MAX9092/MAX9093/MAX9094/MAX9095 General-Purpose, Low-Voltage, Dual/Quad, Tiny Pack Comparators

General Description
The MAX9092/MAX9093/MAX9094/MAX9095 comparators are pin-for-pin compatible replacements for the LMX393/LMX393H/LMX339/LMX339H, respectively. The MAX9093/MAX9095 have the added benefit of internal hysteresis to provide noise immunity, preventing output oscillations even with slow-moving input signals.
Advantages of the ICs include low supply voltage, small package, and low cost. They also offer a wide supply voltage range, wide operating temperature range, competitive CMRR and PSRR, response time characteristics, input offset, low noise, output saturation voltage, input bias current, and RF immunity.
The ICs are available in both 8-pin SOT23/ $\mu \mathrm{MAX®}$ and 14-pin TSSOP/SO packages.

Applications
Mobile Communications
Notebooks and PDAs
Automotive
Battery-Powered Electronics
General-Purpose Portable Devices
General-Purpose Low-Voltage Applications

Features

[^0]
Ordering Information appears at end of data sheet.

For related parts and recommended products to use with this part, refer to www.maxim-ic.com/MAX9092.related.

MAX9092/MAX9093/MAX9094/MAX9095 General-Purpose, Low-Voltage, Dual/Quad, Tiny Pack Comparators

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V_{DD} to $\mathrm{V}_{S S}$)............................... 0.3 V to +6 V	
All Other Pins except OUT_ (V) $\mathrm{V}_{\text {SS }}-0$	+ 0.3V)
OUT_ ... $\left.\mathrm{V}_{\text {SS }}-0.3\right)$ to 6V	
Continuous Power Dissipation (Multilayer Board)($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
SOT23 (derate 5.1mW/ ${ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	408.2 mW
$\mu \mathrm{MAX}$ (derate $4.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	387.8 mW
TSSOP (derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	796 mW
(derate $11.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	52 mW

Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature ... $150^{\circ} \mathrm{C}$
Storage Temperature Range........................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow) $+260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

SOT23
Junction-to-Ambient Thermal Resistance (θ_{JA}) $196^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance (θ_{JC}) $70^{\circ} \mathrm{C} / \mathrm{W}$
$\mu \mathrm{MAX}$
Junction-to-Ambient Thermal Resistance (θ_{JA}) $206.3^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance (θ_{JC}) $42^{\circ} \mathrm{C} / \mathrm{W}$

TSSOP

Junction-to-Ambient Thermal Resistance (θ_{JA}) $100.4^{\circ} \mathrm{C} / \mathrm{W}$ Junction-to-Case Thermal Resistance (θ_{JC}) $30^{\circ} \mathrm{C} / \mathrm{W}$ SO

Junction-to-Ambient Thermal Resistance (θ_{JA}) $84^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance (θ_{JC}) $34^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

DC ELECTRICAL CHARACTERISTICS—2.7V OPERATION

$\left(V_{D D}=2.7 \mathrm{~V}, V_{S S}=0 V, V_{C M}=0 V, R_{L}=5.1 \mathrm{k} \Omega\right.$ connected to $V_{D D}$, typical values are at $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Boldface limits apply at the defined temperature extremes.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	V_{OS}			0.4	7	mV
Input Voltage Hysteresis	$\mathrm{V}_{\mathrm{HYST}}$	MAX9093/MAX9095		2		mV
Input Offset Voltage Average Temperature Drift	TCV ${ }_{\text {OS }}$			1.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	${ }^{\prime}$ B	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 0.0003	± 250	nA
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			± 400	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 400	
Input Offset Current	Ios	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 0.0003	± 50	nA
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			± 150	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 150	
Input Voltage Range	V_{CM}			-0.1		V
				2		
Voltage Gain	A_{V}	MAX9092/MAX9095		50		V/mV
Output Saturation Voltage	$V_{\text {SAT }}$	$\mathrm{I}_{\text {SINK }} \leq 1 \mathrm{~mA}$		25		mV
Output Sink Current	I_{0}	$\mathrm{V}_{\mathrm{O}} \leq 1.5 \mathrm{~V}$	5	16		mA
Supply Current	Is	MAX9092/MAX9093 (both comparators)		100	180	$\mu \mathrm{A}$
		MAX9094/MAX9095 (all four comparators)		220	360	
Output Leakage Current		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.005		$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			1	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			2	

