AN1105
KYI@ APPLICATION NOTE

ST7 pCAN PERIPHERAL DRIVER

by Central European MCU Support

INTRODUCTION

The Controller Area Network (CAN) norm defines a fast and robust serial bus protocol, suited
for local networking of intelligent devices such as microcontrollers, sensors and actuators. It is
now widely used, mostly in the automotive domain, but also for home automation and indus-
trial equipment control.

Several members of the ST7 MCU family have a built-in CAN peripheral named pCAN, which
allows them to be used as nodes in a CAN network. A software driver provided is by ST to help
you start designing and writing applications using the ST7 pCAN cell.

The purpose of the following application note is to explain to you how to use the driver, and
how it works. Thus, you can either build your software from the provided files, or modify them
to meet specific needs.

You will find in this application note:

— a brief description of the CAN protocol

—an overview of the pCAN peripheral

—the complete description of the user interface

— the step-by-step development of an example application using the driver features
— a technical report including a description of algorithms and internal data types

Version 1.3

AN1105/0801 1/100

Table of Contents

INTRODUCTION . .. e e s e e e e e e e e e e e e 1
1 CAN COMMUNICATION PROTOCOL . ..ot e e e e e e 4
1.1 GENERAL CHARACTERISTICS e e e 4
1.1.1 ProtoCol properties e 4
1.1.2 CANinthe OSlreferencemodel 5
1.2 CAN FRAME .. e 6
1.2.1 CAN Data Frame e 6
1.2.2 CAN RemoOte Frame e e e e 7
1.2.3 CAN Ermor Frame e 8
1.2.4 CANOverload Frame e 8
1.3 PHYSICAL REPRESENTATION OF DATA e 8
1.3.1 Bit StUFfING 9
1.3.2 Bittiming ... 9
1.4 ARBITRATION PHASE e e e e e e 10
1.4.1 Arbitration Phase 10
1.4.2 Message Acknowledgement i 11
1.5 ERROR MANAGEMENT e e e e e 11
1.6 ST7 PCAN PERIPHERAL e e 12
1.6.1 Main FeatUrest e 12
1.6.2 Cell Behaviour 13
2 CAN DRIVER ... e 15
2.1 USERINTERFACE e e e e e e 15
2.1.1 Files Furnished 15
2.0.2 ArChIteCtUrE 15
2.1.3 Principle of Use 16
2.0.4 INterrupts (ITS) v v et e 17
2.1.5 User Interface DescCription i e 19
2.2 HOW TO USE THE CAN DRIVER: A DEMO APPLICATION 27
2.2.1 AppPlication . ..o 27
2.2.2 Cell Configuration 28
2.2.3 Implementing the Notification Functions 30
2.2.4 Transmissions outside the CAN Interrupt Function 33
2.2.5 IMPORTANT: Reentrant FUNCLIONS i e 36
3 DETAILED DESCRIPTION e e e e e e e e 38
3.1 USERINTERFACE FUNCTIONS e 38
3.2 INTERNAL FUNCTIONS ANDDATATYPES 41
3.2.1 Internal Data Typesand Variables 41
3.2.2 Internal ROULINES i 44
3.3 A FEW WORDS ABOUT DRIVER PERFORMANCE 55
3.3.1 CPRU LOAd ..o 55
3.3.2 C00E SIzZe ..t 56

2/100

Table of Contents

4 DRIVER CODE 57
4. CAN. C 57
4.2 CANH . 86
4.3 CAN_CUSTOM.C . .. e e e e e e 90
4.4 CAN_CUSTOM.H . .. e e e e e 93
4.5 CAN _HR.H . 96

4

3/100

ST7 pCAN PERIPHERAL DRIVER

1 CAN COMMUNICATION PROTOCOL

In the early 80s, electronic applications appeared in the automotive world. The need gradually
arose to establish real-time communications between various types of on-board equipment.

In 1986, the CAN bus protocol, designed by Robert Bosch GmbH, was presented to the public
for the first time. In 1989, the first silicon implementing the protocol was issued and in 1991,
the first car equipped with a CAN network was produced.

Today, the protocol is an international norm (ISO 11898). Its relative simplicity, the wide avail-
ability of products and services in terms of chips, software libraries, starter kits, courses and
training makes the development of applications relatively fast and cheap.

The CAN protocol provides the user with very reliable communication, with a powerful error
detection/confinement mechanism. It allows baud rates up to 1Mbaud (for networks of up to
40m) which makes it able to support real time applications. The bus can of course be config-
ured with lower speeds for larger networks (50kbaud for networks up to 1km long for ex-
ample).

There were more than 150 million CAN nodes installed at the beginning of 1999.

