

PanelMatchTM

LXM1623-05-4x

5V Dual 4W CCFL Programmable Inverter Module

PRODUCTION DATASHEET

DESCRIPTION

The LXM1623-05-4x is a Dual 4W Output Direct DriveTM CCFL (Cold energizes the lamp was designed Cathode Fluorescent Lamp) Inverter specifically to ensure that no premature Module specifically designed for driving LCD backlight lamps. It is ideal for driving typical 6.4" to 10.4" TFT panels.

LXM1623 modules provide designer with a vastly superior display the system battery or AC adapter directly brightness range. This brightness range is to high frequency, high-voltage waves achievable with virtually any LCD display. required to ignite and operate CCFL

dimming input that permits brightness available (LXM1623-12-4x), as well as control from either a DC voltage source or 6W versions (LXM1623-xx-6x) a PWM signal or external Potentiometer. The maximum output current is externally programmable over a range of 5 to 6.5mA Microsemi's new LX1689 backlight in 0.5mA steps to allow the inverter to controller, which provides a number of properly match to a wide array of LCD cost and performance advantages due to panel lamp current specifications.

RangeMAX Digital Dimming Technique provides flicker-free brightness are stable fixed-frequency operation, control in any wide range typically (50:1+) secondary-side strike-voltage regulation dimming application.

The resultant "burst drive" lamp degradation occurs, while allowing significant power savings at lower dim levels.

The modules convert DC voltage from The modules are available with a lamps. A 12V input inverter is also driving larger higher voltage panels.

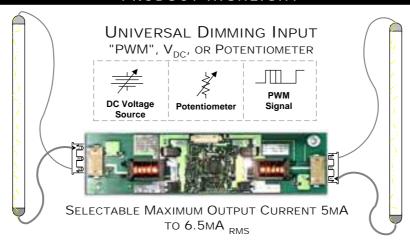
The modules design is based on the controller's high level of integration.

Other benefits of this new topology and both open/shorted lamp protection with fault timeout.

IMPORTANT: For the most current data, consult *MICROSEMI*'s website: http://www.microsemi.com Protected By U.S. Patents: 5,923,129; 5,930,121; 6,198,234; Patents Pending

KEY FEATURES

- Externally Programmable Maximum Output Current
- Easy to Use Brightness Control
- RangeMAX Wide Range Dimming
- Output Open & Short-Circuit Protection and Automatic Strike-Voltage Regulation and Timeout
- Fixed Frequency Operation
- Rated From -20 to 70°C
- UL60950 E175910


APPLICATIONS

- High Brightness Displays
- Portable Instrumentation
- **Desktop Displays**
- Industrial Display Controls

BENEFITS

- Smooth, Flicker Free 2%-100% Full-Range Brightness Control
- Programmable output current allows inverter to mate with a wide variety of LCD panel's specifications
- Output Open Circuit Voltage Regulation Minimizes Corona Discharge For High Reliability

PRODUCT HIGHLIGHT

Þ		PACKAGE ORDER INFO	
	PART NUMBER	OUTPUT CONNECTOR	INVERTER MATES DIRECTLY TO PANEL CONNECTORS
	LXM1623-05-41	JST SM02(8.0)B-BHS-1-TB or Yeon Ho 20015WR-05A00	JST BHR-03VS-1
	LXM1623-05-42	JST SM02B-BHSS-1-TB or Yeon Ho 35001WR-02A00	JST BHSR-02VS-1
	LXM1623-05-43	Honda QZ-19-A3MYL #02	Honda QZ-19-3F01

PanelMatchTM

LXM1623-05-4x

5V Dual 4W CCFL Programmable Inverter Module

PRODUCTION DATASHEET

ABSOLUTE MAXIMUM RATIN	GS (NOTE 1)
Input Signal Voltage (V _{IN1}) Input Power	0.3V to 6.5V
Output Voltage, no load	Internally Limited to 1500V _{RMS}
Output Current	
Output Power (each output)	4.0W
Input Signal Voltage (SLEEP Input)	0.3V to 5.5V
Input Signal Voltage (BRITE)	0.3V to 5.5V
Ambient Operating Temperature, zero airflow	
Operating Relative Humidity, non-condensing	≤90%
Storage Temperature Range	40°C to 85°C
Note 1: Exceeding these ratings could cause damage to the device. All voltages are with respeterminal.	ect to Ground. Currents are positive into, negative out of specified

RECOMMENDED OPERATING CONDITIONS (R.C.)