MAX9092/MAX9093/MAX9094/MAX9095 General-Purpose, Low-Voltage, Dual/Quad, Tiny Pack Comparators

AC ELECTRICAL CHARACTERISTICS-2.7V OPERATION

$\left(V_{D D}=2.7 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{C M}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega\right.$ connected to V_{DD}, typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Boldface limits apply at the defined temperature extremes.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Propagation Delay Output High to Low (Note 3)	tPHL	Input overdrive $=10 \mathrm{mV}$	70		ns
		Input overdrive $=100 \mathrm{mV}$	50		
Propagation Delay Output Low to High (Note 3)	tpLH	Input overdrive $=10 \mathrm{mV}$	115		ns
		Input overdrive $=100 \mathrm{mV}$	100		

DC ELECTRICAL CHARACTERISTICS-5.0V OPERATION

$\left(V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega\right.$ connected to V_{DD}, typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Boldface limits apply at the defined temperature extremes.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Offset Voltage	Vos	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			0.4	7	mV
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				9	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				9	
Input Voltage Hysteresis		MAX9093/MAX9095			2		mV
Input Offset Voltage Average Temperature Drift	TCV ${ }_{\text {OS }}$				1.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	${ }^{\prime}$ B	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			± 0.027	± 250	nA
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				± 400	
		$T_{A}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				± 400	
Input Offset Current	Ios	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			± 0.007	± 50	nA
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				± 150	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				± 150	
Input Voltage Range	V_{CM}			-0.1			V
				4.2			
Voltage Gain (Note 4)	A_{V}	MAX9092/MAX9094		20	50		V / mV
Output Saturation Voltage	$\mathrm{V}_{\text {SAT }}$	$\mathrm{I}_{\text {SINK }} \leq 4 \mathrm{~mA}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		120	400	mV
			$T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			700	
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			700	
Output Sink Current	10	$\mathrm{V}_{\mathrm{O}} \leq 1.5 \mathrm{~V}$		10	35		mA
Supply Current (Note 5)	Is	MAX9092/ MAX9093 (both comparators)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		130	200	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			250	
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			300	
		MAX9094/	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		250	400	
		MAX9095 (all four	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			500	$\mu \mathrm{A}$
		comparators)	$T_{A}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			500	
Output Leakage Current		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			0.005		$\mu \mathrm{A}$
		$\mathrm{T}_{\text {A }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				1	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				2	

MAX9092/MAX9093/MAX9094/MAX9095 General-Purpose, Low-Voltage, Dual/Quad, Tiny Pack Comparators

AC ELECTRICAL CHARACTERISTICS-5.0V OPERATION

$\left(V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{C M}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega\right.$ connected to V_{DD}, typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Boldface limits apply at the defined temperature extremes.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Propagation Delay Output High to Low (Note 3)	tpHL	Input overdrive $=10 \mathrm{mV}$	70		ns
		Input overdrive $=100 \mathrm{mV}$	50		
Propagation Delay Output Low to High (Note 3)	tPLH	Input overdrive $=10 \mathrm{mV}$	110		ns
		Input overdrive $=100 \mathrm{mV}$	100		

