Each window can be sized, moved, scrolled, highlighted, added, or removed completely.

SAMA ASSEMBLER

The Samsung Arrangeable Microcontroller (SAM) Assembler, SAMA, is a universal assembler, and generates object code in standard hexadecimal format. Assembled program code includes the object code that is used for ROM data and required SMDS program control data. To assemble programs, SAMA requires a source file and an auxiliary definition (DEF) file with device specific information.

SASM57

The SASM57 is an relocatable assembler for Samsung's S3C7-series microcontrollers. The SASM57 takes a source file containing assembly language statements and translates into a corresponding source code, object code and comments. The SASM57 supports macros and conditional assembly. It runs on the MS-DOS operating system. It produces the relocatable object code only, so the user should link object file. Object files can be linked with other object files and loaded into memory.

HEX2ROM

HEX2ROM file generates ROM code from HEX file which has been produced by assembler. ROM code must be needed to fabricate a microcontroller which has a mask ROM. When generating the ROM code (.OBJ file) by HEX2ROM, the value "FF" is filled into the unused ROM area up to the maximum ROM size of the target device automatically.

TARGET BOARDS

Target boards are available for all S3C7-series microcontrollers. All required target system cables and adapters are included with the device-specific target board.

OTPs

One time programmable microcontroller (OTP) for the S3C72H8 microcontroller and OTP programmer (Gang) are now available.

DEVELOPMENT TOOLS S3C72H8/P72H8

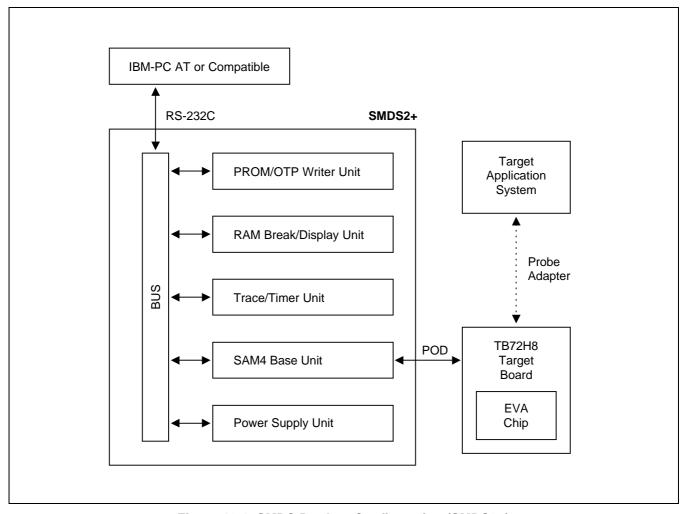


Figure 19-1. SMDS Product Configuration (SMDS2+)

S3C72H8/P72H8 DEVELOPMENT TOOLS

TB72H8 TARGET BOARD

The TB72H8 target board is used for the S3C72H8/P72H8microcontroller. It is supported by the SMDS2+ development system.

