

B-XNM-2WSeries

Isolated 2W Single Output DC/DC Converters

FEATURES

- ◆Footprint from 1.05cm²
- ◆I/O isolation voltage 1000VDC
- ◆Operating Temperature: -40°C~ +85°C
- ♦ High efficiency up to 85%
- ◆Fully encapsulated toroidal magnetics
- ◆Internal SMD construction
- ◆Custom solutions available
- ◆No electrolytic or tantalum capacitors
- ◆5V, 9V, 12V and 15V output
- ◆No heatsink required
- ◆Pin compatible with B-X(S)D-1W series
- ♦UL 94V-0 package material
- ◆No external compo nents required
- ◆Industry standard pinout
- ◆Power density 2.01W/cm³
- ◆MTTF up to 2.3 million hours

MODEL SELECTION B°05°05°X° N°M°-2W°

- (1)Product Series
- 3 Output Voltage
- Negation output 7 Rated Power
- ②Input Voltage
- **4** Fixed Input
- 6 Package Style

APPLICATIONS

The B-XNM-2W series of DC/DC Converters is particularly suited to isolating and/or converting DC power rails. The galvanic isolation allows the device to be configured to provide an isolated negative rail in systems where only positive rails exist. The wide temperature range guarantees startup from -40°C and full 2 watt output at 85°C. Pin compatibility with the B-X(S)D-1W ensures ease of upgradeability.

SELECT	ION G	UIDE					
Order code	Input Voltage (V)	Output Voltage (V)	Output Current (MA)	Input Current (Rated Load) (MA)	Efficiency (%)	Isolation Capacitance (PF)	MTTF ¹ (KHRS)
B0505XNM-2W	5	5	400	513	78	19	2327
B0509XNM-2W	5	9	222	492	81	27	1393
B0512XNM-2W	5	12	167	479	84	32	832
B0515XNM-2W	5	15	133	481	83	27	481
B1205XNM-2W	12	5	400	207	81	28	716
B1209XNM-2W	12	9	222	198	84	42	593
B1212XNM-2W	12	12	167	197	85	46	461
B1215XNM-2W	12	15	133	197	85	54	328
B2405XNM-2W	24	5	400	104	80	60	315
B2409XNM-2W	24	9	222	100	83	65	302
B2412XNM-2W	24	12	167	99	84	78	295
B2415XNM-2W	24	15	133	99	84	58	282

Input Characteristics						
Parameter	Conditions	Min	Тур	Max.	Units	
	Continuous operation,5V input types	4.5	5	5.5		
Voltage range	Continuous operation,12V input types	10.8	12	13.2	V	
	Continuous operation,24V input types	21.6	24	26.4		
Reflected ripple current	5V input types		33		mA p-p	
rtellected ripple current	12V input types		38		mA p-p	

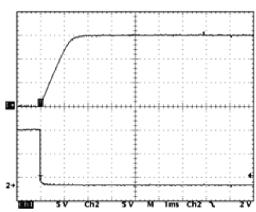
OUTPUT CHARACTERISTICS						
Parameter	Conditions Mir		Тур.	Max.	Units	
Rated Power	TA=-40° C to 85° C			2	W	
Voltage Set Point Accuracy	See tolerance envelope					
Line regulation	High VIN to low VIN		1.0	1.2	%%	
	5V output		7	8.5	%	
Load regulation	9V output		4.5	5.2	%	
10% load to rated load	12V output		4.5	5.5	%	
	15V output		3.7	8.5	%	
	B0505XNM,BW=DC to 20MHz		96	200	mA p-p	
	B0509XNM,BW=DC to 20MHz		67	200	mA p-p	
	B0512XNM,BW=DC to 20MHz		59	200	mA p-p	
Ripple and Noise	B0515XNM,BW=DC to 20MHz		53	200	mA p-p	
Trippic and Troise	B1205XNM,BW=DC to 20MHz		76	200	mA p-p	
	B1209XNM,BW=DC to 20MHz		63	200	mA p-p	
	B1212XNM,BW=DC to 20MHz		53	200	mA p-p	
	B1215XNM,BW=DC to 20MHz		45	200	mA p-p	

