

Single-Phase High-Performance Wide-Span Energy Metering IC 90E21/22/23/24

Version 6 January 10, 2012

6024 Silver Creek Valley Road, San Jose, CA 95138 Printed in U.S.A. © 2012 Integrated Device Technology, Inc. DISCLAIMER

Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance and to supply the best possible product. IDT does not assume any responsibility for use of any circuitry described other than the circuitry embodied in an IDT product. The Company makes no representations that circuitry described herein is free from patent infringement or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent, patent rights or other rights, of Integrated Device Technology, Inc.

LIFE SUPPORT POLICY

Life SUPPORT POLICY Integrated Device Technology's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the manufacturer and an officer of IDT. 1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body or (b) support or sustain life and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. 2. A critical component is any components of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its

safety or effectiveness.

Table of Contents

FEATURES	6
APPLICATION	6
DESCRIPTION	6
BLOCK DIAGRAM	7
1 PIN ASSIGNMENT	
2 PIN DESCRIPTION	-
3 FUNCTIONAL DESCRIPTION	
3.1 DYNAMIC METERING RANGE	
3.2 STARTUP AND NO-LOAD POWER	
3.3 ENERGY REGISTERS	
3.4 N LINE METERING AND ANTI-TAMPERING	
3.4.1 Metering Mode and L/N Line Current Sampling Gain Configuration	
3.4.2 Anti-Tampering Mode	13
3.5 MEASUREMENT AND ZERO-CROSSING	
3.5.1 Measurement	
3.5.2 Zero-Crossing	
3.6 CALIBRATION	
3.7 RESET	
4 INTERFACE	
4.1 SERIAL PERIPHERAL INTERFACE (SPI)	
4.1.1 Four-Wire Mode	
4.1.2 Three-Wire Mode	
4.1.3 Timeout and Protection 4.2 WARNOUT PIN FOR FATAL ERROR WARNING	
4.2 WARNOUT PIN FOR FATAL ERROR WARNING	
5 REGISTER	
5.1 REGISTER LIST	
5.1 REGISTER LIST	-
5.3 METERING/ MEASUREMENT CALIBRATION AND CONFIGURATION	
5.3.1 Metering Calibration and Configuration Register	
5.3.2 Measurement Calibration Register	
5.4 ENERGY REGISTER	
5.5 MEASUREMENT REGISTER	
6 ELECTRICAL SPECIFICATION	48
6.1 ELECTRICAL SPECIFICATION	
6.2 SPI INTERFACE TIMING	50
6.3 POWER ON RESET TIMING	51
6.4 ZERO-CROSSING TIMING	
6.5 VOLTAGE SAG TIMING	-
6.6 PULSE OUTPUT	
6.7 ABSOLUTE MAXIMUM RATING	
PACKAGE DIMENSIONS	
ORDERING INFORMATION	57

List of Tables

Table-1	Function List	. 6
Table-2	Pin Description	10
Table-3	Active Energy Metering Error	12
Table-4	Reactive Energy Metering Error	12
Table-5	Threshold Configuration for Startup and No-Load Power	12
Table-6	Energy Registers	12
Table-7	Metering Mode	13
Table-8	The Measurement Format	14
Table-9	Read / Write Result in Four-Wire Mode	18
Table-10	Read / Write Result in Three-Wire Mode	18
Table-11	Register List	19
Table-12	SPI Timing Specification	50
Table-13		51
Table-14	Zero-Crossing Specification	52
Table-15	Voltage Sag Specification	52

List of Figures

Figure-2	90E21 Block Diagram	7
Figure-3	90E23 Block Diagram	. 8
Figure-4	90E24 Block Diagram	. 8
Figure-5	90E24 Block Diagram Pin Assignment (Top View)	. 9
Figure-6	Read Sequence in Four-Wire Mode	16
Figure-7	Write Sequence in Four-Wire Mode	16
Figure-8	Read Sequence in Three-Wire Mode	17
Figure-9	Write Sequence in Three-Wire Mode	17
Figure-10	4-Wire SPI Timing Diagram	50
Figure-11	3-Wire SPI Liming Diagram	50
Figure-12	Power On Reset Timing Diagram	51
Figure-13	Zero-Crossing Timing Diagram	51
Figure-14	Voltage Sag Timing Diagram	52
Figure-15	Output Pulse Width	52

Single-Phase High-Performance

Wide-Span Energy Metering IC

FEATURES

Metering Features

- Metering features fully in compliance with the requirements of IEC62052-11, IEC62053-21 and IEC62053-23; applicable in class 1 or class 2 single-phase watt-hour meter or class 2 singlephase var-hour meter.
- Accuracy of 0.1% for active energy and 0.2% for reactive energy over a dynamic range of 5000:1.
- Temperature coefficient is 15 ppm/ °C (typical) for on-chip reference voltage
- Single-point calibration over a dynamic range of 5000:1 for active energy; no calibration needed for reactive energy.
- Energy Meter Constant doubling at low current to save verification time.
- Electrical parameters measurement: less than $\pm 0.5\%$ fiducial error for Vrms, Irms, mean active/ reactive/ apparent power, frequency, power factor and phase angle.
- Forward/ reverse active/ reactive energy with independent energy registers. Active/ reactive energy can be output by pulse or read through energy registers to adapt to different applications.
- Programmable startup and no-load power threshold.
- Dedicated ADC and different gains for L line and N line current sampling circuits. Current sampled over shunt resistor or current transformer (CT); voltage sampled over resistor divider network or potential transformer (PT).
- Programmable L line and N line metering modes: anti-tampering mode (larger power), L line mode (fixed L line), L+N mode (applicable for single-phase three-wire system) and flexible mode (configure through register).
- Programmable L line and N line power difference threshold in anti-tampering mode.

DESCRIPTION

The 90E21/22/23/24 series are high-performance wide-span energy metering chips. IDT's proprietary ADC and DSP technology ensure the chips' long-term stability over variations in grid and ambient environmental conditions.

Table-1 Function List

Part Number	Active Energy Metering	Reactive Energy Metering	N Line Metering	Electrical Parameters Measurement
90E21	\checkmark			\checkmark
90E22	\checkmark	\checkmark		\checkmark
90E23	\checkmark		\checkmark	\checkmark
90E24	\checkmark	\checkmark	\checkmark	\checkmark

Other Features

- 3.3V single power supply. Operating voltage range: 2.8~3.6V. Metering accuracy guaranteed within 3.0V~3.6V. 5V compatible for digital input.
- · Built-in hysteresis for power-on reset.
- Four-wire SPI interface or simplified three-wire SPI interface with fixed 24 cycles for all registers operation
- Parameter diagnosis function and programmable interrupt output of the IRQ interrupt signal and the WarnOut signal.
- · Programmable voltage sag detection and zero-crossing output.
- · Channel input range
 - Voltage channel (when gain is '1'): 120µVrms~600mVrms.
 - L line current channel (when gain is '24'): 5µVrms~25mVrms.
 - N line current channel (when gain is '1'): 120µVrms~600mVrms.
- Programmable L line current gain: 1, 4, 8, 16, 24; Programmable N line gain: 1, 2, 4.
- · Support L line and N line offset compensation.
- CF1 and CF2 output active and reactive energy pulses respectively which can be used for calibration or energy accumulation.
- Crystal oscillator frequency: 8.192 MHz. On-chip 10pF capacitors and no need of external capacitors.
- Green SSOP28 package.
- Operating temperature: -40 $^\circ\!\!\mathrm{C}$ ~ +85 $^\circ\!\!\mathrm{C}$.

APPLICATION

• The 90E21/22/23/24 series are used for active and reactive energy metering for single-phase two-wire, single-phase threewire or anti-tampering energy meters. With the measurement function, the 90E21/22/23/24 series can also be used in power instruments which need to measure voltage, current, etc.

90E21/22/23/24 are all of green SSOP28 package with the same pin alignment. In this datasheet, all reactive energy metering parts are only applicable for the 90E22/24, and all N line metering and measurement parts are only applicable for the 90E23/24.

IDT and the IDT logo are trademarks of Integrated Device Technology, Inc.

BLOCK DIAGRAM

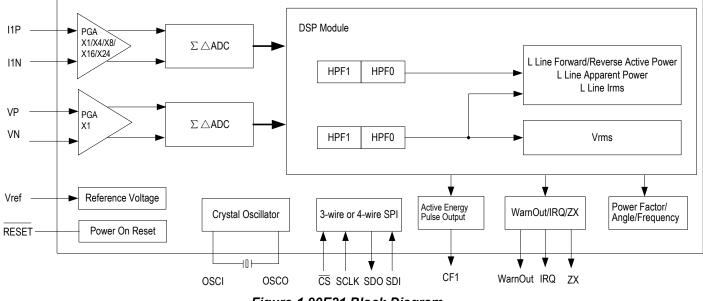


Figure-1 90E21 Block Diagram

Figure-2 90E22 Block Diagram

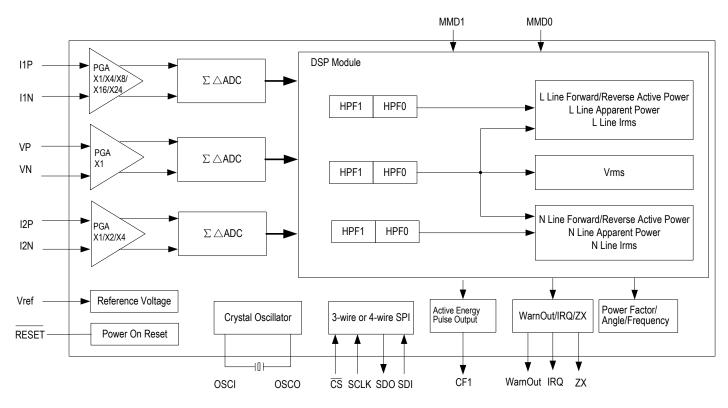


Figure-3 90E23 Block Diagram

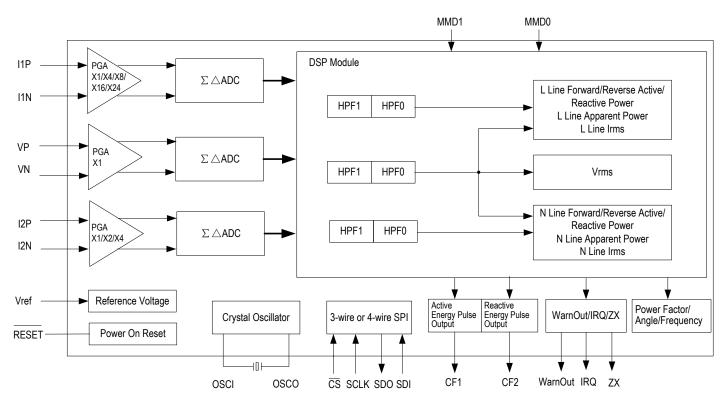
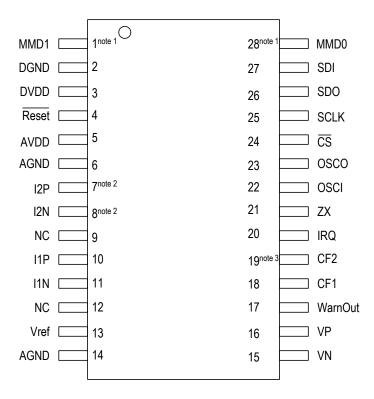



Figure-4 90E24 Block Diagram

1 PIN ASSIGNMENT

Figure-5 Pin Assignment (Top View)

Note 1: Pin 1 and 28 are dedicated for the 90E23/24. Pin 1 should connect to DGND and pin 28 should connect to DVDD for 90E21/22.

Note 2: Pin 7 and 8 are dedicated for the 90E23/24. They should be left open for the 90E21/22.

Note 3: Pin 19 is dedicated for the 90E22/24. It should be left open for the 90E21/23.

