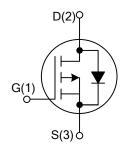


UNISONIC TECHNOLOGIES CO., LTD

UT3310 Preliminary Power MOSFET

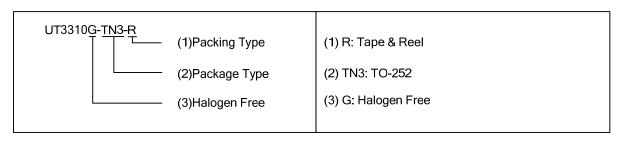
P-CHANNEL ENHANCEMENT MODE POWER MOSFET

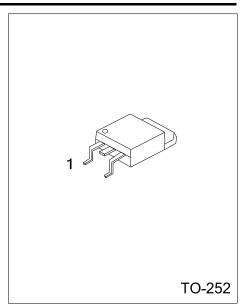
■ DESCRIPTION


The UTC **UT3310** is a P-channel enhancement mode Power MOSFET. The UTC **UT3310** uses advanced technology to provide customers with fast switching, low on-resistance and cost-effectiveness.

The UTC **UT3310** is generally applied in low voltage and battery power applications.

■ FEATURES


- * Gate Drive Capability: 2.5V
- * Simple Drive Requirement


■ SYMBOL

■ ORDERING INFORMATION

Ordering Number	Package	Pin Assignment			Dooking	
Ordering Number		1	2	3	Packing	
UT3310G-TN3-R	TO-252	G	D	S	Tape Reel	

■ ABSOLUTE MAXIMUM RATINGS

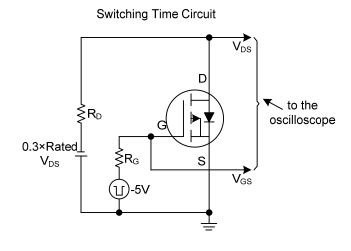
PARAMETER	SYMBOL	RATINGS	UNIT
Drain to Source Voltage	V_{DSS}	-20	V
Gate to Source Voltage	V_{GSS}	±12	V
Continuous Drain Current (T _A =25°C, V _{GS} =10V)	I _D	-10	Α
Pulsed Drain Current	I _{DM}	-24	Α
Total Power Dissipation (T _A =25°C)	P_{D}	25	W
Linear Derating Factor		0.01	W/°C
Junction Temperature	T_J	150	$^{\circ}\mathbb{C}$
Ambient Operating Temperature	T _{OPR}	-55 ~ +150	$^{\circ}$
Storage Temperature	T _{STG}	-55 ~ + 150	$^{\circ}\mathbb{C}$

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged.

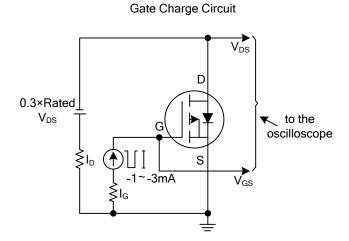
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	110	°C/W
Junction to Case	θ_{JC}	5.0	°C/W


■ ELECTRICAL CHARACTERISTICS (T_J =25°C, unless otherwise specified)


$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	OFF CHARACTERISTICS							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =-250μA	-20			V	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Breakdown Voltage Temperature Coefficient	$\Delta BV_{DSS}/\Delta T_{J}$	Reference to 25°C, I _D =-1mA		-0.1		V/°C	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Drain-Source Leakage Current	I _{DSS}	V_{DS} =-20V, V_{GS} =0V			-1	μΑ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Source Leakage Current	I_{GSS}	V _{DS} =0V ,V _{GS} =±12V			±100	nA	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS} = V_{GS}$, $I_D = -250 \mu A$	-0.5			V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Drain-Source On-State Resistance	В	V _{GS} =-4.5V, I _D =-2.8A			150	mΩ	
Input Capacitance		NDS(ON)	V _{GS} =-2.5V, I _D =-2.0A			250	mΩ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DYNAMIC PARAMETERS							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Capacitance	C _{ISS}			300		pF	
	Output Capacitance	Coss	V_{DS} =-6V, V_{GS} =0V,f =1.0MHz		180		pF	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse Transfer Capacitance	C _{RSS}			60		pF	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWITCHING PARAMETERS							
	Total Gate Charge (Note2)	Q_{G}			6		nC	
Turn-ON Delay Time (Note2) t _{D(ON)} 25 ns	Gate-Source Charge	Q_{GS}	V_{DS} =-6V, V_{GS} =-5V, I_{D} =-2.8A		1.5		nC	
	Gate-Drain Charge	Q_{GD}			0.6		nC	
Turn-ON Rise Time t_R V_{DS} =-6V, V_{GS} =-5V, I_D =-1A 60 ns	Turn-ON Delay Time (Note2)	t _{D(ON)}			25		ns	
	Turn-ON Rise Time	t _R	V_{DS} =-6V, V_{GS} =-5V, I_{D} =-1A		60		ns	
Turn-OFF Delay Time $t_{D(OFF)}$ $R_G=6\Omega, R_D=6\Omega$ 70 ns	Turn-OFF Delay Time	t _{D(OFF)}	$R_G=6\Omega$, $R_D=6\Omega$		70		ns	
Turn-OFF Fall Time t _F 60 ns	Turn-OFF Fall Time	t _F			60		ns	
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS	SOURCE-DRAIN DIODE RATINGS AND CH	IARACTERIS	TICS					
Continuous Source Current (Body Diode) I_S $V_D=V_G=0V$, $V_S=-1.2V$ -10 A	Continuous Source Current (Body Diode)	Is	V _D =V _G =0V , V _S =-1.2V			-10	Α	
Pulsed Source Current (Body Diode) I _{SM} (Note1) -24 A	Pulsed Source Current (Body Diode)	I _{SM}	(Note1)			-24	Α	
Drain-Source Diode Forward Voltage V _{SD} I _S =-10A, V _{GS} =0V (Note2) -1.2 V	Drain-Source Diode Forward Voltage	V_{SD}	I _S =-10A, V _{GS} =0V (Note2)			-1.2	V	


Notes:1. Pulse width limited by safe operating area.

2. Pulse width ≤300us , duty cycle ≤2%.

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.