Absolute Maximum Ratings	
Short-circuit protection ²	1 second
Lead temperature 1.5mm from case for 10 seconds	300° C
Internal power dissipation	805mW
Input voltage VIN,B05 types	7V
Input voltage VIN,B12 types	15V
Input voltage VIN,B24 types	28V

Isolation characteristics					
Parameter	Conditions	Min.	Тур	Max.	Unit
Isolation test voltage	1 second	1000			VDC
Resistance	Viso= 500VDC	10			GΩ

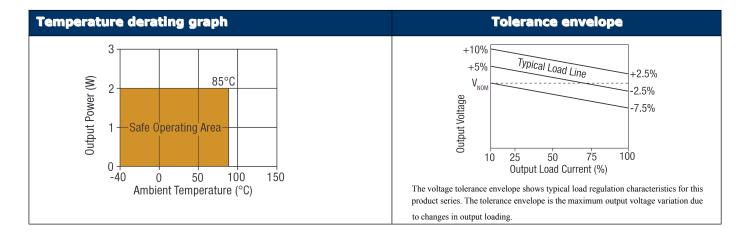
- 1.Calculated using MIL-HDBK-217FN2 calculation model with nominal input voltage at full load.
- 2.Supply voltage must be disconnected at the end of the short circuit duration.

Minimum load


The minimum load to meet datasheet specification is 10% of the full rated load across the specified input voltage range. Lower than 10% minimum loading will result in an increase in output voltage, which may rise to typically double the specified output voltage if the output load falls to less than 5%.

Capacitive loading and start up

Typical start up times for this series, with a typical input voltage rise time of 2.2s and output capacitance of 10F, are shown in the table below. The product series will start into a capacitance of 47F with an increased start time, however, the maximum recommended output capacitance is 10F.


	Start-up time
	μδ
B0505XNM	790
B0509XNM	1154
B0512XNM	2265
B0515XNM	2998
B1205XNM	396
B1209XNM	880
B1212XNM	1156
B1215XNM	2394

General Characteristics	General Characteristics					
Parameter	Conditions	Min.	Тур.	Max.	Units	
Switching frequency	5V input types		90		kHz	
C Milorally modulation	12V input types		90		kHz	

Temperature Characteristics					
Parameter	Conditions	Min.	Тур.	Max.	Units
Specification	All output types	-40		85	
Storage		-50		130	°C
Case temperature above	5V output types			45	
ambient	All other output types			36	
Cooling	Free air convection				

Technical notes

ISOLATION VOLTAGE

"Hi Pot Test", "Flash Tested", "Withstand Voltage", "Dielectric Withstand Voltage" &" Isolation Test Voltage" are all terms that relate to the same thing, a test voltage Applied for a specified time, across a component designed to provide electrical isolation, to verify the integrity of that isolation. Professional Power Module B-XNM series of DC/DC converters are all 100% production tested at their stated isolation voltage. This is 1KVDC for 1 second.

A question commonly asked is, "What is the continuous voltage that can be applied across the part in normal operation?"

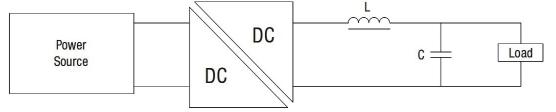
The B-XNM-2W series has been recognized by Underwriters Laboratory for functional insulation. Both input and output should normally be maintained within SELV limits i.e. less than 42.4V peak, or 60VDC. The isolation test voltage represents a measure of immunity to transient voltages and the part should never be used as an element of a safety isolation system. The part could be expected to function correctly with several hundred volts offset applied continuously across the isolation barrier, but then the circuitry on both sides of the barrier must be regarded as operating at an unsafe voltage and further isolation/insulation systems must form a barrier between these circuits and any user-acssible circuitry according to safety standard requirements.

REPEATED HIGH-VOLTAGE ISOLATION TESTING

It is well known that repeated high-voltage isolation testing of a barrier component can actually degrade isolation capability, to a lesser or greater degree depending on materials. Construction and environment. The B-XNM series has toroidal isolation transformers, with no additional insulation between primary and secondary windings of enameled wire. While parts can be expected to withstand several times the stated test voltage, the isolation capability does depend on the wire insulation. Any material, including this enamel (typically polyurethane) is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing. but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage.