2 PIN DESCRIPTION

Table-2 Pin Description

Name	Pin No.	I/O note 1	Туре	Description	
Reset	4	I	LVTTL	Reset: Reset Pin (active low) This pin should connect to ground through a 0.1µF filter capacitor. In application it can a directly connect to one output pin from microcontroller (MCU).	
DVDD	3	I	Power	DVDD: Digital Power Supply This pin provides power supply to the digital part. It should be decoupled with a 10μ F electrolytic capacitor and a 0.1μ F capacitor.	
DGND	2	I	Power	DGND: Digital Ground	
AVDD	5	I	Power	AVDD: Analog Power Supply This pin provides power supply to the analog part. This pin should connect to DVDD through a 10Ω resistor and be decoupled with a 0.1μ F capacitor.	
Vref	13	0	Analog	Vref: Output Pin for Reference Voltage This pin should be decoupled with a 1μ F capacitor and a 1nF capacitor.	
AGND	6, 14	I	Power	AGND: Analog Ground	
11P 11N	10 11	I	Analog	 I1P: Positive Input for L Line Current I1N: Negative Input for L Line Current These pins are differential inputs for L line current. Input range is 5µVrms~25mVrms wher gain is '24'. 	
12P 12N	7 8	1	Analog	I2P: Positive Input for N Line Current I2N: Negative Input for N Line Current These pins are differential inputs for N line current. Input range is 120u//rms~600rr	
VP VN	16 15	Ι	Analog	VP: Positive Input for Voltage VN: Negative Input for Voltage These pins are differential inputs for voltage. Input range is 120μVrms~600mVrms.	
NC	9, 12			NC: This pin should be left open.	
CS	24	I	LVTTL	CS: Chip Select (Active Low)	
SCLK	25	I	LVTTL	SCLK: Serial Clock	
SDO	26	OZ	LVTTL	SDO: Serial Data Output This pin is used as the data output for the SPI interface. Data on this pin is shifted out of the chip on the falling edge of SCLK.	
SDI	27	I	LVTTL	SDI: Serial Data Input	
MMD1 MMD0	1 28	1	LVTTL	MMD1/0: Metering Mode Configuration 00: anti-tampering mode (larger power); 01: L line mode (fixed L line); 10: L+N mode (applicable for single-phase three-wire system); 11: flexible mode (line specified by the LNSel bit (MMode, 2BH)) Note: The MMD1/0 pins are dedicated for the 90E23/24. For the 90E21/22, the meteri mode is fixed as L line mode, and MMD1 should connect to DGND and MMD0 should connect to DVDD.	

Table-2 Pin Description (Continued)

Name	Pin No.	I/O note 1	Туре	Description	
OSCI	22	I	LVTTL	OSCI: External Crystal Input An 8.192 MHz crystal is connected between OSCI and OSCO. There is an on-chip 10p capacitor, therefore no need of external capacitors.	
OSCO	23	0	LVTTL	OSCO: External Crystal Output An 8.192 MHz crystal is connected between OSCI and OSCO. There is an on-chip 10pF capacitor, therefore no need of external capacitors.	
CF1 CF2	18 19	0	LVTTL	CF1: Active Energy Pulse Output CF2: Reactive Energy Pulse Output These pins output active/reactive energy pulses. Note: CF2 is dedicated for the 90E22/24. It should be left open for the 90E21/23.	
ZX	21	0	LVTTL	ZX: Voltage Zero-Crossing Output This pin is asserted when voltage crosses zero. Zero-crossing mode can be configured to positive zero-crossing, negative zero-crossing or all zero-crossing by the Zxcon[1:0] bits (MMode, 2BH).	
IRQ	20	0	LVTTL	IRQ: Interrupt Output This pin is asserted when one or more events in the SysStatus register (01H) occur. It i deasserted when there is no bit set in the SysStatus register (01H).	
WarnOut	17	0	LVTTL	WarnOut: Fatal Error Warning This pin is asserted when there is metering parameter calibration error or voltage sag. Refer to section 4.2.	
ote 1: All digital inputs are 5V tolerant except for the OSCI pin.					

3 FUNCTIONAL DESCRIPTION

3.1 DYNAMIC METERING RANGE

Accuracy is 0.1% for active energy metering and 0.2% for reactive energy metering over a dynamic range of 5000:1 (typical). Refer to Table-3 and Table-4.

Table-3 Active Energy Metering Error

Current	Power Factor	Error (%)		
20 mA \leq I $<$ 50mA	10	±0.2		
$50 \text{mA} \leqslant I \leqslant 100 \text{A}$	1.0	±0.1		
$50 \text{mA} \leq I < 100 \text{mA}$	0.5 (Inductive)	±0.2		
$100 \text{mA} \leq I \leq 100 \text{A}$	0.8 (Capacitive)	±0.1		
Note: Shunt resistor is 250 $\mu\Omega$ or CT ratio is 1000:1 and load resistor is 6 $\Omega.$				

Table-4 Reactive Energy Metering Error

Current	sin∲ (Inductive or Capacitive)	Error (%)			
$20mA \le I < 50mA$	1.0	\pm 0.4			
$50 \text{mA} \leqslant I \leqslant 100 \text{A}$	1.0	±0.2			
$50 \text{mA} \leq I < 100 \text{mA}$	0.5	\pm 0.4			
$100 \text{mA} \leq I \leq 100 \text{A}$	0.0	±0.2			
Note: Shunt resistor is 250 $\mu\Omega$ or CT ratio is 1000:1 and load resistor is 6 Ω .					

3.2 STARTUP AND NO-LOAD POWER

Startup and no-load power thresholds are programmable, both for active and reactive power. The related registers are listed in Table-5.

Table-5 Threshold Configuration for Startup and No-Load Power

Threshold	Register
Threshold for Active Startup Power	PStartTh, 27H
Threshold for Active No-load Power	PNoITh, 28H
Threshold for Reactive Startup Power	QStartTh, 29H
Threshold for Reactive No-load Power	QNoITh, 2AH

The chip will start within 1.2 times of the theoretical startup time of the configured startup power, if startup power is less than the corresponding power of 20mA when power factor or $sin\phi$ is 1.0.

The chip has no-load status bits, the Pnoload/Qnoload bit (EnStatus, 46H). The chip will not output any active pulse (CF1) in active no-load state. The chip will not output any reactive pulse (CF2) in reactive no-load state.

3.3 ENERGY REGISTERS

The 90E21/22/23/24 provides energy pulse output CFx (CF1/CF2) which is proportionate to active/reactive energy. Energy is usually accumulated by adding the CFx pulses in system applications. Alternatively, the 90E21/22/23/24 provides energy registers. There are forward (inductive), reverse (capacitive) and absolute energy registers for both active and reactive energy. Refer to Table-6.

Table-6 Energy Registers

Energy	Register
Forward Active Energy	APenergy, 40H
Reverse Active Energy	ANenergy, 41H
Absolute Active Energy	ATenergy, 42H
Forward (Inductive) Reactive Energy	RPenergy, 43H
Reverse (Capacitive) Reactive Energy	RNenergy, 44H
Absolute Reactive Energy	RTenergy, 45H

Each energy register is cleared after read. The resolution of energy registers is 0.1CF, i.e. one LSB represents 0.1 energy pulse.

3.4 N LINE METERING AND ANTI-TAMPERING

3.4.1 METERING MODE AND L/N LINE CURRENT SAMPLING GAIN CONFIGURATION

The 90E23 and 90E24 have two current sampling circuits with N line metering and anti-tampering functions. The MMD1 and MMD0 pins are used to configure the metering mode. Refer to Table-7.

Table-7 Metering Mode

MMD1	MMD0	Metering Mode	CFx (CF1 or CF2) Output	
0	0	Anti-tampering Mode (larger power)	CFx represents the larger energy line. Refer to section 3.4.2.	
0	1	L Line Mode (fixed L line)	CFx represents L line energy all the time.	
1	0	L+N Mode (applicable for single-phase three-wire system)	CFx represents the arithmetic sum of L line and N line energy	
1	1	Flexible Mode (line speci- fied by the LNSel bit (MMode, 2BH))		

The 90E23 and 90E24 have two current sampling circuits with different gain configurations. L line gain can be 1, 4, 8, 16 and 24, and N line gain can be 1, 2 and 4. The configuration is made by the MMode register (2BH). Generally L line can be sampled over shunt resistor or CT. N line can be sampled over CT for isolation consideration. Note that Rogowski coil is not supported.

3.4.2 ANTI-TAMPERING MODE

Threshold

In anti-tampering mode, the power difference threshold between L line and N line can be: 1%, 2%,... 12%, 12.5%, 6.25%, 3.125% and

1.5625%, altogether 16 choices. The configuration is made by the Pthresh[3:0] bits (MMode, 2BH) and the default value is 3.125%. The threshold is applicable for active energy. The metering line of the reactive energy follows that of the active energy.

Compare Method

In anti-tampering mode, the compare method is as follows:

If current metering line is L line and

N line is switched as the metering line, otherwise L line keeps as the metering line.

If current metering line is N line and

L Line Active Power - N Line Active Power N Line Active Power * 100% > Threshold

L line is switched as the metering line, otherwise N line keeps as the metering line.

This method can achieve hysteresis around the threshold automatically. L line is employed after reset by default.

Special Treatment at Low Power

When power is low, general factors such as the quantization error or calibration difference between L line and N line might cause the power difference to be exceeded. To ensure L line and N line to start up normally, special treatment as follows is adopted:

The line with higher power is selected as the metering line when both L line and N line power are lower than 8 times of the startup power but higher than the startup power.

3.5 MEASUREMENT AND ZERO-CROSSING

3.5.1 MEASUREMENT

The 90E21/22/23/24 has the following measurements:

- voltage rms
- current rms (L line/N line)
- mean active power (L line/N line)
- mean reactive power (L line/N line)
- voltage frequency
- power factor (L line/N line)
- phase angle between voltage and current (L line/N line)
- mean apparent power (L line/N line)

Table-8 The Measurement Format

The above measurements are all calculated with fiducial error except for frequency. The frequency accuracy is 0.01Hz, and the other measurement accuracy is 0.5%. Fiducial error is calculated as follow:

$$Fiducial_E rror = \frac{U_{mea} - U_{real}}{U_{FV}} * 100\%$$

Where U_{mea} is the measured voltage, U_{real} is the actual voltage and $U_{\rm FV}$ is the fiducial value.

Measurement	Fiducial Value (FV)	90E21/22/23/24 Defined Format	Range	Comment
Voltage rms	Un	XXX.XX	0~655.35V	
Current rms ^{note 1, note 2}	lmax as 4lb	XX.XXX	0~65.535A	
Active/ Reactive Power ^{note 1}	maximum power as Un*4lb	XX.XXX	-32.768~+32.767 kW/kvar	Complement, MSB as the sign bit
Apparent Power ^{note 1}	Un*4lb	XX.XXX	0~+32.767 kVA	Complement, MSB always '0'
Frequency	fn	XX.XX	45.00~65.00 Hz	
Power Factor ^{note 3}	1.000	X.XXX	-1.000~+1.000	Signed, MSB as the sign bit
Phase Angle ^{note 4}	180°	XXX.X	-180°~+180°	Signed, MSB as the sign bit

Note 1: All registers are of 16 bits. For cases when the current and active/reactive/apparent power goes beyond the above range, it is suggested to be handled by microcontroller (MCU) in application. For example, register value can be calibrated to 1/2 of the actual value during calibration, then multiply 2 in application. Note that if the actual current is twice of that of the 90E21/22/23/24, the actual active/reactive/apparent power is also twice of that of the chip.

Note 2: The accuracy is not guaranteed when the current is lower than 15mA. Note that the tolerance is 25 mA at I_{FV} of 5A and fiducial accuracy of 0.5%.

Note 3: Power factor is obtained by active power dividing apparent power

Note 4: Phase angle is obtained when voltage/current crosses zero at the frequency of 256kHz. Precision is not guaranteed at small current.

3.5.2 ZERO-CROSSING

The ZX pin is asserted when the sampling voltage crosses zero. Zero-crossing mode can be configured to positive zero-crossing, negative zero-crossing and all zero-crossing by the Zxcon[1:0] bits (MMode, 2BH). Refer to section 6.4.

The zero-crossing signal can facilitate operations such as relay operation and power line carrier transmission in typical smart meter applications.

3.6 CALIBRATION

Metering Calibration

Only single-point calibration is needed over the entire dynamic range.

Metering calibration is realized by first calibrating gain at unity power factor and then calibrating phase angle compensation at 0.5 inductive power factor.

However, due to very small signal in L line current sampling circuits, any external interference, e.g., a tens of nano volts influence voltage on shunt resistor conducted by transformer in the energy meter's power supply may cause perceptible metering error, especially in low current state. For this nearly constant external interference, the 90E21/22/23/24 also provides power offset compensation.

L line and N line need to be calibrated sequentially. Reactive does not need to be calibrated.

Measurement Calibration

Measurement calibration is realized by calibrating the gains for voltage rms and current rms. Considering the possible nonlinearity around zero caused by external components, the chip also provides offset compensation for voltage rms, current rms, mean active power and mean reactive power.

Frequency, phase angle and power factor do not need calibration.

For more calibration details, please refer to Application Note AN-641.

3.7 RESET

The 90E21/22/23/24 has an on-chip power supply monitor circuit with built-in hysteresis. The 90E21/22/23/24 only works within the voltage range.

The 90E21/22/23/24 has three means of reset: power-on reset, hardware reset and software reset. All registers resume to their default value after reset.