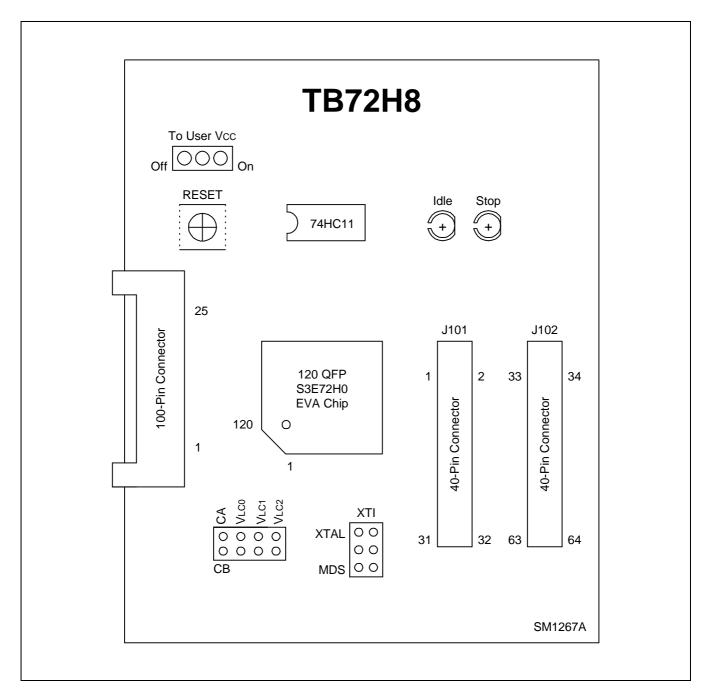


Figure 19-2. TB72H8 Target Board Configuration

DEVELOPMENT TOOLS S3C72H8/P72H8

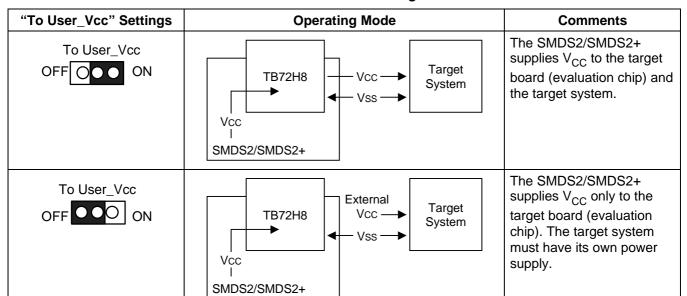


Table 19-1. Power Selection Settings for TB72H8

S3C72H8/P72H8 DEVELOPMENT TOOLS

Sub Clock Setting Operating Mode Comments Set the XTI switch to "MDS" XTI **EVA Chip** when the target board is S3E72H0 connected to the MDS SMDS2/SMDS2+. **ХТо**ит XTIN No Connection 100 Pin Connector SMDS2/SMDS2+ Set the XTI switch to "XTAL" when the target board is used **EVA Chip** as a standalone unit, and is S3E72H0 not connected to the SMDS2/SMDS2+. **XT**out XTIN **XTAL Target Board**

Table 19-2. Sub-clock Selection Settings for TB72H8

IDLE LED

This LED is ON when the evaluation chip (S3E72H0) is in idle mode.

STOP LED

This LED is ON when the evaluation chip (S3E72H0) is in stop mode.

DEVELOPMENT TOOLS S3C72H8/P72H8

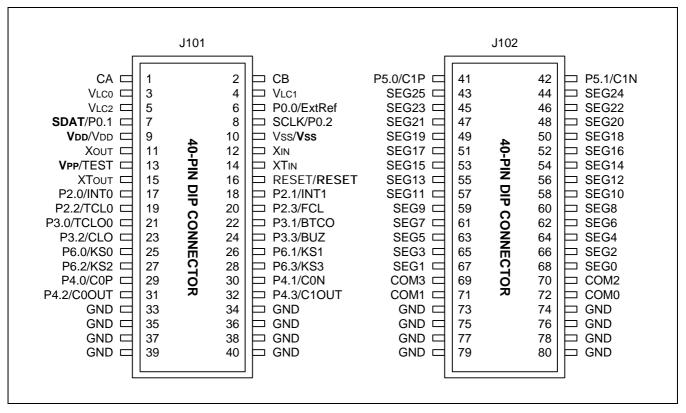


Figure 19-3. 32-Pin Connectors for TB72H8

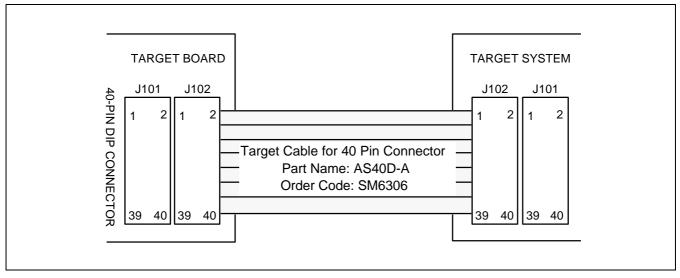


Figure 19-4. TB72H8 Adapter Cable for 64-QFP Package (S3C72H8/P72H8)