

Absolute Maximum Ratings（Note 2）		Recommended Operating
Supply Voltage（ V_{CC} ）	-0.5 V to +4.6 V	Conditions（Note 4）
DC Input Voltage（ V_{l} ）	-0.5 V to +4.6 V	Power Supply
Output Voltage（ V_{O} ）		Operating $\quad 1.4 \mathrm{~V}$ to 3.6 V
Outputs 3－State	-0.5 V to +4.6 V	Data Retention Only 1.2 V to 3.6 V
Outputs Active（Note 3）	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	Input Voltage $\quad-0.3 \mathrm{~V}$ to 3.6 V
DC Input Diode Current（ I_{K} ） $\mathrm{V}_{\mathrm{I}}<0 \mathrm{~V}$	－50 mA	Output Voltage（ V_{O} ）
DC Output Diode Current（ I_{OK} ）		Output in Active States $\quad 0 \mathrm{~V}$ to V_{CC}
$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	－50 mA	Output in 3－STATE $\quad 0.0 \mathrm{~V}$ to 3.6 V
$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	＋50 mA	Output Current in $\mathrm{IOH} / \mathrm{IOL}^{-}-\mathrm{A}$ Outputs
DC Output Source／Sink Current		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V
$\left(\mathrm{l}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}\right)$	$\pm 50 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V
DC $\mathrm{V}_{\text {CC }}$ or Ground Current per		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V} \quad \pm 3 \mathrm{~mA}$
Supply Pin（ICC or Ground）	$\pm 100 \mathrm{~mA}$	Output Current in $\pm \mathrm{l}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}-\mathrm{B}$ Outputs
Storage Temperature Range（ $\mathrm{T}_{\text {STG }}$ ）	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V} \quad \pm 24 \mathrm{~mA}$
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V
		$\mathrm{V}_{\text {CC }}=1.65 \mathrm{~V}$ to 2.3 V
		Free Air Operating Temperature（ T_{A} ）$\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
		Minimum Input Edge Rate（ $\Delta \mathrm{t} / \Delta \mathrm{V}$ ）
		$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$ to 2．0V， $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
		Note 2：The＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaranteed．The device should not be operated at these limits．The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Rat－ ings．The Recommended Operating Conditions tables will define the condi－ tions for actual device operation．
		Note 3： l_{O} Absolute Maximum Rating must be observed．
		Note 4：Floating or unused pins（inputs or I／O＇s）must be held HIGH or LOW．

DC Electrical Characteristics

Symbol	Parameter	Conditions	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	Min	Max	Units
$\overline{\mathrm{V}_{\mathrm{IH}}}$	HIGH Level Input Voltage		$\begin{gathered} \hline 2.7-3.6 \\ 2.3-2.7 \\ 1.65-2.3 \\ 1.4-1.6 \end{gathered}$	2.0 1.6 $0.65 \times V_{\mathrm{CC}}$ $0.65 \times \mathrm{V}_{\mathrm{CC}}$		V
$\overline{\mathrm{V}} \mathrm{IL}$	LOW Level Input Voltage		$\begin{gathered} 2.7-3.6 \\ 2.3-2.7 \\ 1.65-2.3 \\ 1.4-1.6 \end{gathered}$		0.8 0.7 $0.35 \times V_{\mathrm{CC}}$ $0.35 \times \mathrm{V}_{\mathrm{CC}}$	V
$\overline{\mathrm{V} \text { OH }}$	HIGH Level Output Voltage A Outputs	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \hline \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \\ & \hline \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \hline \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \hline \end{aligned}$	$2.7-3.6$ 2.7 3.0 3.0 $2.3-2.7$ 2.3 2.3 2.3 $1.65-2.3$.65 $1.4-1.6$ 1.4	 $\mathrm{V}_{\mathrm{CC}}-0.2$ 2.2 2.4 2.2 $\mathrm{~V}_{\mathrm{CC}}-0.2$ 2.0 1.8 1.7 $\mathrm{~V}_{\mathrm{CC}}-0.2$ 1.4 $\mathrm{~V}_{\mathrm{CC}}-0.2$ 1.05		V