Power-on Reset: Power-on reset is initiated during power-up. Refer to section 6.3.

Hardware Reset: Hardware Reset is initiated when the reset pin is pulled low. The width of the reset signal should be over $200\mu s$.

Software Reset: Software Reset is initiated when '789AH' is written to the software reset register (SoftReset, 00H).

4 INTERFACE

4.1 SERIAL PERIPHERAL INTERFACE (SPI)

SPI is a full-duplex, synchronous channel. There are two SPI modes: four-wire mode and three-wire mode. In four-wire mode, four pins are used: \overline{CS} , SCLK, SDI and SDO. In three-wire mode, three pins are used: SCLK, SDI and SDO. Data on SDI is shifted into the chip on the rising edge of SCLK while data on SDO is shifted out of the chip on the falling edge of SCLK. The LastSPIData register (06H) stores the 16-bit data that is just read or written.

4.1.1 FOUR-WIRE MODE

In four-wire mode, the \overline{CS} pin must be driven low for the entire read or write operation. The first bit on SDI defines the access type and the lower 7-bit is decoded as address.

Read Sequence

As shown in Figure-6, a read operation is initiated by a high on SDI followed by a 7-bit register address. A 16-bit data in this register is then shifted out of the chip on SDO. A complete read operation contains 24 cycles.

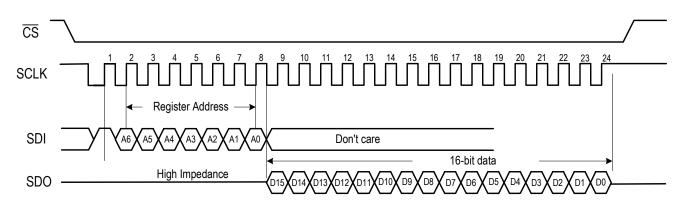


Figure-6 Read Sequence in Four-Wire Mode

Write Sequence

As shown in Figure-7, a write operation is initiated by a low on SDI followed by a 7-bit register address. A 16-bit data is then shifted into the chip on SDI. A complete write operation contains 24 cycles.

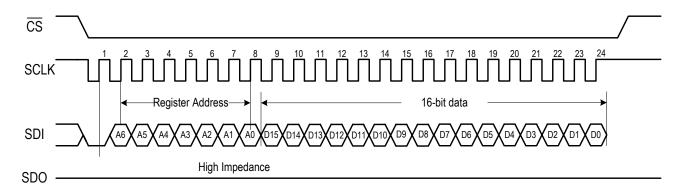


Figure-7 Write Sequence in Four-Wire Mode

4.1.2 THREE-WIRE MODE

In three-wire mode, \overline{CS} is always at low level. When there is no operation, SCLK keeps at high level. The start of a read or write operation is triggered if SCLK is consistently low for at least 400 μ s. The subsequent read or write operation is similar to that in four-wire mode. Refer to Figure-8 and Figure-9.

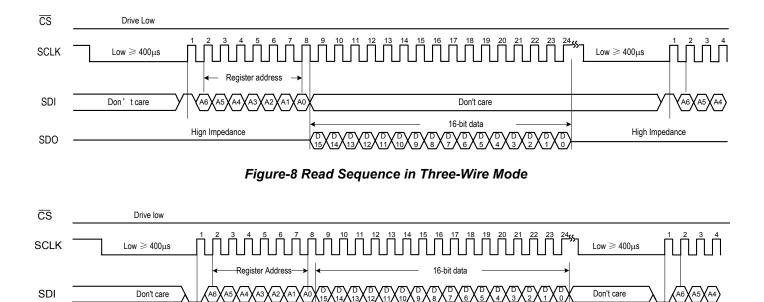


Figure-9 Write Sequence in Three-Wire Mode

High Impedance

SDO

4.1.3 TIMEOUT AND PROTECTION

Timeout occurs if SCLK does not toggle for 6ms in both four-wire and three-wire modes. When timeout, the read or write operation is aborted.

If there are more than 24 SCLK cycles when \overline{CS} is driven low in fourwire mode or between two starts in three-wire mode, writing operation is prohibited while normal reading operation can be completed by taking the first 24 SCLK cycles as the valid ones. However, the reading result might not be the intended one.

A read access to an invalid address returns all zero. A write access to an invalid address is discarded.

Table-9 and Table-10 list the read or write result in different conditions.

	Condition	on	R	esult
Operation	Timeout	SCLK Cycles ^{note 1}	Read/Write Status	LastSPIData Register Update
	_note 2	>=24	Normal Read	Yes
Read	_note 2	<24	Partial Read	No
	No	=24	Normal Write	Yes
	No	!=24	No Write	No
Write	Yes	-	No Write	No
SCLK cycle	e number of s before time tands for Do	eout if any.	CS is driven lov	v or the number of

Table-9 Read / Write Result in Four-Wire Mode

Table-10 Read / Write Result in Three-Wire Mode

	Condition	ı	Result			
Operation	Timeout	SCLK Cycles ^{note 1}	Read/Write Status	LastSPIData Register Update		
	No	>=24 ^{note 2}	Normal Read	Yes		
	Timeout after 24 cycles	>24	Normal Read	Yes		
	Timeout before 24 cycles	_note 3	Partial Read	No		
Read	Timeout at 24 cycles	=24	Normal Read	Yes		
	No	=24	Normal Write	Yes		
	No	!=24	No Write	No		
Write	Yes	-	No Write	No		

Note 1: The number of SCLK cycles between 2 starts or the number of SCLK cycles before timeout if any.

Note 2: There is no such case of less than 24 SCLK cycles when there is no timeout in three-wire mode, because the first few SCLK cycles in the next operation is counted into this operation. In this case, data is corrupted. Note 3: '-' stands for Don't Care.

4.2 WARNOUT PIN FOR FATAL ERROR WARNING

Fatal error warning is raised through the WarnOut pin in two cases: checksum calibration error and voltage sag.

Calibration Error

The 90E21/22/23/24 performs diagnosis on a regular basis for important parameters such as calibration parameters and metering configuration. When checksum is not correct, the CalErr[1:0] bits (SysStatus, 01H) are set, and both the WarnOut pin and the IRQ pin are asserted. When checksum is not correct, the metering part does not work to prevent a large number of pulses during power-on or any abnormal situation upon incorrect parameters.

Voltage Sag

Voltage sag is detected when voltage is continuously below the voltage sag threshold for one cycle which starts from any zero-crossing point. Voltage threshold is configured by the SagTh register (03H). Refer to section 6.5.

When voltage sag occurs, the SagWarn bit (SysStatus, 01H) is set and the WarnOut pin is asserted if the FuncEn register (02H) enables voltage sag warning through the WarnOut pin. This function helps reduce power-down detection circuit in system design. In addition, the method of judging voltage sag by detecting AC side voltage eliminates the influence of large capacitor in traditional rectifier circuit, and can detect voltage sag earlier.

4.3 LOW COST IMPLEMENTATION IN ISOLATION WITH MCU

The following functions can be achieved at low cost when the 90E21/ 22/23/24 is isolated from the MCU:

SPI: MCU can perform read and write operations through low speed optocoupler (e.g. NEC2501) when the 90E21/22/23/24 is isolated from the MCU. The SPI interface can be of 3-wire or 4-wire.

Energy Pulses CFx: Energy can be accumulated by reading values in corresponding energy registers. CFx can also connect to the optocoupler and the energy pulse light can be turned on by CFx.

Fatal Error WarnOut: Fatal error can be acquired by reading the CalE rr[1:0] bits (SysStatus, 01H).

IRQ: IRQ interrupt can be acquired by reading the SysStatus register (01H).

Reset: The 90E21/22/23/24 is reset when '789AH' is written to the software reset register (SoftReset, 00H).

5 **REGISTER**

5.1 REGISTER LIST

Table-11 Register List

Register Address			Functional Description	Comment ^{note 1}	Page
		·	Status and Special Register	· · · · · · · · · · · · · · · · · · ·	
00H	SoftReset	W	Software Reset		P 21
01H	SysStatus	R/C	System Status	different for various chips ^{note 2, note 3}	P 22
02H	FuncEn	R/W	Function Enable	different for various chips ^{note 2}	P 23
03H	SagTh	R/W	Voltage Sag Threshold		P 23
04H	SmallPMod	R/W	Small-Power Mode		P 24
06H	LastSPIData	R	Last Read/Write SPI Value		P 24
		Mete	ring Calibration and Configuration Regist	er	
20H	CalStart	R/W	Calibration Start Command		P 25
21H	PLconstH	R/W	High Word of PL_Constant		P 25
22H	PLconstL	R/W	Low Word of PL_Constant		P 26
23H	Lgain	R/W	L Line Calibration Gain		P 26
24H	Lphi	R/W	L Line Calibration Angle		P 26
25H	Ngain	R/W	N Line Calibration Gain	Not applicable to the 90E21/22 ^{note 3}	P 27
26H	Nphi	R/W	N Line Calibration Angle	Not applicable to the 90E21/22 ^{note 3}	P 27
27H	PStartTh	R/W	Active Startup Power Threshold		P 27
28H	PNolTh	R/W	Active No-Load Power Threshold		P 28
29H	QStartTh	R/W	Reactive Startup Power Threshold	Not applicable to the 90E21/23 ^{note 2}	P 28
2AH	QNolTh	R/W	Reactive No-Load Power Threshold	Not applicable to the 90E21/23 ^{note 2}	P 28
2BH	MMode	R/W	Metering Mode Configuration	different for various chips ^{note 2, note 3}	P 29
2CH	CS1	R/W	Checksum 1		P 31
		·	Measurement Calibration Register	· · · · · · · · · · · · · · · · · · ·	
30H	AdjStart	R/W	Measurement Calibration Start Command		P 32
31H	Ugain	R/W	Voltage rms Gain		P 32
32H	IgainL	R/W	L Line Current rms Gain		P 33
33H	IgainN	R/W	N Line Current rms Gain	Not applicable to the 90E21/22 ^{note 3}	P 33
34H	Uoffset	R/W	Voltage Offset		P 33
35H	loffsetL	R/W	L Line Current Offset		P 34
36H	loffsetN	R/W	N Line Current Offset	Not applicable to the 90E21/22 ^{note 3}	P 34
37H	PoffsetL	R/W	L Line Active Power Offset		P 34
38H	QoffsetL	R/W	L Line Reactive Power Offset	Not applicable to the 90E21/23 ^{note 2}	P 35
39H	PoffsetN	R/W	N Line Active Power Offset	Not applicable to the 90E21/22 ^{note 3}	P 35
3AH	QoffsetN	R/W	N Line Reactive Power Offset	Not applicable to the 90E21/22/23 ^{note 2, note 3}	P 35
3BH	CS2	R/W	Checksum 2		P 36
			Energy Register		
40H	APenergy	R/C	Forward Active Energy		P 37

Table-11 Register List (Continued)

Register Address	Register Name	Read/Write Type	Functional Description	Comment ^{note 1}	Page
41H	ANenergy	R/C	Reverse Active Energy		P 37
42H	ATenergy	R/C	Absolute Active Energy		P 38
43H	RPenergy	R/C	Forward (Inductive) Reactive Energy	Not applicable to the 90E21/23 ^{note 2}	P 38
44H	RNenergy	R/C	Reverse (Capacitive) Reactive Energy	Not applicable to the 90E21/23 ^{note 2}	P 39
45H	RTenergy	R/C	Absolute Reactive Energy	Not applicable to the 90E21/23 ^{note 2}	P 39
46H	EnStatus	R	Metering Status	different for various chips ^{note 2, note 3}	P 40
		·	Measurement Register	· · · ·	
48H	Irms	R	L Line Current rms		P 41
49H	Urms	R	Voltage rms		P 41
4AH	Pmean	R	L Line Mean Active Power		P 42
4BH	Qmean	R	L Line Mean Reactive Power	Not applicable to the 90E21/23 ^{note 2}	P 42
4CH	Freq	R	Voltage Frequency		P 43
4DH	PowerF	R	L Line Power Factor		P 43
4EH	Pangle	R	Phase Angle between Voltage and L Line Current		P 43
4FH	Smean	R	L Line Mean Apparent Power		P 44
68H	Irms2	R	N Line Current rms	Not applicable to the 90E21/22 ^{note 3}	P 44
6AH	Pmean2	R	N Line Mean Active Power	Not applicable to the 90E21/22 ^{note 3}	P 45
6BH	Qmean2	R	N Line Mean Reactive Power	Not applicable to the 90E21/22/23 ^{note 2, note 3}	P 45
6DH	PowerF2	R	N Line Power Factor	Not applicable to the 90E21/22 ^{note 3}	P 46
6EH	Pangle2	R	Phase Angle between Voltage and N Line Current	Not applicable to the 90E21/22 ^{note 3}	P 46
6FH	Smean2	R	N Line Mean Apparent Power	pparent Power Not applicable to the 90E21/22 ^{note 3}	

Note:

1. This register list shows all registers for the 90E24.

2. This register is related to reactive energy metering. Part of this register is invalid for the 90E21/23 which does not have reactive metering. Reading these registers always return 0000H and writing these registers always take no effect.