This consideration equally applies to agency recognized parts for better than functional isolation where the wire enamel insulation is always supplemented by a further insulation system of physical spacing or barriers.

OUTPUT RIPPLE REDUCTION

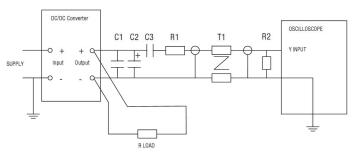

Output ripple reduction

By using the values of inductance and capacitance stated, the output ripple at the rated load is lowered to 5mV p-p max.

Component selection

Capacitor: Ceramic chip capacitors are recommended. It is required that the ESR(Equivalent Series Resistance) should be as low as possible. X7R types are recommended. The voltage rating should be at least twice (except for 15V output), the rated output voltage of the DC/DC converter.

Inductor: The rated current of the inductor should not be less than of the output of the DC/DC converter. At the rated current, the DC resistance of the inductor should be such that the voltage drop across the inductor is <2% of the rated voltage of the DC/DC converter. The SRF(Self Resonant Frequency) should be >20MHz.


CHARACTERISATION TEST METHODS

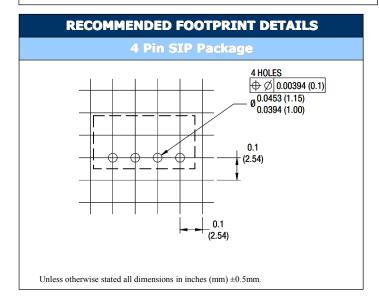
Ripple & Noise Characterisation Method

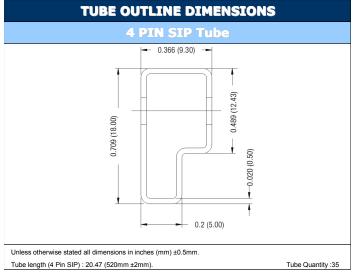
Ripple and noise measurements are performed with the following test configuration.

C1	1 μ F X7R multilayer ceramic capacitor, voltage rating to be a minimum of 3 times the output voltage of the DC/DC converter				
C2	10 μ F tantalum capacitor, voltage rating to be a minimum of 1.5 times the output voltage of the DC/DC converter with an ESR of less than 100m Ω at 100 KHz				
C3	100nF multilayer ceramic capacitor, general purpose				
R1	450 Ω resistor, carbon fi lm, \pm 1% tolerance				
R2	50 Ω BNC termination				
T1	3T of the coax cable through a ferrite toroid				
RLOAD	Resistive load to the maximum power rating of the DC/DC converter. Connections should be made via twisted wires				
Measured	Measured values are multiplied by 10 to obtain the specified values.				

Differential Mode Noise Test Schematic

PACKAGE SPECIFICATIONS


P)	FOOTPRINT DETAILS PIN CONNECTIONS-4 PIN SIP					
PIN	Function					
1	Vin					
2	GND					
3	0					
4	+Vo					


Specifications can be changed any time without notice

No parallel connection or plug and play.

Note

- 1. The load shouldn't be less than 10%, otherwise ripple will increase dramatically.
- 2. Operation under 10% load will not damage the converter; However, they may not meet all specification listed.
- All specifications measured at Ta=25°C, humidity<75%, nominal input voltage and rated output load unless otherwise specified.
- 4. In this data sheet, all the test methods of indications are based on corporate standards.

MICRODC

Professional Power Module

Microdc Professional Power Module, Inc.
Tel:0086-20-86000646 E-mail:tech@microdc.cn
Website:http://www.microdc.cn

Microde Professional Power module, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. Specifications are subject to change without notice.

©2010 Microde Professional Power Module, Inc. Guangzhou

RoHS COMPLIANT INFORMATION

This series is compatible with RoHS soldering systems with a peak wave solder temperature of 300°C for 10 seconds. The pin termination finish on the SIP package type is Tin Plate, Hot Dipped over Matte Tin with Nickel Preplate. The DIP types are Matte Tin over Nickel Preplate. Both types in this series are backward compatible with Sn/Pb soldering systems.

REACH COMPLIANT INFORMATION

This series has proven that this product does not contain harmful chemicals, it also has harmful chemical substances through the registration, inspection and approval.