This module has been designed to operate over a wide range of input and output conditions. However, best efficiency and performance will be obtained if the module is operated under the condition listed in the 'R.C.' column. Min. and Max. columns indicate values beyond which the inverter, although operational, will not function optimally.

Parameter	Symbol	Recommended Operating Conditions			Units	
i arameter	Gymbol	Min	R.C.	Max	Office	
Input Supply Voltage Range (Fully Regulated Lamp Current)	V _{IN1}	4.75	5	5.25	V	
Input Supply Voltage Range (Functional)		4.5	5	5. 5		
Output Power (each output)	Po		3.5	4.0	W	
Linear BRITE Control Input Voltage Range	V_{BRT_ADJ}	0.5		2.0	V	
Lamp Operating Voltage	V_{LAMP}	350	440	530	V_{RMS}	
Lamp Current (Full Brightness)	I _{OLAMP}	5		6.5	mA _{RMS}	
Operating Ambient Temperature Range	T _A	-20		70	°C	

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, the following specifications apply over the recommended operating condition and ambient temperature of 25°C except where otherwise noted.

Parameter	Symbol	Test Conditions	LXM1623-05-4x			Units
raiailletei	Syllibol	rest conditions	Min	Тур	Max	UiillS
OUTPUT PIN CHARACTERISTICS						
Full Bright Lamp Current (each output)	I _{L(MAX)}	$V_{BRT_ADJ} \ge 2.0V_{DC}$, $\overline{SLEEP} \ge 2.0V$, $V_{IN1} = 5V_{DC}$ $I_{SET1} = Ground$, $I_{SET2} = Ground$	4.5	5	5.5	mA _{RMS}
Full Bright Lamp Current (each output)	I _{L(MAX)}	$V_{BRT_ADJ} \ge 2.0V_{DC}$, $\overline{SLEEP} \ge 2.0V$, $V_{IN1} = 5V_{DC}$ $I_{SET1} = Ground$, $I_{SET2} = Open$	5.0	5.5	6.0	mA _{RMS}
Full Bright Lamp Current (each output)	I _{L(MAX)}	$V_{BRT_ADJ} \ge 2.0V_{DC}$, $\overline{SLEEP} \ge 2.0V$, $V_{IN1} = 5V_{DC}$ $I_{SET1} = Open$, $I_{SET2} = Ground$	5.5	6	6.5	mA _{RMS}
Full Bright Lamp Current (each output)	I _{L(MAX)}	$V_{BRT_ADJ} \ge 2.0V_{DC}$, $\overline{SLEEP} \ge 2.0V$, $V_{IN1} = 5V_{DC}$ $I_{SET1} = Open$, $I_{SET2} = Open$	6.0	6.5	7.0	mA _{RMS}
Output Current Lamp to Lamp Deviation	I _{LL%DEV}	$V_{BRT_ADJ} \ge 2.0V_{DC}$, $\overline{SLEEP} \ge 2.0V$, $V_{IN1} = 5V_{DC}$ $I_{SET1} = Open$, $I_{SET2} = Open$		3	10	%
Min. Average Lamp Current (each output)	I _{L(MIN)}	$V_{BRT_ADJ} \le 0.5V_{DC}$, $\overline{SLEEP} \ge 2.0V$, $V_{IN1} = 5V_{DC}$ $I_{SET1} = I_{SET2} = Ground$		0.30		mA _{RMS}
Lamp Start Voltage	V_{LS}	-20°C < T _A < 70°C, V _{IN1} > 4.75V _{DC}	1250	1400		V_{RMS}
Operating Frequency	f _O	$V_{BRT_ADJ} = 2.5V_{DC}, \overline{SLEEP} \ge 2.0V, V_{IN1} = 5V$	76	80	83	kHz
Burst Frequency	f _{BURST}	Output Burst Frequency	148	156	163	Hz

$\textbf{PanelMatch}^{\text{TM}}$

LXM1623-05-4x

5V Dual 4W CCFL Programmable Inverter Module

PRODUCTION DATASHEET

ELECTRICAL CHARACTERISTICS (CONTINUED)

Unless otherwise specified, the following specifications apply over the recommended operating condition and ambient temperature of 25°C except where otherwise noted.