3. This register is related to N line metering. Part of this register is invalid for the 90E21/22 which does not have N line metering. Reading these registers always return 0000H and writing these registers always have no effect.

STATUS AND SPECIAL REGISTER 5.2

SoftReset Software Reset

Address Type: W Default		00H										
	15		14		13	12	11	10	9	8		
So	SoftReset15 SoftReset14		14	SoftReset13	SoftReset12	SoftReset11	SoftReset10	SoftReset9	SoftReset8			
	7		6		5	4	3	2	1	0		
S	SoftReset7 SoftReset6		6	SoftReset5	SoftReset4	SoftReset3	SoftReset2	SoftReset1	SoftReset0			
E	Bit		Name				Descri	ption				
15	5 - 0	Soft	Reset[15:0]	Softwa	tware reset register. The 90E21/22/23/24 resets if only 789AH is written to this register.							

SysStatus System Status

ault Value: 00	0011									
15	14	13	12	11	10	9	8			
CalErr1	CalErr	0 AdjErr1	AdjErr0	-	-	-	-			
7	6	5	4	3	2	1	0			
LNchange	RevQcł	ng RevPchg	-	-	-	SagWarn	-			
Bit	Name			Descri	iption					
15 - 14	CalErr[1:0]	These bits indicate CS1 checksum status.								
13 - 12	AdjErr[1:0]	These bits indicate CS2 checksum status. 00: CS2 checksum correct (default) 11: CS2 checksum error.								
11 - 8	-	Reserved.	Reserved.							
7	LNchange	This bit indicates wh 0: metering line no c 1: metering line char		ge of the metering lin	e (L line and N line).				
6	RevQchq	0: direction of reaction 1: direction of reaction	ether there is any chang re energy no change (do re energy changed rd by the RevQEn bit(Fu	efault)	of reactive energy.					
5	RevPchg This bit indicates whether there is any change with the direction of active energy. 0: direction of active energy no change (default) 1: direction of active energy changed This status is enabled by the RevPEn bit (FuncEn, 02H).									
4 - 2	-	Reserved.								
1	This bit indicates the voltage sag status. 0: no voltage sag (default) SagWarn 1: voltage sag Voltage sag is enabled by the SagEn bit (FuncEn, 02H). Voltage sag status can also be reported by the WarnOut pin. It is enabled by the SagWo bit(FuncEn, 02H).									
0		Reserved.	. ,	•	•	,				

FuncEn Function Enable

Address: 02H Type: Read/Write Default Value: 00											
15	14	13	12	11	10	9	8				
_	-	-	-	-	-	-	-				
7	6	5	4	3	2	1	0				
-	-	SagEn	-	-							
Bit	Name		Description								
15 - 6	-	Reserved.									
5	SagEn	This bit determines whet 0: disable (default) 1: enable	her to enable the vo	ltage sag interrupt.							
4	SagWo	This bit determines whet 0: disable (default) 1: enable	her to enable voltag	e sag to be reported	by the WarnOut pin.						
3	RevQEn	This bit determines whet 0: disable 1: enable (default)									
2	RevPEn	This bit determines whet 0: disable 1: enable (default)	his bit determines whether to enable the direction change interrupt of active energy. : disable								
1 - 0	-	Reserved.									

SagTh Voltage Sag Threshold

Address: 03H Type: Read/Writ Default Value: 1										
15	14	13	12	11	10	9	8			
SagTh15	5 SagTh1	4 SagTh13	SagTh12	SagTh11	SagTh10	SagTh9	SagTh8			
7	6	5	4	3	2	1	0			
SagTh7	SagThe	S SagTh5	SagTh4	SagTh3	SagTh2	SagTh1	SagTh0			
Bit	Name			Descri	ption					
15 - 0	SagTh[15:0]	The power-on value of S	tage sag threshold configuration. Data format is XXX.XX. Unit is V. e power-on value of SagTh is 1D6AH, which is calculated by 22000*sqrt(2)*0.78/(4*Ugain/32768) details, please refer to IDT application note AN-641.							

SmallPMod Small-Power Mode

Address: 04H Type: Read/Write Default Value: 00									
15	15 14		13	12	11	10	9	8	
SmallPMod	od15 SmallPMod14		114 SmallPMod13	SmallPMod12	SmallPMod11	SmallPMod10	SmallPMod9	SmallPMod8	
7	7 6		5	4	3	2	1	0	
SmallPMod	SmallPMod7 SmallPMo		d6 SmallPMod5	SmallPMod4	SmallPMod3	SmallPMod2	SmallPMod1	SmallPMod0	
Bit		Name			Descri	ption			
15 - 0	Sma	allPMod[15:0]	Small-power mode command. A987H: small-power mode. The relationship between the register value of L line and N line active/reactive power in small- mode and normal mode is: power in normal mode = power in small-power mode *10*lgain*Ugain /2^42 Others: Normal mode. Small-power mode is mainly used in the power offset calibration.						

LastSPIData Last Read/Write SPI Value

15	14	13	12	11	10	9	8			
LastSPIData1	5 LastSPIDa	ta14 LastSPIData13	LastSPIData12	LastSPIData11	LastSPIData10	LastSPIData9	LastSPIData8			
7 6		5	4	3	2	1	0			
LastSPIData	7 LastSPIDa	ta6 LastSPIData5	LastSPIData4	LastSPIData3	LastSPIData2	LastSPIData1	LastSPIData0			
Bit	Name		Description							
15 - 0	LastSPI- Data[15:0]	This register stores the data that is just read or written through the SPI interface. Refer to Table-9 and Table-10.								

5.3 METERING/ MEASUREMENT CALIBRATION AND CONFIGURATION

5.3.1 METERING CALIBRATION AND CONFIGURATION REGISTER

CalStart

Calibration Start Command

Address: 20H Type: Read/Write Default Value: 68												
15	15 14		12	11	10	9	8					
CalStart15	CalStart	4 CalStart13	CalStart12	CalStart11	CalStart10	CalStart9	CalStart8					
7	6	5	4	3	2	1	0					
CalStart7	CalStart	6 CalStart5	CalStart4	CalStart3	CalStart2	CalStart1	CalStart0					
Bit	Name	Description										
15 - 0	CalStart[15:0]	6886H: Power-on value 5678H: Metering calibr on values. The CalErr[1:0] bits 8765H: Check the corre the CalErr[1:0]	 Altering calibration start command: B86H: Power-on value. Metering function is disabled. B86H: Power-on value. Metering function is disabled. B86H: Metering calibration startup command. After 5678H is written to this register, registers 21H-2BH resume to their power on values. The 90E21/22/23/24 starts to meter and output energy pulses regardless of the correctness of diagnosis. The CalErr[1:0] bits (SysStatus, 01H) are not set and the WarnOut/IRQ pins do not report any warning/interrupt. B765H: Check the correctness of the 21H-2BH registers. If correct, normal metering. If not correct, metering function is disabled the CalErr[1:0] bits (SysStatus, 01H) are set and the WarnOut/IRQ pins report warning/interrupt. Dthers: Metering function is disabled. The CalErr[1:0] bits (SysStatus, 01H) are set and the WarnOut/IRQ pins report warning/interrupt. 									

PLconstH High Word of PL_Constant

Address: 21H Type: Read/Write Default Value: 00									
15	15 14			13	12	11	10	9	8
PLconstH1	PLconstH15 PLconstH14		14	PLconstH13	PLconstH12	PLconstH11	PLconstH10	PLconstH9	PLconstH8
7	7 6			5	4	3	2	1	0
PLconstH7	7	PLconstH6		PLconstH5	PLconstH4	PLconstH3	PLconstH2	PLconstH1	PLconstH0
Bit	N	lame				Descri	ption		
15 - 0	PLcor	nstH[15:0]	The PLconstH[15:0] and PLconstL[15:0] bits are high word and low word of PL_Constant respectively. PL_Constant is a constant which is proportional to the sampling ratios of voltage and current, and inversely proportional Meter Constant. PL_Constant is a threshold for energy calculated inside the chip, i.e., energy larger than PL_Constant accumulated in the corresponding energy registers and then output on CFx. It is suggested to set PL_constant as a multiple of 4 so as to double or redouble Meter Constant in low current state to s ification time. Note: PLconstH takes effect after PLconstL are configured. For details, please refer to IDT application note AN-641.						

PLconstL Low Word of PL_Constant

Address: 22H Type: Read/Write Default Value: D								
15		14	13	12	11	10	9	8
PLconstL1	PLconstL15 PLconstL14		PLconstL13	PLconstL12	PLconstL11	PLconstL10	PLconstL9	PLconstL8
7		6	5	4	3	2	1	0
PLconstL7	7 PLo	onstL6	PLconstL5	PLconstL4	PLconstL3	PLconstL2	PLconstL1	PLconstL0
Bit Name Description								
			PLconstH[15:0] and					

Lgain L Line Calibration Gain

dress: 23H pe: Read/Write fault Value: 00								
15	14	13	12	11	10	9	8	
Lgain15	Lgain1	4 Lgain13	Lgain12	Lgain11	Lgain10	Lgain9	Lgain8	
7	6	5	4	3	2	1	0	
Lgain7	Lgain6	5 Lgain5	Lgain4	Lgain3	Lgain2	Lgain1	Lgain0	
Bit	Name			Descri	ption			
15 - 0	Lgain[15:0]	L line calibration gain. For details, please refer to IDT application note AN-641.						

Lphi L Line Calibration Angle

Type:	ss: 24H Read/Write It Value: 00										
	15		14	13	12	11	10	9	8		
	Lphi15		-	-	-	-	-	Lphi9	Lphi8		
	7		6	5	4	3	2	1	0		
	Lphi7		Lphi6	Lphi5	Lphi4	Lphi3	Lphi2	Lphi1	Lphi0		
	Bit	Nan	ne	Description							
1	15 - 0	Lphi[1	5:0] L line	line calibration phase angle. For details, please refer to IDT application note AN-641.							

Ngain N Line Calibration Gain

Type:	ess: 25H : Read/Write ult Value: 00									
	15	14	13	12	11	10	9	8		
	Ngain15 Ngain14		Ngain13	Ngain12	Ngain11	Ngain10	Ngain9	Ngain8		
	7	6	5	4	3	2	1	0		
	Ngain7	Ngain6	Ngain5	Ngain4	Ngain3	Ngain2	Ngain1	Ngain0		
Bit Name Description										
	15 - 0	Ngain[15:0]	N line calibration gain. For details, please refer to IDT application note AN-641.							

Nphi N Line Calibration Angle

Address: 26 Type: Read Default Valu	/Write												
1	5		14		13	12	11	10	9	8			
Npł	hi15		-		-	-	-	-	Nphi9	Nphi8			
	7		6		5	4	3	2	1	0			
Np	ohi7		Nphi6		Nphi5	Nphi4	Nphi3	Nphi2	Nphi1	Nphi0			
Bit		N	ame				Desci	ription					
15 - 0		Npł	ni[15:0]	N line of	e calibration phase angle. For details, please refer to IDT application note AN-641.								

PStartTh Active Startup Power Threshold

ress: 27H e: Read/Write ault Value: 08								
15	14	13	12	11	10	9	8	
PStartTh15	PStartTh14	PStartTh13	PStartTh12	PStartTh11	PStartTh10	PStartTh9	PStartTh8	
7	6	5	4	3	2	1	0	
PStartTh7	PStartTh6	PStartTh5	PStartTh4	PStartTh3	PStartTh2	PStartTh1	PStartTh0	
Bit	Name			Dosori	ntion			
ы 15 - 0		Description Active startup power threshold. For details, please refer to IDT application note AN-641.						

PNoITh Active No-Load Power Threshold

Address: 28H Type: Read/Write Default Value: 00									
15	14	13	12	11	10	9	8		
PNolTh15	PNolTh1	4 PNolTh13	PNolTh12	PNolTh11	PNolTh10	PNolTh9	PNolTh8		
7	6	5	4	3	2	1	0		
PNolTh7	PNolTh	6 PNolTh5	PNolTh4	PNolTh3	PNolTh2	PNolTh1	PNolTh0		
Bit	Name			Descri	ption				
15 - 0	PNolTh[15:0]	Active no-load power threshold. For details, please refer to IDT application note AN-641.							