1.1 GENERAL CHARACTERISTICS

1.1.1 Protocol properties
« Asynchronous serial bus (See “Bit timing” on page 9)

—No clock signal is transmitted, allowing a two-wires (high speed CAN see ISO 11898) or
even one-wire communication (low speed CAN, see ISO 11519)

— Each node resynchronizes itself on every falling edge occurring on the bus.
» CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance)
— Several nodes can request the bus simultaneously (CSMA).
—When such a situation occurs, there is no loss of data and the message with the highest
priority is immediately sent (CA).
« Multimaster capability (See “Arbitration Phase” on page 10)
— Every CAN node in the network is able to transmit data.
— The arbitration mechanism is decentralized.
» Object oriented communication

— Each message on the bus carries its own identifier which is an 11-bit (or 29-bit) number.
This field describes the content of the message. It is not an address.

— Consequently, a transmitter doesn’t address data to a peer but simply broadcasts its data.
Each node in the network picks off data from the bus when it recognizes an identifier that
concerns it.

4/100 V<72

ST7 pCAN PERIPHERAL DRIVER

« Message prioritization

— The identifier of a message also indicates the priority of its carrier. During the arbitration
phase, a bitwise comparison of the different identifiers is performed. The message with the
higher identifier being the more urgent, it wins the arbitration and is immediately transmit-
ted.

« Error management system (See “Error Management” on page 11)
— Detection: every node continuously monitors the bus, even if itis not concerned by the cur-
rent transmission, to detect potential violations of the protocol.

— Signalization: any node detecting an error, signals it to its peers and aborts the current
transmission meanwhile. The sender automatically retries transmission within a certain
amount of time. Thus, the consistency of data throughout the network is preserved.

— Confinement: each node implements counters which are incremented (or decremented)
after each detection of an error (or successful operation). A defective station can then
switch itself off when its counters reach a certain value, and thus stop disturbing the bus
operations.

1.1.2 CAN in the OSI reference model

The protocol occupies parts of the two lowest levels (the physical and data link layers) of the
7-level ISO/OSI (Open System Interconnection) telecommunications reference model.
Table 1. ISO/OSI Standard Telecommunication Layers

OSlI Layer OSI Model CAN Protocol

7 Application No (User defined)
6 Presentation No (User defined)
5 Session No (User defined)
4 Transport No (User defined)
3 Network No (User defined)
2 Data Link Yes

1 Physical Partly

In this reference model, the data link layer deals with physically passing data from one node to
another. It defines arbitration, message framing, error management and transmission timing
for example.

The physical layer deals with putting data on the physical network, and with taking it off. Con-
sequently, it defines signal levels and timings, as well as the transmission support (wire types,
connectors, etc.).

The CAN protocol splits the Data Link layer into Object and Transfer sublayers, corre-
sponding to the ISO/OSI Logical Link Control and Medium Access Control sublayers. The
Transfer layer is the interface between the user application and the CAN. The Object layer

IS72 5/100

ST7 pCAN PERIPHERAL DRIVER

manages frame shaping and acknowledgment mechanisms, bus arbitration and checks the
formal correctness of the data transmitted and received.

The physical layer is only partly defined, and the user is free to choose the transmission me-
dium for example.

Figure 1. Layered architecture of CAN (ISO 11898 definition)

Data Link Layer

Logical Link Control

Acceptance filtering |
Overload Notification |
Recovery management

Medium Access Control
Data encapsulation/decapsulation

Frame coding (stuff/destuff)

Medium access management Fault confinement

Error detection <—l—> (MAC-Layer Management
Error signaling Entity)

Serialization/Deserialization

Physical Layer

Physical Layer Signaling
Bit encoding/decoding
Bit timing
Synchronization

Bus Failure Management
(PLS-Layer Management
Entity)

A
y

Physical Medium Attachment
Driver/Receiver characteristics

Medium Dependent Interface
Connector

|
|
|
|
|
|
|
Acknowledgement |
|
|
|
|
|
|
|

1.2 CAN FRAME

There are four different CAN frame types: Data frame, Error frame, Remote frame and
Overload frame

There are also two versions of the CAN protocol: 2.0A (or base format) and 2.0B (or extended
format). The 2.0B standard introduces an extended data frame with a longer identifier. Both
frame types coexist on a CAN 2.0B bus, and its nodes must be at least able to recognize and
acknowledge both.

We will only describe here the 2.0A format, or base format.

1.2.1 CAN Data Frame

The CAN Data frame is used for data transmission and contains the following fields:
» A start of frame field, consisting of one bit.

« A 12-bit arbitration field, including:
— An 11-bit identifier

6/100

4

ST7 pCAN PERIPHERAL DRIVER

— A RTR bit used to differentiate data and remote frames. It is dominant in a data frame.
« A 6-bit control field, including:

— A 4-bit data length code bits giving the size (in bytes) of the data field

— 1 IDentifier Extension (IDE) bit (dominant for CAN 2.0A frame) and 1 bit reserved for fur-
ther development.

« A data field of up to 8 bytes.
» A 16-bitlong CRC field. The Cyclic Redundancy Check (CRC) is based on a BCH encoding.

« A 2-bit acknowledgment field. The transmitters sends it as all recessive. (See “Message
Acknowledgement” on page 11)

« A 7-bit end-of-frame field.

The interframe space (or Intermission) is the minimum amount of time between two consecu-
tive transmissions.