Parameter EITE INPUT Out Current Inimum Input for Max. Lamp Current EXIX IX	I _{BRT} V _{BRT_ADJ} V _{BRT_ADJ}	Test Conditions	Min	-300 50 2.0	Max	Units μA _{DC} μA _{DC}
out Current nimum Input for Max. Lamp Current eximum Input for Min. Lamp Current	V _{BRT_ADJ}	V _{BRT_ADJ} = 3V _{DC} I _{O(LAMP)} = Maximum Lamp Current		50		1
nimum Input for Max. Lamp Current iximum Input for Min. Lamp Current	V _{BRT_ADJ}	V _{BRT_ADJ} = 3V _{DC} I _{O(LAMP)} = Maximum Lamp Current		50		1
nimum Input for Max. Lamp Current iximum Input for Min. Lamp Current	V _{BRT_ADJ}	I _{O(LAMP)} = Maximum Lamp Current				μA_{DC}
ximum Input for Min. Lamp Current		 		2.0		
	V_{BRT_ADJ}	I _{O(I AMP)} = Minimum Lamp Current			2.05	V_{DC}
EEP INPUT		O(Davii)	0.4	0.5		V_{DC}
IN Mode	$V_{\overline{\text{SLEEP}}}$		2.0		V_{IN1}	V_{DC}
EEP Mode	$V_{\overline{\text{SLEEP}}}$		-0.3		8.0	V_{DC}
T _{1,2} INPUT						
T _{1,2} Low Threshold	V_L				0.4	V
out Current	I _{SET}	V _{SET} ≤ 0.4V		-300		μA
POWER CHARACTERISTICS						
eep Current	I _{IN(MIN)}	$V_{IN1} = 5V_{DC}, \overline{SLEEP} \le 0.8V$	0.0	4	30	μA_{DC}
n Current	LIN/BUND	$V_{IN1} = 5V_{DC}, \overline{SLEEP} \ge 2.0V, I_{SET1} = Open$		1300		mA _{DC}
- Tail Gallont		I_{SET2} = Ground, V_{LAMP} = 440 V_{RMS}		1.500		
iciency	η	$V_{\text{IN1}} = 5V_{\text{DC}}$, $\overline{\text{SLEEP}} \ge 2.0V$, $I_{\text{SET1}} = \text{Open}$		85		%
T	T _{1,2} INPUT T _{1,2} Low Threshold at Current WER CHARACTERISTICS ep Current Current	1,2 INPUT	T _{1,2} INPUT T _{1,2} Low Threshold V _L It Current V _{SET} $V_{SET} \le 0.4V$ WER CHARACTERISTICS Exp Current I _{IN(MIN)} V _{IN1} = $5V_{DC}$, $\overline{SLEEP} \le 0.8V$ V _{IN1} = $5V_{DC}$, $\overline{SLEEP} \ge 2.0V$, I _{SET1} = Open I _{SET2} = Ground, V _{LAMP} = $440V_{RMS}$ V _{IN1} = $5V_{DC}$, $\overline{SLEEP} \ge 2.0V$, I _{SET1} = Open	To a linear to the shold of the contract of t	T1,2 INPUT T1,2 Low Threshold V_L VL -300 Int Current I SET $V_{SET} \le 0.4V$ -300 NER CHARACTERISTICS VIN1 = 5VDC, SLEEP ≤ 0.8V 0.0 4 Current IIN(RIN) VIN1 = 5VDC, SLEEP ≥ 2.0V, ISET1 = Open ISET2 = Ground, VLAMP = 440VRMS 1300 Current VIN1 = 5VDC, SLEEP ≥ 2.0V, ISET1 = Open ISET2 = Ground, VLAMP = 440VRMS 1300 Current VIN1 = 5VDC, SLEEP ≥ 2.0V, ISET1 = Open ISET2 = Ground, VLAMP = 440VRMS 1300	T _{1,2} INPUT T _{1,2} Low Threshold V _L I _{SET} V _{SET} ≤ 0.4V VER CHARACTERISTICS Exp Current I _{IN(MIN)} V _{IN1} = 5V _{DC} , $\overline{\text{SLEEP}} \le 0.8V$ Current I _{IN(RUN)} V _{IN1} = 5V _{DC} , $\overline{\text{SLEEP}} \ge 2.0V$, I _{SET1} = Open I _{SET2} = Ground, V _{LAMP} = 440V _{RMS} V _{IN1} = 5V _{DC} , $\overline{\text{SLEEP}} \ge 2.0V$, I _{SET1} = Open I _{SET2} = Ground, V _{LAMP} = 440V _{RMS} V _{IN1} = 5V _{DC} , $\overline{\text{SLEEP}} \ge 2.0V$, I _{SET1} = Open I _{SET2} = Ground, V _{LAMP} = 440V _{RMS} V _{IN1} = 5V _{DC} , $\overline{\text{SLEEP}} \ge 2.0V$, I _{SET1} = Open I _{SET2} = Ground, V _{LAMP} = 440V _{RMS}