QStartTh Reactive Startup Power Threshold

: Read/Write ult Value: 0A							
15	14	13	12	11	10	9	8
QStartTh15	QStartTh1	4 QStartTh13	QStartTh12	QStartTh11	QStartTh10	QStartTh9	QStartTh8
7	6	5	4	3	2	1	0
QStartTh7	QStartThe	G QStartTh5	QStartTh4	QStartTh3	QStartTh2	QStartTh1	QStartTh0
Bit	Name			Descri	ntion		

QNoITh

Reactive No-Load Power Threshold

dress: 2AH be: Read/Write fault Value: 00								
15	14	13	12	11	10	9	8	
QNolTh15	QNolTh1	4 QNolTh13	QNolTh12	QNolTh11	QNolTh10	QNolTh9	QNolTh8	
7	6	5	4	3	2	1	0	
QNolTh7	QNoITh	6 QNolTh5	QNolTh4	QNolTh3	QNolTh2	QNolTh1	QNolTh0	
Bit	Name			Descri	ption			
15 - 0	QNolTh[15:0]	Reactive no-load power threshold. For details, please refer to IDT application note AN-641.						

MMode Metering Mode Configuration

ddress: 2BH ype: Read/Write efault Value: 94									
15	14	13		12	11	10)	9	8
Lgain2	Lgain1	Lgain	0	Ngain1 Ngain0		LNS	el	DisHPF1	DisHPF0
7	6	5		4	3	2		1	0
Amod	Rmod	ZXCo	n1 .	ZXCon0	Pthresh3	Pthre	sh2	Pthresh1	Pthresh0
Bit	Name		Description						
		L line current gair	n, default value		Lgain1	Lgain0	Current	Channel Gain	٦
15 - 13	Lgain[2:0]		1		X 0	X 0		1 4	_
			0		0	1		8	_
			0		1	0		16 24	-
12 - 11	Ngain[1:0]	N line current gai 00: 2 01: 4 10: 1 (default) 11: 1	n						
10	LNSel	This bit specifies 0: N line 1: L line (default)	metering as L	line or N line	e when metering	mode is set to fl	exible mode b	y MMD1 and MI	MD0 pins.
		These bits config uration are applic			IPF) after ADC.	There are two fir	st-order HPF i	n serial: HPF1 a	nd HPF0. The con
9 - 8	DisHPF[1:0]		D	isHPF1	DisHPF 0		PF Configurat		
				0	0		PF1 and HPF HPF1, disable		
				1	0		HPF1, enable		
				1	1		ble HPF1 and		
7	Amod	CF1 output for ac 0: forward or reve 1: absolute energ	erse energy pu		default)				
6	Rmod	0: forward (induct	CF2 output for reactive power: 0: forward (inductive) or reverse (capacitive) energy pulse output (default) 1: absolute energy pulse output						

5 - 4	Zxcon[1:0]	00: positive zero-c 01: negative zero- 10: all zero-crossii 11: no zero-crossi	These bits configure zero-crossing mode. The ZX pin outputs 5ms-width high level when voltage crosses zero. 00: positive zero-crossing 01: negative zero-crossing 10: all zero-crossing: both positive and negative zero-crossing (default) 11: no zero-crossing output These bits configure the L line and N line power difference threshold in anti-tampering mode.																								
		These bits configu	re the L line an Pthresh3	nd N line powe	r difference thr Pthresh1	eshold in anti-ta Pthresh0	mpering mode. Threshold																				
			0	0	0	0	12.5%																				
			0	0	0	1	6.25%																				
			0	0	1	0	3.125% (default)																				
			0	0	1	1	1.5625%																				
			0	1	0	0	1%																				
			0	1	0	1	2%																				
3 - 0	Pthresh[3:0]		0	1	1	0	3%																				
			0	1	1	1	4%																				
			1	0	0	0	5%																				
			1	0	0	1	6%																				
			1	0	1	0	7%																				
			-	-	-	-	-	-	-									-				1	0	1	1	8%	
			1	1	0	0	9%																				
			1	1	0	1	10%																				
			1	1	1	0	11%																				
			1	1	1	1	12%																				

CS1 Checksum 1

ddress: 2CH /pe: Read/Write efault Value: 00									
15	14	13	12	2	11	10		9	8
CS1_15	CS1_14	4 CS1_13	CS1_	_12	CS1_11	CS1_1	10	CS1_9	CS1_8
7	6	5	4		3	2		1	0
CS1_7	CS1_6	CS1_5	CS1	_4	CS1_3 CS1_2 CS1_		CS1_1	CS1_0	
Bit	Name		Description CS1 register should be written after the 21H-2BH registers are written. Suppose the high byte and						
15 - 0	CS1[15:0]	The calculatiion of the The low byte of 2CH re The high byte of 2CH	egister is: L _{2C} :	is as folic	₂₁ +H ₂₂ ++H _{2B} +L				
		The flight byte of 2CHT For 90E21/22/23, a pa The 90E21/22/23/24 c ent when CalStart=870 Note: The readout val	rt of registers alculates CS1 65H, the CalE	are not u regularly rr[1:0] bit	used. These regist ℓ. If the value of th s (SysStatus, 01⊦	ters can be dea e CS1 register I) are set and tl	aled as 0000 and the calc he WarnOut	H in CS calcu ulation by the and IRQ pins	lation. 90E21/22/23/24 is diff are asserted.

5.3.2 **MEASUREMENT CALIBRATION REGISTER**

AdjStart Measurement Calibration Start Command

Address: 30H Type: Read/Write Default Value: 68								
15	14		13	12	11	10	9	8
AdjStart15	AdjStart	14	AdjStart13	AdjStart12	AdjStart11	AdjStart10	AdjStart9	AdjStart8
7	6		5	4	3	2	1	0
AdjStart7	AdjStart7 AdjStart6		AdjStart5	AdjStart4	AdjStart3	AdjStart2	AdjStart1	AdjStart0
Bit	Name				Descri	ption		
15 - 0	AdjStart[15:0]	6886H 5678H 8765H	 Description Descript					sis. The AdjErr[1:0] bits neasurement function is

Ugain Voltage rms Gain

Address: 31H Type: Read/Write Default Value: 67									
15	14	13	12	11	10	9	8		
Ugain15	Ugain14	Ugain13	Ugain12	Ugain11	Ugain10	Ugain9	Ugain8		
7	6	5	4	3	2	1	0		
Ugain7	Ugain6	Ugain5	Ugain4	Ugain3	Ugain2	Ugain1	Ugain0		
Bit	Name			Descri	ption				
15 - 0	Ugain[15:0]		tage rms Gain. For details, please refer to IDT application note AN-641. te: the Ugain15 bit should only be '0'						

lgainL L Line Current rms Gain

Type:	ess: 32H Read/Write ılt Value: 7A								
	15		14	13	12	11	10	9	8
	lgainL15	ļ	gainL14	lgainL13	IgainL12	IgainL11	lgainL10	IgainL9	lgainL8
	7		6	5	4	3	2	1	0
	lgainL7		lgainL6	lgainL5	lgainL4	lgainL3	lgainL2	lgainL1	lgainL0
	Bit	Nam	e			Descri	otion		
	15 - 0	lgainL[1	15:0] L Line	e Current rms Gain,	For details, please r	efer to IDT application	on note AN-641.		

lgainN N Line Current rms Gain

Address: 33H Type: Read/Write Default Value: 75										
15	14	13	12	11	10	9	8			
IgainN15	IgainN1	4 IgainN13	lgainN12	IgainN11	IgainN10	IgainN9	IgainN8			
7	6	5	4	3	2	1	0			
lgainN7	IgainN6	6 IgainN5	IgainN4	lgainN3	lgainN2	lgainN1	lgainN0			
Bit	Name			Descri	ption					
15 - 0	lgainN[15:0]	N Line Current rms Gain	ne Current rms Gain. For details, please refer to IDT application note AN-641.							

Uoffset Voltage Offset

Type:	ess: 34H : Read/Write ult Value: 00										
	15	14	13	12	11	10	9	8			
	Uoffset15	Uoffset1	4 Uoffset13	Uoffset12	Uoffset11	Uoffset10	Uoffset9	Uoffset8			
	7	6	5	4	3	2	1	0			
	Uoffset7	Uoffset	6 Uoffset5	Uoffset4	Uoffset3	Uoffset2	Uoffset1	Uoffset0			
	Bit	Name			Descri	iption					
	15 - 0	Uoffset[15:0]	Voltage offset. For calcu	tage offset. For calculation method, please refer to IDT application note AN-641.							

loffsetL L Line Current Offset

	ss: 35H Read/Write t Value: 00									
	15		14		13	12	11	10	9	8
	loffsetL15		loffsetL14	4	loffsetL13	loffsetL12	loffsetL11	loffsetL10	loffsetL9	loffsetL8
	7		6		5	4	3	2	1	0
	loffsetL7		loffsetL6	5	loffsetL5	loffsetL4	loffsetL3	loffsetL2	loffsetL1	loffsetL0
	Bit		Name				Descri	ption		
1:	5 - 0	lof	fsetL[15:0]	Lline	current offset. For c	calculation method, p	please refer to IDT a	application note AN-6	641.	

loffsetN N Line Current Offset

Type:	ess: 36H Read/Write Ilt Value: 00											
	15		14		13	12	11	10	9	8		
	loffsetN15		loffsetN1	4	loffsetN13	loffsetN12	loffsetN11	loffsetN10	loffsetN9	loffsetN8		
L	7		6		5	4	3	2	1	0		
	loffsetN7		loffsetNe	6	loffsetN5	loffsetN4	loffsetN3	loffsetN2	loffsetN1	loffsetN0		
	Bit		Name				Descri	ption				
	15 - 0	lof	fsetN[15:0]	N line	ne current offset. For calculation method, please refer to IDT application note AN-641.							

PoffsetL L Line Active Power Offset

Address: 37H Type: Read/Write Default Value: 00									
15	14	13	12	11	10	9	8		
PoffsetL15	PoffsetL1	4 PoffsetL13	PoffsetL12	PoffsetL11	PoffsetL10	PoffsetL9	PoffsetL8		
7	6	5	4	3	2	1	0		
PoffsetL7	PoffsetL	6 PoffsetL5	PoffsetL4	PoffsetL3	PoffsetL2	PoffsetL1	PoffsetL0		
Bit	Name			Descri	ption				
15 - 0	PoffsetL[15:0]	L line active power offset Complement, MSB is the	line active power offset. omplement, MSB is the sign bit. For calculation method, please refer to IDT application note AN-641.						

QoffsetL L Line Reactive Power Offset

Address: 38H Type: Read/Write Default Value: 00									
15	14	13	12	11	10	9	8		
QoffsetL15	G QoffsetL	14 QoffsetL13	QoffsetL12	QoffsetL11	QoffsetL10	QoffsetL9	QoffsetL8		
7	6	5	4	3	2	1	0		
QoffsetL7	QoffsetL	6 QoffsetL5	QoffsetL4	QoffsetL3	QoffsetL2	QoffsetL1	QoffsetL0		
Bit	Name			Descri	ption				
15 - 0	QoffsetL[15:0]	L line reactive power offs Complement, MSB is the	ne reactive power offset. mplement, MSB is the sign bit. For calculation method, please refer to IDT application note AN-641.						

PoffsetN N Line Active Power Offset

Address: 39H Type: Read/Write Default Value: 00									
15	14	13	12	11	10	9	8		
PoffsetN15	5 PoffsetN	14 PoffsetN13	PoffsetN12	PoffsetN11	PoffsetN10	PoffsetN9	PoffsetN8		
7	6	5	4	3	2	1	0		
PoffsetN7	PoffsetN	6 PoffsetN5	PoffsetN4	PoffsetN3	PoffsetN2	PoffsetN1	PoffsetN0		
Bit	Name			Descri	ption				
15 - 0	PoffsetN[15:0]	N line active power offse Complement, MSB is the	line active power offset. omplement, MSB is the sign bit. For calculation method, please refer to IDT application note AN-641.						

QoffsetN N Line Reactive Power Offset

Address: 3AH Type: Read/Write Default Value: 00							
15	14	13	12	11	10	9	8
QoffsetN15	5 QoffsetN	4 QoffsetN13	QoffsetN12	QoffsetN11	QoffsetN10	QoffsetN9	QoffsetN8
7	6	5	4	3	2	1	0
QoffsetN7	QoffsetN	6 QoffsetN5	QoffsetN4	QoffsetN3	QoffsetN2	QoffsetN1	QoffsetN0
Bit	Name			Descri	ption		
15 - 0	15 - 0 QoffsetN[15:0] N line reactive power offset. Complement, MSB is the sign bit. For calculation method, please refer to IDT application note AN-641.						