DC ELECTRICAL CHARACTERISTICS-1.8V OPERATION

$\left(V_{D D}=1.8 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega\right.$ connected to V_{DD}, typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Boldface limits apply at the defined temperature extremes.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$\mathrm{V}_{\text {OS }}$			0.4	5	mV
Input Voltage Hysteresis		MAX9093/MAX9095		2		mV
Input Offset Voltage Average Temperature Drift	TCV ${ }_{\text {OS }}$			1.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	IB			0.0016		nA
Input Offset Current	IOS	-		0.0003		nA
Input Voltage Range	$\mathrm{V}_{\text {CM }}$			-0.1		V
				1		
Output Saturation Voltage	$\mathrm{V}_{\text {SAT }}$	$\mathrm{I}_{\text {SINK }} \leq 1 \mathrm{~mA}$		56		mV
Power-Supply Rejection Ratio	PSRR	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ to 5.5 V	60	90		dB
Output Sink Current	I OUT	$\mathrm{V}_{\text {OUT }} \leq 1.5 \mathrm{~V}$		6.4		mA
Supply Current (Note 5)	Is	MAX9092/MAX9093 (both comparators)		120	170	$\mu \mathrm{A}$
		MAX9094/MAX9095 (all four comparators)		210	340	
Output Leakage Current				0.001		$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS-1.8V OPERATION

$\left(\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega\right.$ connected to V_{DD}, typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Boldface limits apply at the defined temperature extremes.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Propagation Delay Output High to Low (Note 3)	${ }^{\text {tPHL }}$	Input overdrive $=10 \mathrm{mV}$	70		ns
		Input overdrive $=100 \mathrm{mV}$	60		
Propagation Delay Output Low to High (Note 3)	tpLH	Input overdrive $=10 \mathrm{mV}$	120		ns
		Input overdrive $=100 \mathrm{mV}$	110		

Note 2: All devices are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. All temperature limits are guaranteed by design.
Note 3: Input overdrive is the overdrive voltage beyond the offset and hysteresis-determined trip points.
Note 4: Guaranteed by design.
Note 5: Supply current when output is high.

MAX9092/MAX9093/MAX9094/MAX9095 General-Purpose, Low-Voltage, Dual/Quad, Tiny Pack Comparators

Typical Operating Characteristics
$\left(V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, R_{\mathrm{L}}=5.1 \mathrm{k} \Omega, C_{\mathrm{L}}=10 \mathrm{pF}\right.$, overdrive $=100 \mathrm{mV}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

MAX9092/MAX9093/MAX9094/MAX9095
 General-Purpose, Low-Voltage, Dual/Quad, Tiny Pack Comparators

Typical Operating Characteristics (continued)
$\left(V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}\right.$, overdrive $=100 \mathrm{mV}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

MAX9092/MAX9093/MAX9094/MAX9095
 General-Purpose, Low-Voltage, Dual/Quad, Tiny Pack Comparators

Typical Operating Characteristics (continued)
$\left(V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}\right.$, overdrive $=100 \mathrm{mV}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

MAX9092/MAX9093/MAX9094/MAX9095
 General-Purpose, Low-Voltage, Dual/Quad, Tiny Pack Comparators

Pin Configurations

TOP VIEW

Pin Description

PIN		NAME	FUNCTION
MAX9092/MAX9093	MAX9094/MAX9095		
1	2	OUTA	Comparator A Output (Open Drain)
2	4	INA-	Comparator A Inverting Input
3	5	INA+	Comparator A Noninverting Input
4	12	$V_{S S}$	Negative Supply (Connect to Ground)
5	7	INB+	Comparator B Noninverting Input
6	6	INB-	Comparator B Inverting Input
7	1	OUTB	Comparator B Output (Open Drain)
8	3	$V_{\text {DD }}$	Positive Supply
-	8	INC-	Comparator C Inverting Input
-	10	INC+	Comparator C Noninverting Input
-	11	IND-	Comparator D Inverting Input
-	13	OUTD	Comparator D Noninverting Input
-	14	OUTC	Comparator C Output (Open Drain)
-			

MAX9092/MAX9093/MAX9094/MAX9095 General-Purpose, Low-Voltage, Dual/Quad, Tiny Pack Comparators