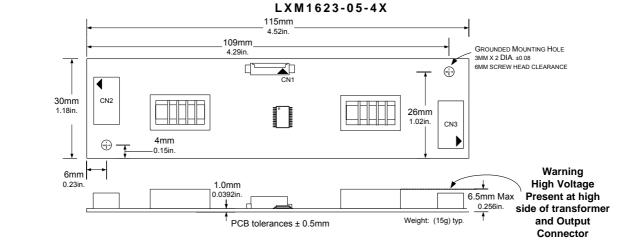
		FUNCTIONAL PIN DESCRIPTION				
Conn	PIN	DESCRIPTION				
CN1 (Molex 53261-0890) Mates with 51021-0800 housing, 50079-8100 pins. Mates with LX9501 input cable asset						
CN1-1	V_{IN1}	Main Input Power Supply (4.75V \leq V _{IN1} \leq 5.25V)				
CN1-2	V IIV I					
CN1-3	GND	Power Supply Return				
CN1-4	CND					
CN1-5 SLEEP ON/OFF Control. (0V < SLEEP < 0.8 = OFF, SLEEP >= 2.0V = ON						
CN1-6	BRITE	Brightness Control (0.5V to 2.0V _{DC}). 2.0V _{DC} gives maximum lamp current.				
CN1-7	SET ₁	SET ₁ MSB Connecting this pin to ground decreases the output current (see Table 1)				
CN1-8 SET ₂ SET ₂ LSB Connecting this pin to ground decreases the output current (see Table 1)						
CN2, CN3 for LXM1623-05-41 and -42 (JST SM02(8.0)B-BHS-1-TB Yeon Ho 20015WR-05A00 or SM02B-BHSS-1-TB Yeon Ho 35001WR-02A00)						
CN2-1 CN3-1	V _{HI}	High voltage connection to high Side of lamp. Connect to lamp terminal with shortest lead length. DO NOT connect to Ground.				
		Connection to low side of lamp. Connect to lamp terminal with longer lead length. DO NOT connect to Ground				
CN2, CN3 for LXM1623-05-43 (Honda QZ-19-A3MYL #02)						
CN2-3 CN3-3	V _{HI}	High voltage connection to high side of lamp. Connect to lamp terminal with shortest lead length. DO NOT connect to Ground.				
CN2-1 CN3-1	V _{LO}	Connection to low side of lamp. Connect to lamp terminal with longer lead length. DO NOT connect to Ground				

PanelMatchTM

LXM1623-05-4x

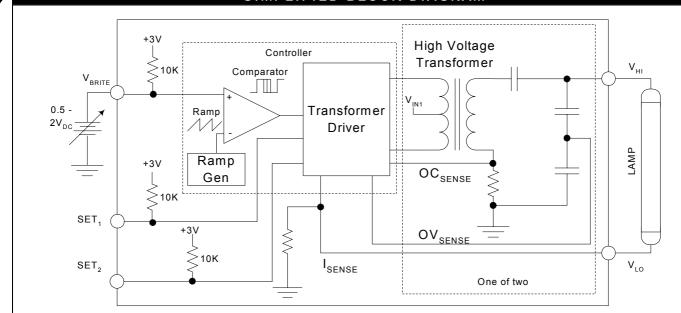
5V Dual 4W CCFL Programmable Inverter Module

PRODUCTION DATASHEET


TABLE 1

OUTPUT CURRENT SETTINGS

SET₁ (Pin 7)	SET ₂ (Pin 8)	Nominal Output Current
Open*	Open*	6.5mA
Open*	Ground	6.0mA
Ground	Open*	5.5mA
Ground	Ground	5.0mA


^{*} If driven by a logic signal it should be open collector or open drain only, not a voltage source.