AC Electrical Characteristics（Note 6）

Symbol	Parameter	Conditions	V_{Cc} （V）	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Figure Number
				Min	Max		
$\overline{t_{\text {PHL }}}$ ， $t_{\text {PLH }}$	Propagation Delay B to A	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.8	3.4	ns	Figures 1， 2
			2.5 ± 0.2	1.0	4.3		
			1.8 ± 0.15	1.5	8.6		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	17.2		$\begin{gathered} \text { Figures } \\ 5,6 \end{gathered}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}}, \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Time B to A	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.8	4.2	ns	Figures$1,3,4$
			2.5 ± 0.2	1.0	5.7		
			1.8 ± 0.15	1.5	9.8		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	19.6		$\begin{gathered} \hline \text { Figures } \\ 5,7,8 \end{gathered}$
$\begin{aligned} & \overline{t_{\text {PLZ }}}, \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Disable Time B to A	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.8	4.1	ns	$\begin{gathered} \text { Figures } \\ 1,3,4 \end{gathered}$
			2.5 ± 0.2	1.0	4.8		
			1.8 ± 0.15	1.5	8.6		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	17.2		$\begin{array}{\|c\|} \hline \text { Figures } \\ 5,7,8 \end{array}$
$\mathrm{t}_{\mathrm{PHL}}$ ， $t_{\text {PLH }}$	Propagation Delay A to B	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.8	2.5	ns	Figures 1， 2
			2.5 ± 0.2	1.0	3.0		
			1.8 ± 0.15	1.5	6.0		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	12.0		$\begin{array}{\|c\|} \hline \text { Figures } \\ 5,6 \end{array}$
$\begin{aligned} & \overline{\mathrm{t}_{\text {PZL }}} \\ & \mathrm{t}_{\text {PZH }} \end{aligned}$	Output Enable Time A to B	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.8	3.5	ns	Figures$1,3,4$
			2.5 ± 0.2	1.0	4.1		
			1.8 ± 0.15	1.5	8.2		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	16.4		$\begin{array}{\|c\|} \hline \text { Figures } \\ 5,7,8 \end{array}$
$\begin{aligned} & \overline{t_{\mathrm{PLZ}}}, \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Disable Time A to B	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.8	3.5	ns	Figures$1,3,4$
			2.5 ± 0.2	1.0	3.8		
			1.8 ± 0.15	1.5	6.8		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	13.6		$\begin{gathered} \hline \text { Figures } \\ 5,7,8 \end{gathered}$
toshl， tosth	Output－to－Output Skew （Note 7）	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3		0.5	ns	
			2.5 ± 0.2		0.5		
			1.8 ± 0.15		0.75		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1		1.5		

74VCX162245
Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V_{cc} (V)	$\begin{array}{\|c\|} \hline \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \hline \text { Typical } \\ \hline \end{array}$	Units
$\mathrm{V}_{\text {OLP }}$	Quiet Output DynamicPeak $\mathrm{V}_{\text {OL }}$, to B	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	0.25	V
			2.5	0.6	
			3.3	0.8	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	0.15	v
	Peak $\mathrm{V}_{\text {OL }}, \mathrm{B}$ to A		2.5	0.25	
			3.3	0.35	
$\mathrm{V}_{\text {OLV }}$	Quiet Output Dynamic	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	-0.25	V
	Valley $\mathrm{V}_{\text {OL }}$, A to B		2.5	-0.6	
			3.3	-0.8	
$\mathrm{V}_{\text {OLV }}$	Quiet Output Dynamic	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	-0.15	v
	Valley V_{OL}, B to A		2.5	-0.25	
			3.3	-0.35	
$\mathrm{V}_{\text {OHV }}$	Quiet Output Dynamic	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	1.5	V
	Valley $\mathrm{V}_{\text {OH }}$, A to B		2.5	1.9	
			3.3	2.2	
$\mathrm{V}_{\text {OHV }}$	Quiet Output Dynamic	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	1.55	v
	Valley $\mathrm{V}_{\mathrm{OH}}, \mathrm{B}$ to A		2.5	2.05	
			3.3	2.65	

Capacitance

Symbol	Conditions	$\mathrm{T}_{\mathbf{A}}=+\mathbf{2 5 ^ { \circ } \mathrm { C }}$	Units	
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, or $3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	6	pF
$\mathrm{C}_{I / \mathrm{O}}$	Output Capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$, or $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3 V	7	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}$ $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3 V	20	pF

AC Loading and Waveforms ($\mathrm{V}_{\mathrm{CC}} 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ to $1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$)

FIGURE 1. AC Test Circuit

TEST	SWITCH
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}$	Open
$\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PLZ}}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} ;$
	$\mathrm{V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V} ; 1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$	GND

FIGURE 2. Waveform for Inverting and Non-inverting Functions

FIGURE 3. 3-STATE Output HIGH Enable and Disable Times for LOW Voltage Logic

FIGURE 4. 3-STATE Output LOW Enable and Disable Times for LOW Voltage Logic

Symbol	$\mathrm{V}_{\mathbf{C C}}$		
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$	$\mathbf{1 . 8 V} \pm \mathbf{0 . 1 5 V}$
V_{mi}	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

AC Loading and Waveforms ($\mathrm{V}_{\mathrm{cc}} 1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$)

TEST	SWITCH
$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$	Open
$\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PLZ}}$	$\mathrm{V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$	GND

FIGURE 6. Waveform for Inverting and Non-inverting Functions

FIGURE 7. 3-STATE Output HIGH Enable and Disable Times for LOW Voltage Logic

FIGURE 8. 3-STATE Output LOW Enable and Disable Times for LOW Voltage Logic

Symbol	$\mathrm{V}_{\mathbf{C C}}$
	$\mathbf{1 . 5 V} \pm \mathbf{0 . 1} \mathrm{V}$
V_{mi}	$\mathrm{V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	$\mathrm{V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.1 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.1 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted

Package Number MTD48

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