Detailed Description

The MAX9092/MAX9093/MAX9094/MAX9095 are lowcost, general-purpose comparators that have a singlesupply +1.8 V to +5 V operating voltage range. The common-mode input range extends from -0.1 V below the negative supply to within +0.8 V of the positive supply. They require approximately $65 \mu \mathrm{~A}$ per comparator with a 5 V supply and $50 \mu \mathrm{~A}$ with a 2.7 V supply.
The MAX9093/MAX9095 have 2 mV of hysteresis for noise immunity. This significantly reduces the chance of output oscillations even with slow moving input signals. The ICs are ideal for automotive applications because they operate from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. See the Typical Operating Characteristics.

Applications Information

Hysteresis

Many comparators oscillate in the linear region of operation because of noise or undesired parasitic feedback. This tends to occur when the voltage on one input is equal or very close to the voltage on the other input. The MAX9093/MAX9095 have internal hysteresis to counter parasitic effects and noise.
The hysteresis in a comparator creates two trip points: one for the rising input voltage and one for the falling input voltage (Figure 1). The difference between the trip points is the hysteresis. When the comparator's input voltages are equal, the hysteresis effectively causes one comparator input to move quickly past the other, thus taking the input out of the region where oscillation occurs. This provides clean output transitions for noisy, slow-moving input signals.

Figure 1. Threshold Hysteresis Band (Not to Scale)

Additional hysteresis can be generated with two resistors using positive feedback (Figure 2). Use the following procedure to calculate resistor values:

1) Find output voltage when output is high:

$$
V_{O U T}(H I G H)=V_{D D}-I_{L O A D} \times R_{L}
$$

2) Find the trip points of the comparator using these formulas:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{TH}}=\mathrm{V}_{\mathrm{REF}}+\left(\left(\mathrm{V}_{\mathrm{OUT}(\mathrm{HIGH})}-\mathrm{V}_{\mathrm{REF}}\right) \mathrm{R} 2\right) /(\mathrm{R} 1+\mathrm{R} 2) \\
& \mathrm{V}_{\mathrm{TL}}=\mathrm{V}_{\mathrm{REF}}(1-(\mathrm{R} 2 /(\mathrm{R} 1+\mathrm{R} 2)))
\end{aligned}
$$

where V_{TH} is the threshold voltage at which the comparator switches its output from high to low as V_{IN} rises above the trip point, and V_{TL} is the threshold voltage at which the comparator switches its output from low to high as $\mathrm{V}_{\text {IN }}$ drops below the trip point.
3) The hysteresis band is:

$$
\mathrm{V}_{\mathrm{HYST}}=\mathrm{V}_{\mathrm{TH}}-\mathrm{V}_{\mathrm{TL}}=\mathrm{V}_{\mathrm{DD}}(\mathrm{R} 2 /(\mathrm{R} 1+\mathrm{R} 2))
$$

In this example, let $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=2.5 \mathrm{~V}$, $\mathrm{l}_{\mathrm{LOAD}}=$ 50 nA , and $R_{L}=5.1 \mathrm{k} \Omega$.

$$
\begin{gathered}
\mathrm{V}_{\mathrm{OUT}(\mathrm{HIGH})}=5.0 \mathrm{~V}-\left(50 \times 10^{-9} \times 5.1 \times 10^{3} \Omega\right) \approx 5.0 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{TH}}=2.5+2.5(\mathrm{R} 2 /(\mathrm{R} 1+\mathrm{R} 2)) \\
\mathrm{V}_{\mathrm{TL}}=2.5(1-(\mathrm{R} 2 /(\mathrm{R} 1+\mathrm{R} 2)))
\end{gathered}
$$

Select R2. In this example, choose $1 \mathrm{k} \Omega$.
Select $\mathrm{V}_{\text {HYST }}$. In this example, choose 50 mV .
Solve for R1.