CS2 Checksum 2

			13							
15	14		13	12		11	10		9	8
CS2_15	CS2_14	1	CS2_13	CS2_	12	CS2_11	CS2_1	10	CS2_9	CS2_8
7	6		5	4		3	2		1	0
CS2_7 CS2_6			CS2_5	CS2_4		CS2_3	CS2_	2	CS2_1	CS2_0
Bit Name Description										
15 - 0	CS2[15:0]	The calo	culatiion of the CS	52 register i	s as follo	31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH ws:	$\begin{array}{c} H_{31} \\ H_{32} \\ H_{33} \\ H_{34} \\ H_{35} \\ H_{36} \\ H_{37} \\ H_{38} \\ H_{39} \\ H_{3A} \end{array}$	L ₃₁ L ₃₂ L ₃₃ L ₃₄ L ₃₅ L ₃₆ L ₃₇ L ₃₈ L ₃₉ L _{3A}		
		The higl For 90E The 90E ent whe	n byte of 3BH reg 21/22/23, a part o 21/22/23/24 calc	ister is: H _{3I} of registers ulates CS2 H, the AdjEr	B=H ₃₁ X are not u regularly r[1:0] bits	s (<mark>SysStatus</mark> , 01F	(OR H _{3A} XOR L ters can be dea ne CS2 register a H) are set.	- ₃₁ XOR L ₃ iled as 000	0H in CS calcula culation by the 9	otion. 0E21/22/23/24 is o

5.4 ENERGY REGISTER

Theory of Energy Registers

The internal energy resolution is 0.01 pulse. Within 0.01 pulse, forward and reverse energy are counteracted. When energy exceeds 0.01 pulse, the respective forward/reserve energy is increased. The forward and reverse energy are not counteracted in absolute energy registers. Take the example of active energy, suppose:

T0: Forward energy is 12.34 pulses and reverse energy is 1.23 pulses;

From T0 to T1: 0.005 forward pulse appeared

From T1 to T2: 0.004 reverse pulse appeared

From T2 to T3: 0.003 reverse pulse appeared

	Т0	T1	T2	T3
Forward Active Pulse	12.34	12.345	12.341	12.34
Reserve Active Pulse	1.23	1.23	1.23	1.232
Absolute Active Pulse	13.57	13.575	13.579	13.582

When forward/reverse energy or absolute energy reaches 0.1 pulse, the respective register is updated. When forward/reverse energy or absolute energy reaches 1 pulse, CFx pins output pulse and the REVP/REVQ bits (EnStatus, 46H) are updated.

Absolute energy might be more than the sum of forward and reverse energies. If "consistency" is required between absolute energy and forward/reverse energy in system application, absolute energy can be obtained by calculating the readout of the forward and reverse energy registers.

APenergy Forward Active Energy

Address: 40H Type: Read/Clea Default Value: 00										
15	14	13	12	11	10	9	8			
APenergy1	5 APenergy	14 APenergy13	APenergy13 APenergy12 APenergy11 APenergy10 APenergy9 APenergy							
7	6	5	4	3	2	1	0			
APenergy	7 APenerg	y6 APenergy5	APenergy4	APenergy3	APenergy2	APenergy1	APenergy0			
Bit	Name		Description							
15 - 0	APenergy[15:0]	Data format is XXXX.X p	vard active energy; cleared after read. I format is XXXX.X pulses. Resolution is 0.1 pulse. Maximum is 6553.5 pulses. In the accumulation of this register has achieved FFFFH, the continuation accumulation will return to 0000H.							

ANenergy Reverse Active Energy

Address: 41H Type: Read/Clea Default Value: 00										
15	14	13	12	11	10	9	8			
ANenergy1	5 ANenergy	14 ANenergy13	ANenergy12	ANenergy11	ANenergy10	ANenergy9	ANenergy8			
7	6	5	5 4 3 2 1							
ANenergy7	ANenergy	/6 ANenergy5	ANenergy4	ANenergy3	ANenergy2	ANenergy1	ANenergy0			
Bit	Name		Description							
15 - 0	ANenergy[15:0]	Data format is XXXX.X p	rse active energy, cleared after read. format is XXXX.X pulses. Resolution is 0.1 pulse. Maximum is 6553.5 pulses. n the accumulation of this register has achieved FFFFH, the continuation accumulation will return to 0000H.							

ATenergy Absolute Active Energy

Address: 42H Type: Read/Clea Default Value: 00										
15	14	13	12	11	10	9	8			
ATenergy1	5 ATenergy	14 ATenergy13	ATenergy13 ATenergy12 ATenergy11 ATenergy10 ATenergy9							
7	6	5	4	3	2	1	0			
ATenergy7	ATenergy	/6 ATenergy5	ATenergy4	ATenergy3	ATenergy2	ATenergy1	ATenergy0			
Bit	Name		Description							
15 - 0	ATenergy[15:0]	Data format is XXXX.X p	solute active energy, cleared after read. a format is XXXX.X pulses. Resolution is 0.1 pulse. Maximum is 6553.5 pulses. en the accumulation of this register has achieved FFFFH, the continuation accumulation will return to 0000H.							

RPenergy Forward (Inductive) Reactive Energy

Address: 43H Type: Read/Clea Default Value: 00									
15	14	13	12	11	10	9	8		
RPenergy1	5 RPenergy	14 RPenergy13	RPenergy13 RPenergy12 RPenergy11 RPenergy10 RPenergy						
7	6	5	4	3	2	1	0		
RPenergy7	RPenerg	/6 RPenergy5	RPenergy4	RPenergy3	RPenergy2	RPenergy1	RPenergy0		
Bit	Name		Description						
15 - 0	RPenergy[15:0]	Data format is XXXX.X p	ward (inductive) reactive energy, cleared after read. ta format is XXXX.X pulses. Resolution is 0.1 pulse. Maximum is 6553.5 pulses. en the accumulation of this register has achieved FFFFH, the continuation accumulation will return to 0000H.						

RNenergy Reverse (Capacitive) Reactive Energy

Туре	ess: 44H :: Read/Clear ult Value: 00											
	15	14	13	12	11	10	9	8				
	RNenergy18	5 RNenergy	14 RNenergy13	RNenergy13 RNenergy12 RNenergy11 RNenergy10 RNenergy9 RNenergy8								
	7	6	5	5 4 3 2 1 0								
	RNenergy7	RNenerg	/6 RNenergy5	RNenergy4	RNenergy3	RNenergy2	RNenergy1	RNenergy0				
	Bit	Name		Description								
	15 - 0	RNenergy[15:0]	Data format is XXXX.X p	erse (capacitive) reactive energy, cleared after read. a format is XXXX.X pulses. Resolution is 0.1 pulse. Maximum is 6553.5 pulses. en the accumulation of this register has achieved FFFFH, the continuation accumulation will return to 0000H.								

RTenergy Absolute Reactive Energy

Address: 45H Type: Read/Clea Default Value: 00									
15	14	13	12	11	10	9	8		
RTenergy1	5 RTenergy	14 RTenergy13	RTenergy13 RTenergy12 RTenergy11 RTenergy10 RTenergy9						
7	6	5	4	3	2	1	0		
RTenergy7	RTenergy	/6 RTenergy5	RTenergy4	RTenergy3	RTenergy2	RTenergy1	RTenergy0		
Bit	Name		Description						
15 - 0	RTenergy[15:0]	Data format is XXXX.X p	solute reactive energy, cleared after read. a format is XXXX.X pulses. Resolution is 0.1 pulse. Maximum is 6553.5 pulses. en the accumulation of this register has achieved FFFFH, the continuation accumulation will return to 0000H.						

EnStatus Metering Status

		10	10			10	•	
15	14	13	12		11	10	9	8
Qnoload	Pnoload	d RevQ	RevP	L	line	-	-	-
7 6		5	4		3	2	1	0
-	-	-	LNMode1					
Bit	Name				Descrip	otion		
15	Qnoload	This bit indicates whe 0: not reactive no-load 1: reactive no-load sta	l state	eactive no-loa	ad status.			
14	Pnoload		This bit indicates whether the 90E21/22/23/24 is in active no-load status.): not active no-load state I: active no-load state					
13	RevQ	This bit indicates the of 0: reactive forward 1: reactive reverse Note: This bit is always				e absolute energy		
12	RevP	This bit indicates the o 0: active forward 1: active reverse Note: This bit is alway		,	. ,	e absolute energy		
11	Lline	This bit indicates the o 0: N line 1: L line	current metering lir	ne in anti-tamp	pering mode			
10 - 2	-	Reserved.						
1-0	LNMode[1:0]		e configuration of MID0 LNmod1 0 0	MMD1 and MM LNmod0 0	MD0 pins. Ti	L/N Me anti-tampering	etering Mode mode (larger power)
		•	1 0 0 1	1 0	L+N mo		de (fixed L line) single-phase three-v	vire system)

5.5 MEASUREMENT REGISTER

Irms

L Line Current rms

e: Read ault Value: 00	000H										
15	14	13	12	11	10	9	8				
Irms15	Irms14	Irms13	Irms12	Irms11	Irms10	Irms9	Irms8				
7 6		5	4	3	2	1	0				
lrms7	Irms6	Irms5	Irms4	Irms3	Irms2	Irms1	Irms0				
Bit	Name			Descri	ption						
15 - 0	Irms[15:0]	For cases when the cur	ne current rms. ta format is XX.XXX, which corresponds to 0 ~ 65.535A. [.] cases when the current exceeds 65.535A, it is suggested to be handled by MCU in application. For example, the re ue can be calibrated to 1/2 of the actual value during calibration, then multiplied by 2 in application.								

Urms Voltage rms

Address: 49H Type: Read Default Value: 00	00H						
15	14	13	12	11	10	9	8
Urms15	Urms14	Urms13	Urms12	Urms11	Urms10	Urms9	Urms8
7	6	5	4	3	2	1	0
Urms7	Urms6	Urms5	Urms4	Urms3	Urms2	Urms1	Urms0
Bit	Name			Descri	ption		
15 - 0	Urms[15:0]	Voltage rms. Data format is XXX.XX, v	which corresponds to	o 0 ~ 655.35V.			

Pmean

L Line Mean Active Power

Address: 4AH Type: Read Default Value: 0	000H									
15	14		13	12	11	10	9	8		
Pmean1	5 Pmea	n14	Pmean13	Pmean12	Pmean11	Pmean10	Pmean9	Pmean8		
7	6		5	4	3	2	1	0		
Pmean	' Pme	an6	Pmean5	Pmean4	Pmean3	Pmean2	Pmean1	Pmean0		
Bit	Name				Descri	ption				
15 - 0	Pmean[15:0	Com If cu	e mean active power. plement, MSB is the sign bit. Data format is XX.XXX, which corresponds to -32.768~+32.768kW. rent is specially handle by MCU, the power of the 90E21/22/23/24 and the actual power have the same multiple relation e current.							

Qmean L Line Mean Reactive Power

Address: 4BH Type: Read Default Value: 00	00Н									
15	14	13	12	11	10	9	8			
Qmean15	Qmean1	4 Qmean13	Qmean12	Qmean11	Qmean10	Qmean9	Qmean8			
7	6	5	4	3	2	1	0			
Qmean7	Qmean	G Qmean5	Qmean4	Qmean3	Qmean2	Qmean1	Qmean0			
Bit	Name			Descri	ption					
15 - 0	Qmean[15:0]		mplement, MSB is the sign bit. Data format is XX.XXX, which corresponds to -32.768~+32.768kvar. current is specially handled by MCU, the power of the 90E22/24 and the actual power have the same multiple relat							

Freq Voltage Frequency

Address: 4CH Type: Read Default Value: 00	00H								
15	14	13	12	11	10	9	8		
Freq15	Freq14	Freq13	Freq12	Freq11	Freq10	Freq9	Freq8		
7	6	5	4	3	2	1	0		
Freq7	Freq6	Freq5	Freq4	Freq3	Freq2	Freq1	Freq0		
Bit	Name		Description						
15 - 0	Freq[15:0]	Voltage frequency. Data format is XX.XX. Fr	oltage frequency. ata format is XX.XX. Frequency measurement range is 45.00~65.00Hz. For example, 1388H corresponds to 50.00Hz.						

PowerF L Line Power Factor

Address: 4DH Type: Read Default Value: 00	00H									
15	14	13	12	11	10	9	8			
PowerF15	PowerF1	4 PowerF13	PowerF12	PowerF11	PowerF10	PowerF9	PowerF8			
7	6	5	5 4 3		2	1	0			
PowerF7	PowerF	6 PowerF5	PowerF4	PowerF3	PowerF2	PowerF1	PowerF0			
Bit	Name			Descri	ption					
15 - 0	PowerF[15:0]		line power factor. igned, MSB is the sign bit. Data format is X.XXX. Power factor range: -1.000~+1.000. For example, 03E8H corresponds to the ower factor of 1.000, and 83E8H corresponds to the power factor of -1.000.							

