

Pin Assignment for FBGA

(Top Thru View)

Pin Descriptions

Pin Names	Description
$\overline{\mathrm{OE}}_{\mathrm{n}}$	Output Enable Input (Active LOW)
$\mathrm{I}_{0}-\mathrm{I}_{15}$	Inputs
$\mathrm{O}_{0}-\mathrm{O}_{15}$	Outputs
NC	No Connect

FBGA Pin Assignments

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
\mathbf{A}	O_{0}	NC	$\overline{\mathrm{OE}}_{1}$	$\overline{\mathrm{OE}}_{2}$	NC	I_{0}
\mathbf{B}	O_{2}	O_{1}	NC	NC	I_{1}	I_{2}
\mathbf{C}	O_{4}	O_{3}	$\mathrm{~V}_{\mathrm{CC}}$	V_{CC}	I_{3}	I_{4}
\mathbf{D}	O_{6}	O_{5}	GND	GND	I_{5}	I_{6}
\mathbf{E}	O_{8}	O_{7}	GND	GND	I_{7}	I_{8}
\mathbf{F}	O_{10}	O_{9}	GND	GND	I_{9}	I_{10}
\mathbf{G}	O_{12}	O_{11}	$\mathrm{~V}_{\mathrm{CC}}$	V_{CC}	I_{11}	I_{12}
\mathbf{H}	O_{14}	O_{13}	NC	NC	I_{13}	I_{14}
\mathbf{J}	O_{15}	NC	$\overline{\mathrm{OE}}_{4}$	$\overline{\mathrm{OE}}_{3}$	NC	I_{15}

Truth Tables

Inputs		Outputs
$\overline{\mathrm{OE}}_{1}$	$\mathrm{I}_{0}-\mathrm{I}_{3}$	$\mathrm{O}_{0}-\mathrm{O}_{3}$
L	L	L
L	H	H
H	X	Z

Inputs		Outputs
$\overline{\mathrm{OE}}_{2}$	$\mathrm{I}_{4}-\mathrm{I}_{7}$	$\mathrm{O}_{4}-\mathrm{O}_{7}$
L	L	L
L	H	H
H	X	Z

Inputs		Outputs
$\overline{\mathrm{OE}}_{3}$	$\mathrm{I}_{8}-\mathrm{I}_{11}$	$\mathrm{O}_{8}-\mathrm{O}_{11}$
L	L	L
L	H	H
H	X	Z

Inputs		Outputs
$\overline{\mathrm{OE}}_{4}$	$\mathrm{l}_{12} \mathrm{l}_{15}$	$\mathrm{O}_{12}-\mathrm{O}_{15}$
L	L	L
L	H	H
H	X	Z
$\begin{aligned} & \mathrm{H}=\mathrm{HIGH} \text { Voltage Level } \\ & \mathrm{L}=\text { LOW Voltage Level } \\ & \mathrm{X}=\text { Immaterial (HIGH or LOW, inputs may not float) } \\ & \mathrm{Z}=\text { High Impedance } \end{aligned}$		

Functional Description

The 74VCX162244 contains sixteen non－inverting buffers with 3－STATE outputs．The device is nibble（ 4 bits）con－ trolled with each nibble functioning identically，but indepen dent of each other．The control pins may be shorted together to obtain full 16 －bit operation．The 3－STATE out
puts are controlled by an Output Enable $\left(\overline{\mathrm{OE}}_{n}\right)$ input．When $\overline{\mathrm{OE}}_{\mathrm{n}}$ is LOW，the outputs are in the 2 －state mode．When $\overline{\mathrm{OE}}_{\mathrm{n}}$ is HIGH，the standard outputs are in the high imped－ ance mode but this does not interfere with entering new data into the inputs．

Logic Diagram

Absolute Maximum Ratings(Note 4)		Recommended Operating	
Supply Voltage ($\mathrm{V}_{\text {CC }}$)	-0.5 V to +4.6 V	Conditions (Note 6)	
DC Input Voltage (V_{l})	-0.5 V to +4.6 V	Power Supply	
Output Voltage (V_{0})		Operating	1.2 V to 3.6 V
Outputs 3-STATE	-0.5 V to +4.6 V	Data Retention Only	1.2 V to 3.6 V
Outputs Active (Note 5)	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	Input Voltage	-0.3 V to +3.6 V
DC Input Diode Current (I_{K}) $\mathrm{V}_{1}<0 \mathrm{~V}$	-50 mA	Output Voltage (V_{0})	
DC Output Diode Current (lok)		Output in Active States	OV to V_{cc}
$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	-50 mA	Output in 3-State	0.0 V to 3.6 V
$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{cc}}$	+50 mA	Output Current in $\mathrm{I}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{L}}$	
DC Output Source/Sink Current		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	$\pm 12 \mathrm{~mA}$
($\mathrm{lOH}^{\text {/ }} \mathrm{l} \mathrm{L}$)	$\pm 50 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	$\pm 8 \mathrm{~mA}$
DC V ${ }_{\text {CC }}$ or GND Current per		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 2.3 V	$\pm 3 \mathrm{~mA}$
Supply Pin (lcc or GND)	$\pm 100 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6V	$\pm 2 \mathrm{~mA}$
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$	$\pm 100 \mu \mathrm{~A}$
		Free Air Operating Temperature (T_{A})	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
		Minimum Input Edge Rate ($\Delta t / \Delta \mathrm{V}$)	
		$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$ to $2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	$10 \mathrm{~ns} / \mathrm{V}$
		Note 4: The Absolute Maximum Ratings are those the safety of the device cannot be guaranteed. The operated at these limits. The parametric values def Characteristics tables are not guaranteed at the Abs ings. The "Recommended Operating Conditions" table tions for actual device operation.	alues beyond which vice should not be ed in the Electrica lute Maximum Ratwill define the condi-
		Note 5: l O Absolute Maximum Rating must be observe	
		Note 6: Floating or unused inputs must be held HIGH	r Low.