$$
\begin{gathered}
V_{\text {HYST }}=V_{\text {OUT(HIGH) }}(R 2 /(R 1+R 2)) \mathrm{V} \\
0.050 \mathrm{~V}=5(1000 /(R 1+1000)) \mathrm{V}
\end{gathered}
$$

where $\mathrm{R} 1 \approx 100 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{TH}}=2.525 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{TL}}=2.475 \mathrm{~V}$

Figure 2. Adding Hysteresis with External Resistors

MAX9092/MAX9093/MAX9094/MAX9095 General-Purpose, Low-Voltage, Dual/Quad, Tiny Pack Comparators

Choose R1 and R2 to be large enough as not to exceed the amount of current the reference can supply.
The source current required is $V_{R E F} /(R 1+R 2)$.
The sink current is ($\left.\mathrm{V}_{\mathrm{OUT}}(\mathrm{HIGH})-\mathrm{V}_{\mathrm{REF}}\right) \times(\mathrm{R} 1+\mathrm{R} 2)$.
Choose R_{L} to be large enough to avoid drawing excess current, yet small enough to supply the necessary current to drive the load. R_{L} should be between $1 \mathrm{k} \Omega$ and $10 k \Omega$. Choose R1 to be much larger than R_{L} to avoid lowering $\mathrm{V}_{\text {OUT(HIGH) }}$ ir raising $\mathrm{V}_{\text {OUT(LOW) }}$.

Board Layout and Bypassing

Use $0.1 \mu \mathrm{~F}$ bypass capacitors from V_{DD} to $\mathrm{V}_{\text {SS }}$. To maximize performance, minimize stray inductance by putting this capacitor close to the $V_{D D}$ pin and reducing trace lengths. For slow-moving input signals (rise time > 1ms), use a 1 nF capacitor between $\mathrm{IN}+$ and IN - to reduce high frequency noise.

Chip Information
PROCESS: BiCMOS

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX9092AKA +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SOT23	+ AESO
MAX9092AUA $+^{*}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-
MAX9093AKA+	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SOT 23	+ AESP
MAX9093AUA + ${ }^{*}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-
MAX9094ASD+ ${ }^{*}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 SO	-
MAX9094AUD+ ${ }^{*}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 TSSOP	-
MAX9095ASD+ ${ }^{*}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 SO	-
MAX9095AUD+ ${ }^{*}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 TSSOP	-

+Denotes a lead(Pb)-free/RoHS-compliant package.
*Future product-Contact factory for availability.
Package Information
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
8 SOT23	$\mathrm{K} 8+5$	$\underline{\mathbf{2 1 - 0 0 7 8}}$	$\underline{90-0176}$
$8 \mu \mathrm{MAX}$	$\mathrm{U} 8+1$	$\underline{\mathbf{2 1 - 0 0 3 6}}$	$\underline{\underline{90-0092}}$
14 SO	$\mathrm{S} 14+1$	$\underline{\mathbf{2 1 - 0 0 4 1}}$	$\underline{\underline{90-0112}}$
14 TSSOP	$\mathrm{U} 14+1$	$\underline{21-0066}$	$\underline{90-0113}$

MAX9092/MAX9093/MAX9094/MAX9095
 General-Purpose, Low-Voltage, Dual/Quad, Tiny Pack Comparators

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$7 / 12$	Initial release	-

[^1]
[^0]: - Guaranteed +1.8V to +5.5V Performance
 - $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Automotive Temperature Range
 - Low Supply Current ($65 \mu \mathrm{~A} /$ Channel at VDD $=+5.0 \mathrm{~V}$)
 - Input Common-Mode Voltage Range Includes Ground
 - No Phase Reversal for Overdriven Inputs
 - Low Output Saturation Voltage (120mV)
 - Internal 2mV Hysteresis (MAX9093/MAX9095)
 - Fast 100ns Propagation Delay
 - Open-Drain Outputs
 - 8-Pin SOT23/ μ MAX and 14-Pin TSSOP/SO Packages

[^1]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