Pangle Phase Angle between Voltage and L Line Current

Тур	ress: 4EH e: Read ault Value: 00	00H								
	15	14	13	12	11	10	9	8		
	Pangle15	Pangle1	4 Pangle13	Pangle12	Pangle11	Pangle10	Pangle9	Pangle8		
	7	6	5	4	4 3		1	0		
	Pangle7	Pangle	6 Pangle5	Pangle4	Pangle3	Pangle3 Pangle2		Pangle0		
	Bit	Name			Descri	ption				
	15 - 0	Pangle[15:0]	L line voltage current angle. Signed, MSB is the sign bit. Data format is XXX.X. Angle range: -180.0~+180.0 degree.							

Smean L Line Mean Apparent Power

Address: 4FH Type: Read Default Value: 00	000H										
15	14	13	12	11	10	9	8				
Smean15	Smean1	Smean14 Smean13 Smean12 Smean		Smean11	Smean10	Smean10 Smean9					
7	6 5		4	3	2	1	0				
Smean7	Smean	6 Smean5	Smean4	Smean3	Smean2	Smean1	Smean0				
Bit	Name			Descri	ption						
15 - 0	Smean[15:0]	Complement, MSB is alv	ine mean apparent power. Implement, MSB is always '0'. Data format is XX.XXX, which corresponds to 0~+32.767kVA. current is specially handled by MCU, the power of the 90E21/22/23/24 and the actual power have the same multiple relation ip as the current.								

Irms2 N Line Current rms

Address: 68H Type: Read Default Value: 00	00H									
15	14	13	12	11	10	9	8			
Irms2_15	Irms2_1	4 Irms2_13	Irms2_12	Irms2_11	Irms2_10	Irms2_9	Irms2_8			
7	6	5	4	3	2	1	0			
Irms2_7	Irms2_6	6 Irms2_5	Irms2_4	Irms2_3	Irms2_2	Irms2_1	Irms2_0			
Bit	Name			Descri	ption					
15 - 0	Irms2[15:0]	For cases when the cur	l line current rms. ata format is XX.XXX, which corresponds to 65.535A. or cases when the current exceeds 65.535A, it is suggested to be handled by MCU in application. For example, the regist alue can be calibrated to 1/2 of the actual value during calibration, then multiplied by 2 in application.							

Pmean2 N Line Mean Active Power

Address: 6AH Type: Read Default Value: 00	00H									
15	14	13	12	11	10	9	8			
Pmean2_1	5 Pmean2_	14 Pmean2_13	ean2_13 Pmean2_12 Pmea		Pmean2_10	Pmean2_9	Pmean2_8			
7	6	6 5 4		3	2	1	0			
Pmean2_7	Pmean2	_6 Pmean2_5	Pmean2_4	Pmean2_3	Pmean2_2	Pmean2_1	Pmean2_0			
Bit	Name			Descri	ption					
15 - 0	Pmean2[15:0]		omplement, MSB is the sign bit. Data format is XX.XXX, which corresponds to -32.768~+32.767kW. current is specially handled by MCU, the power of the 90E21/22/23/24 and the actual power have the same multiple relation							

Qmean2 N Line Mean Reactive Power

Address: 6BH Type: Read Default Value: 00	00H									
15	15 14		13 12		10	9	8			
Qmean2_1	5 Qmean2_	Qmean2_14 Qmean2_13 Qmean2		Qmean2_11	Qmean2_11 Qmean2_10		Qmean2_8			
7	7 6		4	3	2	1	0			
Qmean2_7	Z Qmean2	_6 Qmean2_5	Qmean2_4	Qmean2_3	Qmean2_2	Qmean2_1	Qmean2_0			
Bit	Name			Descri	ption					
15 - 0	Qmean2[15:0]		plement, MSB is the sign bit. Data format is XX.XXX, which corresponds to -32.768~+32.767kvar. rrent is specially handled by MCU, the power of 90E22/24 and the actual power have the same multiple relationship as t							

PowerF2 N Line Power Factor

Address: 6DH Type: Read Default Value: 00	00H									
15	14	13	12	11	10	9	8			
PowerF2_1	5 PowerF2_	_14 PowerF2_13	PowerF2_13 PowerF2_12 PowerF2_11 PowerF2_10 PowerF2_9							
7	6	5	4	3	2	1	0			
PowerF2_7	PowerF2	_6 PowerF2_5	PowerF2_4	PowerF2_3	PowerF2_2	PowerF2_1	PowerF2_0			
Bit	Name			Descri	ption					
15 - 0	PowerF2[15:0]		line power factor. gned, MSB is the sign bit. Data format is X.XXX. Power factor range: -1.000~+1.000. For example, 03E8H corresponds to the wer factor of 1.000, and 83E8H corresponds to the power factor of -1.000.							

Pangle2 Phase Angle between Voltage and N Line Current

Address: 6EH Type: Read Default Value: 00	00H							
15	14	13	12	11	10	9	8	
Pangle2_15	5 Pangle2_	14 Pangle2_13	Pangle2_12	Pangle2_11	Pangle2_10	Pangle2_9	Pangle2_8	
7	6	5	4	3	2	1	0	
Pangle2_7	Pangle2_	_6 Pangle2_5	Pangle2_4	Pangle2_3	Pangle2_2	Pangle2_1	Pangle2_0	
Bit	Name							
15 - 0	Pangle2[15:0]	N line voltage current angle Signed, MSB is the sign bit. Data format is XXX.X. Angle range: -180.0~+180.0 degree.						

Smean2 N Line Mean Apparent Power

Address: 6FH Type: Read Default Value: 00	00H									
15	14	13	12	11	10	9	8			
Smean2_1	2_15 Smean2_14 Smean2_13 Smean2_12 Smean2_11		Smean2_11	Smean2_10	Smean2_10 Smean2_9					
7	6 5		4	3	2	1	0			
Smean2_7	Smean2	_6 Smean2_5	Smean2_4	Smean2_3	Smean2_2	Smean2_1	Smean2_0			
Bit	Name			Descri	ption					
15 - 0	Smean2[15:0]		plement, MSB is always '0'. Data format is XX.XXX, which corresponds to 0~+32.767kVA. rrent is specially handled by MCU, the power of 90E21/22/23/24 and the actual power have the same multiple relationship as							

6 ELECTRICAL SPECIFICATION

6.1 ELECTRICAL SPECIFICATION

Parameters and Description	Min.	Typical	Max.	Unit	Test Conditions and Comments
		Acc	uracy		
DC Power Supply Rejection Ratio (PSRR)			±0.1	%	VDD=3.3V \pm 0.3V, 100Hz, I=5A, V=220V, L line shunt resistor 150 $\mu\Omega$, N line CT 1000:1, sampling resistor 4.8 Ω
AC Power Supply Rejection Ratio (PSRR)			±0.1	%	VDD=3.3V superimposes 400mVrms, 100Hz Sinu- soidal signal, I=5A, V=220V, L line shunt resistor 150μΩ, N line CT 1000:1, sampling resistor 4.8Ω
Active Energy Error (Dynamic Range 5000:1)			±0.1	%	L line current gain is '24'; N line current gain is '1'
Active Energy Endi (Dynamic Nange 5000.1)		Channel Cl	aracteristics	70	E line current gain is 24, it line current gain is 1
Sampling Frequency		8		kHz	
L Line Current Channel Equivalent Input Noise			19.1	nV/√Hz	Single side band noise (measured at 50Hz, and PGA gain is '24')
N Line Current Channel Equivalent Input Noise			458.4	nV/√Hz	Single side band noise (measured at 50Hz, and PGA gain is '1')
Voltage Channel Equivalent Input Noise			458.4	nV/√Hz	Single side band noise (measured at 50Hz, and PGA gain is '1')
Total Harmonic Distortion for Each Channel	80	<u> </u>		dB	25°C, PGA gain is '1', 500mVrms input
Reactive Energy Metering Bandwidth		4		kHz	
Active Energy Metering Bandwidth		4		kHz	
Irms and Vrms Measurement Bandwidth		4		kHz	
Measurement Error			±0.5	%	
		Analo	g Input		
	5μ		25m		PGA gain is '24'
	7.5µ		37.5m		PGA gain is '16'
	15µ		75m		PGA gain is '8'
	30µ		150m		PGA gain is '4'
L Line Current Channel Differential Input	120µ		600m	Vrms	PGA gain is '1'
	30µ		150m		PGA gain is '4'
	60μ		300m		PGA gain is '2'
N Line Current Channel Differential Input	120µ		600m	Vrms	PGA gain is '1'
Voltage Channel Differential Input	120µ	4	600m	Vrms	PGA gain is '1'
L Line Current Channel Input Impedance		1		KΩ	
N Line Current Channel Input Impedance		50		KΩ	
Voltage Channel Input Impedance L Line Current Channel DC Offset		50	10	KΩ	
			10	mV	PGA gain is '24'
N Line Current Channel DC Offset Voltage Channel DC Offset			10 10	mV	PGA gain is '1' PGA gain is '1'
Vollage Channel DC Olisel		Defe		mV	PGA gain is i
On Chin Deference (00501/00/02/04)	1 200		erence	V	Deference veltere test mode
On-Chip Reference (90E21/22/23/24) Reference Voltage Temperature Coefficient	1.398	1.417 ±15	1.440 ±40	-	Reference voltage test mode
Reference voltage temperature Coefficient				ppm/°C	
			ock		The Accuracy of crystal or external clock is ± 100
Crystal or External Clock		8.192	iterface	MHz	ppm
SPI Interface Bit Rate	200		160k	bps	1
	200	l Dule4	Width	upo	
		r uise			If $T > 160$ ms width-20ms if T<160 ms width-
CFx Pulse Width		80 F	SD	ms	If T \ge 160 ms, width=80ms; if T<160 ms, width = 0.5T. Refer to Section 6.6
Machine Model (MM)	400		50	V	JESD22-A115
				V	
Charged Device Model (CDM)	1000			V	JESD22-C101

Human Body Model (HBM)	4000			V	JESD22-A114
Latch Up			±100	mA	JESD78A
Latch Up			4.95	V	JESD78A
		Operating	J Conditions		
AVDD, Analog Power Supply	2.8	3.3	3.6	V	Metering precision guaranteed within 3.0V~3.6V.
DVDD, Digital Power Supply	2.8	3.3	3.6	V	Metering precision guaranteed within 3.0V~3.6V.
I _{AVDD} , Analog Current (90E21/22)		3.00		mA	L line current channel and voltage channel are open
I _{AVDD} , Analog Current (90E23/24)		3.75		mA	L line/ N line current channel and voltage channel are open
I _{DVDD} , Digital Current		2.75		mA	VDD=3.3V
		DC Char	racteristics		
Digital Input High Level (all digital pins except OSCI)	2.0		VDD+2.6	V	VDD=3.3V±10%,
Digital Input High Level (OSCI)	2.0		VDD+0.3	V	VDD=3.3V ± 10%
Digital Input Low Level			0.8	V	VDD=3.3V±10%
Digital Input Leakage Current			±1	μΑ	VDD=3.6V, VI=VDD or GND
Digital Output Low Level (CF1, CF2)			0.4	V	VDD=3.3V, I _{OL} =10mA
Digital Output Low Level (IRQ, WarnOut, ZX, SDO)			0.4	V	VDD=3.3V, I _{OL} =5mA
Digital Output High Level (CF1, CF2)	2.4			V	VDD=3.3V, I _{OH} =-10mA
Digital Output High Level (IRQ, WarnOut, ZX, SDO)	2.4			V	VDD=3.3V, I _{OH} =-5mA
Digital Output Low Level (OSCO)			0.4	V	VDD=3.3V, I _{OL} =1mA
Digital Output High Level (OSCO)	2.4			V	VDD=3.3V, I _{OH} =-1mA

6.2 SPI INTERFACE TIMING

The SPI interface timing is as shown in Figure-10, Figure-11 and Table-12.