PHYSICAL DIMENSIONS

All dimensions are in millimeters (inches are for reference only)

SIMPLIFIED BLOCK DIAGRAM

5V Dual 4W CCFL Programmable Inverter Module

PRODUCTION DATASHEET

TYPICAL APPLICATION

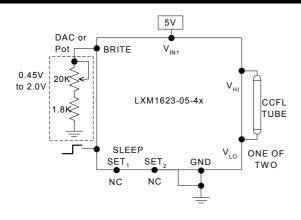


Figure 1 – Brightness Control (Output current set to maximum)

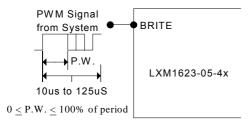


Figure 1A - PWM Brightness Control

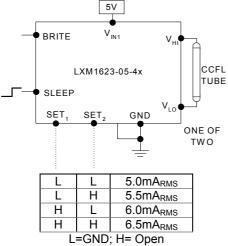


Figure 2 – Max Output Current (SET₁ and SET₂ Inputs)

- The brightness control may be a voltage output DAC or other voltage source, a digital pot or 20K manual pot. The inverter contains an internal 10K pull-up to 3V to bias the pot add a 1.8K resistor to set the lower threshold voltage. A 3.3V Logic Level PWM signal from a micro-controller may also be used as shown in Figure 1A.
- If you need to turn the inverter ON/OFF remotely, connect to TTL logic signal to the SLEEP input.
- Connect V_{HI} to high voltage wire from the lamp. Connect V_{LO} to the low voltage wire (wire with thinner insulation). Never connect V_{LO} to circuit ground as this will defeat lamp current regulation. If both lamp wires have heavy high voltage insulation, connect the longest wire to V_{LO} . This wire is typically white.
- Use the SET₁ and SET₂ (see Figure 2) inputs to select the desired maximum output current. Using these two pins in combination allows the inverter to match a wide variety of panels from different manufactures. Generally the best lamp lifetime correlates with driving the CCFL at the manufactures nominal current setting. However the SET₁ and SET₂ inputs allow the user the flexibility to adjust the current to the maximum allowable output current to increase panel brightness at the expense of some reduced lamp life.
- Although the SET pins are designed such that just leaving them open or grounding them is all that is needed to set the output current, they can also be actively set. Using a open collector or open drain logic signal will allow you to reduce the lamp current for situations where greater dim range is required, as an example in nighttime situations. In conjunction with a light sensor or other timer the panel could be set to higher brightness (maximum output current) for daytime illumination and lower brightness (minimum or typical output current) at nighttime. Since the dim ratio is a factor of both the burst duty cycle and the peak output current, using this technique the effective dim ratio can be increased greater than the burst duty cycle alone. Conversely the SET inputs could be used to overdrive the lamp temporarily to facilitate faster lamp warm up at initial lamp turn on. Of course any possible degradation on lamp life from such practices is the users responsibility since not all lamps are designed to be overdriven.
- The inverter has a built in fault timeout function. If the output is open (lamp disconnected or broken) or shorted the inverter will attempt to strike the lamp for several seconds. After about 2 seconds without success the inverter will shutdown. In order to restart the inverter it is necessary to toggle the sleep input or cycle the V_{IN1} input supply

$\textbf{PanelMatch}^{\text{TM}}$

LXM1623-05-4x

5V Dual 4W CCFL Programmable Inverter Module

PRODUCTION DATASHEET

NOTES

PRODUCTION DATA – Information contained in this document is proprietary to Microsemi and is current as of publication date. This document may not be modified in any way without the express written consent of Microsemi. Product processing does not necessarily include testing of all parameters. Microsemi reserves the right to change the configuration and performance of the product and to discontinue product at any time.