DC Electrical Characteristics (2.7V $<\mathrm{V}_{\mathrm{CC}} \leq \mathbf{3 . 6 V}$)

Symbol	Parameter	Conditions	V_{cc} (V)	Min	Max	Units
$\overline{\mathrm{V}_{\mathrm{IH}}}$	HIGH Level Input Voltage		$\begin{gathered} \hline 2.7-3.6 \\ 2.3-2.7 \\ 1.65-2.3 \\ 1.4-1.6 \\ 1.2 \end{gathered}$	2.0 1.6 $0.65 \times V_{\mathrm{CC}}$ $0.65 \times \mathrm{V}_{\mathrm{CC}}$ $0.65 \times \mathrm{V}_{\mathrm{CC}}$		V
$\overline{\mathrm{V} \text { IL }}$	LOW Level Input Voltage		$\begin{gathered} \hline 2.7-3.6 \\ 2.3-2.7 \\ 1.65-2.3 \\ 1.4-1.6 \\ 1.2 \end{gathered}$		0.8 0.7 $0.35 \times \mathrm{V}_{\mathrm{CC}}$ $0.35 \times \mathrm{V}_{\mathrm{CC}}$ $0.5 \times \mathrm{V}_{\mathrm{CC}}$	V
V_{OH}	HIGH Level Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 2.7-3.6 \\ 2.7 \\ 3.0 \\ 3.0 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-0.2 \\ 2.2 \\ 2.4 \\ 2.2 \end{gathered}$		V
		$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 2.7-3.6 \\ 2.3 \\ 2.3 \\ 2.3 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-0.2 \\ 2.0 \\ 1.8 \\ 1.7 \end{gathered}$		
		$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 1.65-2.3 \\ 1.65 \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-0.2 \\ 1.25 \end{gathered}$		
		$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 1.4-1.6 \\ 1.4 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-0.2 \\ 1.05 \end{gathered}$		
		$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	1.2	$\mathrm{V}_{\text {CC }}-0.1$		

Symbol	Parameter	Conditions	$\mathrm{V}_{\text {cc }}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
			(V)	Typical	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic Peak V_{OL}	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	$\begin{aligned} & \hline 1.8 \\ & 2.5 \\ & 3.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.25 \\ & 0.35 \end{aligned}$	v
$\overline{\mathrm{V} \text { OLV }}$	Quiet Output Dynamic Valley $\mathrm{V}_{\text {OL }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\text {IH }}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {IL }}=0 \mathrm{~V}$	$\begin{aligned} & \hline 1.8 \\ & 2.5 \\ & 3.3 \end{aligned}$	$\begin{aligned} & \hline-0.15 \\ & -0.25 \\ & -0.35 \end{aligned}$	V
$\overline{\mathrm{V}_{\mathrm{OHV}}}$	Quiet Output Dynamic Valley V_{OH}	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\text {IH }}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {IL }}=0 \mathrm{~V}$	$\begin{aligned} & \hline 1.8 \\ & 2.5 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 1.55 \\ & 2.05 \\ & 2.65 \end{aligned}$	V
Capacitance					
Symbol	Parameter	Conditions		$\begin{array}{\|c\|} \hline \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \hline \text { Typical } \end{array}$	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=1.8,2.5 \mathrm{~V}$ or $3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0$		6	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$		7	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}$	3.3V	20	pF

AC Loading and Waveforms ($\mathrm{V}_{\mathrm{Cc}} 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ to $1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$)

TEST	SWITCH
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} ;$
	$\mathrm{V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V} ; 1.8 \pm 0.15 \mathrm{~V}$
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\mathrm{PHZ}}$	GND
FIGURE 1. AC Test Circuit	

FIGURE 2. Waveform for Inverting and Non-Inverting Functions

FIGURE 3. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

FIGURE 4. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

Symbol	$\mathrm{V}_{\mathbf{C C}}$		
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$	$\mathbf{1 . 8 V} \pm \mathbf{0 . 1 5 V}$
V_{mi}	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

AC Loading and Waveforms ($\mathrm{V}_{\mathrm{Cc}} 1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$ to 1.2 V)

TEST	SWITCH
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\text {PLZ }}$	$\mathrm{V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$	GND
FIGURE 5. AC Test Circuit	

FIGURE 5. AC Test Circuit

FIGURE 6. Waveform for Inverting and Non-Inverting Functions

FIGURE 7. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

FIGURE 8. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

Symbol	$\mathrm{V}_{\mathbf{C C}}$
	$\mathbf{1 . 5} \mathbf{V} \pm \mathbf{0 . 1} \mathbf{V}$
V_{mi}	$\mathrm{V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	$\mathrm{V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.1 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OL}}-0.1 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted

NOTES:
A. THIS PACKAGE CONFORMS TO JEDEC M0-205
B. ALL DIMENSIONS IN MILLIMETERS
C. LAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined)

35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS D. DRAWING CONFORMS TO ASME Y14.5M-1994

BGA54ArevD
54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide
Package Number BGA54A
74VCX162244 Low Voltage 16-Bit Buffer/Line Driver with 3.6V Tolerant Inputs and Outputs and 26Ω Series

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DIMENSIONS ARE IN MILLIMETERS
NOTES:
A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AB, REF NOTE 6, DATE $7 / 93$
3. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND

TIE BAR EXTRUSIONS.
D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

MTD48RevB1

48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
 Package Number MTD48

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