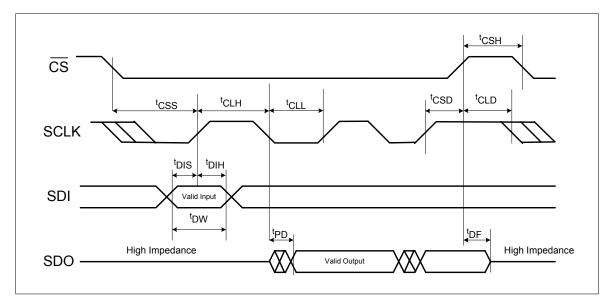


Figure-10 4-Wire SPI Timing Diagram

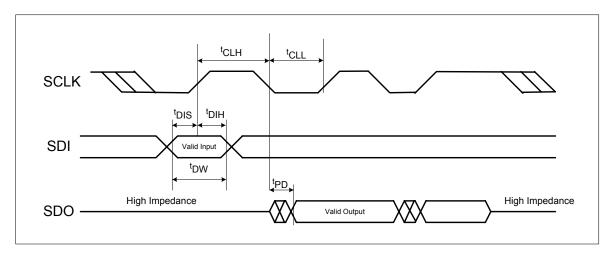


Figure-11 3-Wire SPI Timing Diagram

Table-12 SPI Timing Specification

Symbol	Description	Min.	Typical	Max.	Unit
tCSH	Minimum CS High Level Time	30T ^{note 2} +10			ns
t _{CSS} ^{note 1}	CS Setup Time	3T+10			ns
t _{CSD} ^{note 1}	CS Hold Time	30T+10			ns
t _{CLD} ^{note 1}	Clock Disable Time	1T			ns
t _{CLH}	Clock High Level Time	30T+10			ns
t _{CLL}	Clock Low Level Time	16T+10			ns
t _{DIS}	Data Setup Time	3T+10			ns
t _{DIH}	Data Hold Time	22T+10			ns

Table-12 SPI Timing Specification (Continued)

t _{DW}	Minimum Data Width	30T+10		ns
t _{PD}	Output Delay	14T	15T+20	ns
t _{DF} ^{note 1}	Output Disable Time		16T+20	ns
Note:	·	· · · · · ·		
1. Not applicable for three-v	vire SPI.			

2. T means SCLK cycle. T=122ns. (Typical value for four-wire SPI)

6.3 POWER ON RESET TIMING

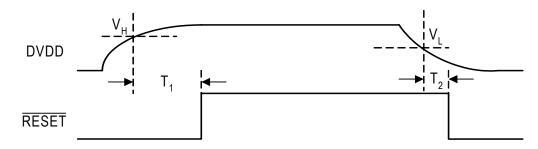


Figure-12 Power On Reset Timing Diagram

Table-13 Power On Reset Specification

Symbol	Description	Min.	Typical	Max.	Unit
V _H	Power On Trigger Voltage	2.47	2.6	2.73	V
VL	Power Off Trigger Voltage	2.185	2.3	2.415	V
V _H -V _L	Hysteretic Voltage Difference	0.285	0.3	0.315	V
T ₁	Delay Time After Power On	5			ms
T ₂	Delay Time After Power Off	10			μs

ZERO-CROSSING TIMING 6.4

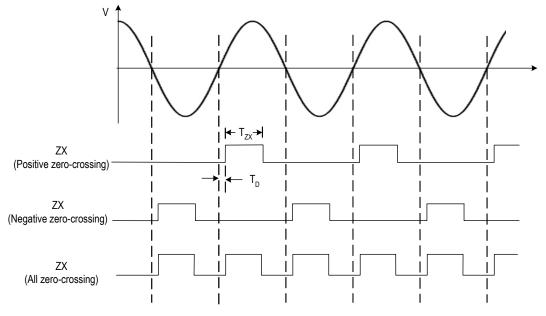
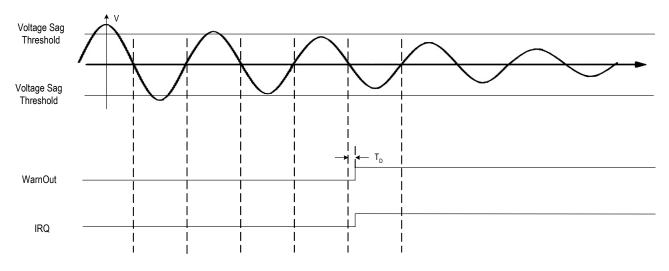



Figure-13 Zero-Crossing Timing Diagram

Table-14 Zero-Crossing Specification

Symbol	Description	Min.	Typical	Max.	Unit
T _{ZX}	High Level Width		5		ms
T _D	Delay Time			0.5	ms

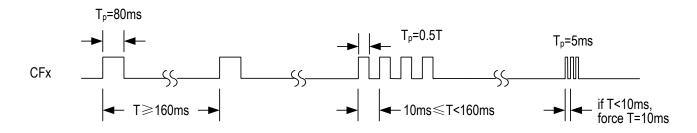
6.5 VOLTAGE SAG TIMING

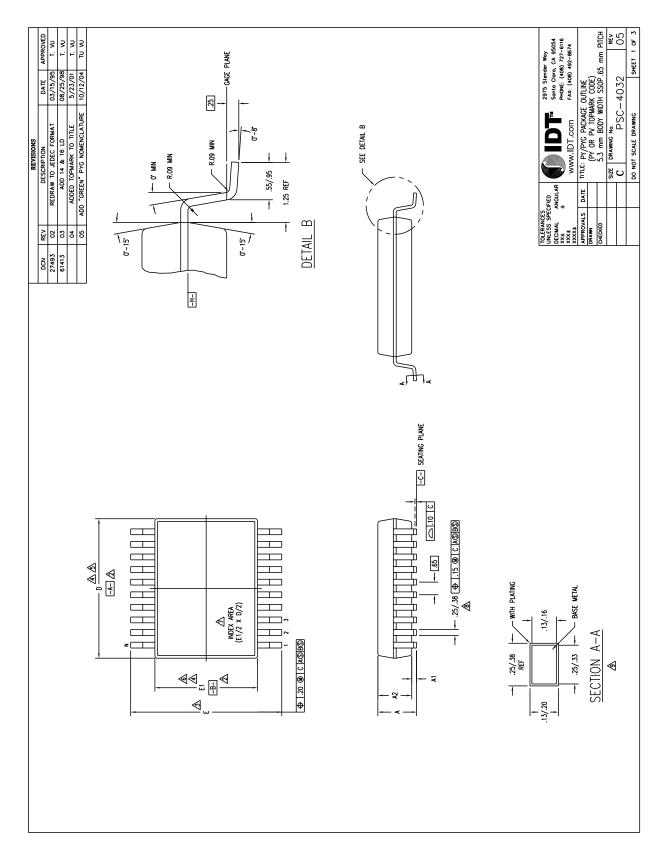
Figure-14 Voltage Sag Timing Diagram

Table-15 Voltage Sag Specification

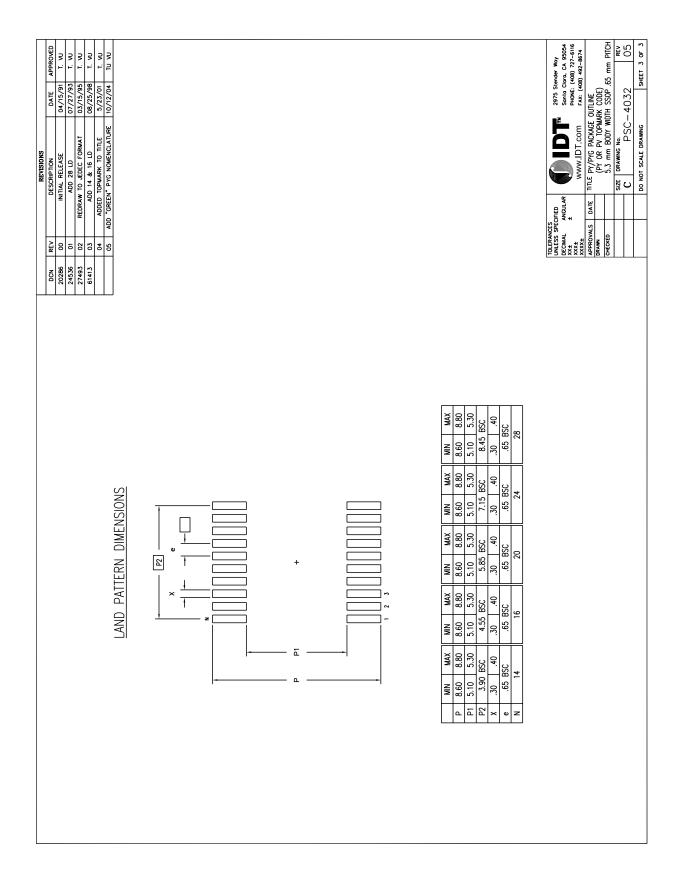
Symbol	Description	Min.	Typical	Max.	Unit
T _D	Delay Time			0.5	ms

6.6 PULSE OUTPUT




Figure-15 Output Pulse Width

6.7 ABSOLUTE MAXIMUM RATING


Parameter	Maximum Limit
Relative Voltage Between AVDD and AGND	-0.3V~3.7V
Relative Voltage Between DVDD and DGND	-0.3V~3.7V
Analog Input Voltage (I1P, I1N, I2P, I2N, VP, VN)	-1V~VDD
Digital Input Voltage	-0.3V~VDD+2.6V
Operating Temperature Range	-40~85 °C
Maximum Junction Temperature	150 °C

Package Type	Thermal Resistance θ_{JA}	Unit	Condition
Green SSOP28 ^{note 1}	63.2	°C/W	No Airflow
Note 1: Refer to http://www.idt.com/package	e/pyg28.		

PACKAGE DIMENSIONS

		61413 03 04 05	ADDED ADDED ADD "GREE	ADD 14 & 16 LD ADDED TOPMARK TO TITLE ADD "GREEN" PYG NOMENCLATURE	08/25/98 T. W 08/25/98 T. W 5/23/01 T. W 10/12/04 TU W
∽≻≖	IATION R JEDEC VARIATION R JEDEC VARIATION	JEDEC VARIATION	z		
m o.	VIN NOV VAX E VIN NOV VAX E VIN NOV VAX E VIN NOV VAX E VIN NOV VAX	AH NOM MAX	⊃ ⊢ω		
A	i 1.86 1.99 1.73 1.86 1.99 1.73 1.86 1.99 1.73 1.86 1.99 1.97	+ -			
A1 A7	.05 .13 .21 .05 .13 .21 .05 .13 .21 .05 .05 .13 .21 .05 <td>.13 .21 173 178</td> <td></td> <td></td> <td></td>	.13 .21 173 178			
:	6.20 5.30 6.20 6.50 4.5 7.07 7.20 7.33 4.5 8.07 8.33 4.5 7.80 7.90 3 7.65 7.80 7.90 3 7.65 7.80 7.90 3 4.5 7.80 7.90 3 7.65 7.80 7.90 3 7.65 7.80 7.90 3 5.30 5.38 4,6 5.20 5.30 5.38 4,6 5.38 4,6	7.80 5.30	4,5 3 4,6		
J	_]		
-	ALL DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5M-1994				
\triangleleft	DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-				
\bigotimes	DIMENSION E TO BE DETERMINED AT SEATING PLANE -C-				
∢	DIMENSIONS D AND E1 ARE TO BE DETERMINED AT DATUM PLANE [-H-]				
\Im	DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED .20 mm PER SIDE				
\bigotimes	DIMENSION ET DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED .20 mm PER SIDE				
\triangleleft	detall of Pin 1 identifier is optional but must be located within The zone indicated				
\bigotimes	LEAD WIDTH DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION IS .13 mm in Excess of the Lead Width Dimension at maximum material condition. Dambar cannot be located on the Lower Radius or the foot				
\mathbf{F}	THESE DMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .10 AND .25 mm FROM THE LEAD TIP	TOLERAN UNLESS DECIMAL XX± XXX±	TOLERANCES JNLESS SPECIFIED DECIMAL ANGULAR XX± ± XXX±		2975 Stender Way Santa Clora, CA 95054 PHONE: (408) 727–6116 FAX: (408) 492–8674
10	all dimensions are in millimeters	APPR	XXXX± APPROVALS DATE		DUTLINE
Ξ	THIS OUTLINE CONFORMS TO JEDEC PUBLICATION 95 REGISTRATION MO-150. VARATION AB, AC, AE, AG & AH	CHECKED	. 8	PY OR PV TOPMARK CODE) 5.3 mm BODY WIDTH SSOP .65 size DRAWING No.	RK CODE) TH SSOP .65 mm PITCH
				C PSC-4032	

ORDERING INFORMATION

DATASHEET DOCUMENT HISTORY

09/02/2010 pg. 16 11/02/2010 pg. 37, 40 12/13/2010 pg. 6, 10, 48, 52 12/27/2010 pg. 48 03/22/2011 pg. 53

01/10/2012 pg. 48, 52, 54, 55, 56

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 www.idt.com

for Sales: 86-21-64958900 for Tech Support: 86-21-64958900 email:powermeterhelp@idt.com

IDT and the IDT logo are trademarks of Integrated Device Technology, Inc.