Figure 2. CAN Data Frame

19 bits 0..64 bits 25 bits

Control Data Field | CRC Field ACK, EOF Interframe

Arbitration Field Field Space
R
11-bit Identifier | pLC | Data 15 bits 7bits | 3bits |Bus Idle
D
o RTR = 0) Delimiter ACK Delimiter
IDE=0 ACK Slot

1.2.2 CAN Remote Frame

The CAN Remote frame is used to request data. This frame has the same overall constitution
as the data frame. However, in this case, the Remote bit (RTR) is recessive and there is no
data field.

4

7/100

ST7 pCAN PERIPHERAL DRIVER

Figure 3. CAN Remote Frame

19 bits 25 bits
Arbitration Field Control CRC Field ACK, EOF Interframe
Field Space
R _
11-bit Identifier | DLC 15 bits 7 bits | 3 bits | Bus Idle
D
T RTR=1 T T CRC T T
Delimiter ACK Delimiter
SOF IDE=0 \CK Slot

1.2.3 CAN Error Frame

The CAN Error frame is sent by a node as soon as it detects a protocol violation in the current
operations on the bus. This frame is composed of 6 successive dominant bits (active error
flag) or recessive (passive error flag), followed by 8 recessive Frame Delimiter bits. The cur-
rent error state of the node sending the error frame (See Section 1.5 "Error Management") will
determine whether it is an active frame (node in error active state) or a passive frame (node in
error passive state).

1.2.4 CAN Overload Frame

The CAN Overload Frame can be sent during the interframe space to delay the next transmis-
sion on the bus. This frame has the same constitution as the active Error frame.

Figure 4. CAN Error/Overload Frame

1 Max. 12 bits
I |

' |

|

Data Frame Error/Overldoad Error/OverIoadl Interframe
I Flag | ' Delimiter I Space

6 bits | 8 bits ' 3 bits Bus Idle or Data Frames
1 |

? Error Detection

1.3 PHYSICAL REPRESENTATION OF DATA

The CAN data is encoded with NRZ (Non Return to Zero) code. The two logical levels used
are named dominant (0) and recessive (1). Because the CAN cells are connected on the bus
according to the wired-AND principle, it follows that the default bus state is recessive, and that

8/100 172

ST7 pCAN PERIPHERAL DRIVER

transmission of a dominant bit forces this state to dominant, no matter how many other nodes
are transmitting recessive bits.

1.3.1 Bit Stuffing

Once built, a frame is passed to the Transfer sub-layer, where the CRC is calculated. Then,
Stuffing Bits are inserted in the frame. Each time five consecutive bits of the same logical
level are detected, a bit of the opposite value is inserted. This is used to generate a minimum
edge rate on the bus for resynchronisation purpose (See “Bit timing” on page 9).

Figure 5. Bit-stream NRZ Code & Bit Stuffing
101110101000001000110111110001

Bl N L L [

<4——— Stuff bits ———»

1.3.2 Bit timing

The CAN standard divides the bit time into four segments:
— A synchronisation segment (SYNC),
— A propagation segment (PROP),
— A phase buffer 1 segment (TSEG1),
— A phase buffer 2 segment (TSEG?2),
— Each segment is divided into time quanta. The synchronisation segment lasts, by defini-
tion, 1 time quantum.

Figure 6. CAN Bit Segments

| |
o |
Preé/_ltousH Bit Time }i Next Bit
i |
. SYNC PROP TSEG1 TSEG2 .
A
<—F >
Sample Point

The CAN communication is asynchronous, i.e. no clock signal is sent together with data. Each
node in the network maintains its own bit timing calculated from the internal clock of the de-
vice.

172 9/100

ST7 pCAN PERIPHERAL DRIVER

To deal with signal phase variations on the transmission line due mostly to desynchronization
between clocks of bus patrticipants, TSEG1 and TSEG2 are of variable length. A resynchroni-
zation of the local clock occurs on every recessive-to-dominant state change. If such a change
arises before (or after) the SYNC segment expected by the cell, TSEG1 (or TSEG2) is length-
ened (or shortened) to correct the detected variation. If the edges occur during the SYNC seg-
ment, the node assumes that it is synchronized.

The PROP segment takes into account the maximum propagation time of the signal on the
network, ensuring that all the nodes sample the same bit at the same time.

The sampling point of the bit takes place between TSEG1 and TSEG2.

1.4 ARBITRATION PHASE
1.4.1 Arbitration Phase

All the cells connected on the CAN network are likely to transmit a message at any time. A cell
can initiate a transmission only when the bus is idle. On transmission of a message, a cell si-
multaneously monitors the state of the bus to detect potential problems.

If the bus is idle, any cell that is ready for transmission begins to send its data. The other
nodes listen.

If the bus is already in use when a cell requests it, the cell waits until the end of the current
transmission. Then, all the nodes that are ready to transmit begin their transmission. If a dom-
inant and a recessive bit are sent in the meantime, the first one erases the second. This
causes the cell that is sending the recessive bit to lose the arbitration and switch to Reception
mode. This way, messages with the highest identifiers are sent before the others. This mech-
anism also prevents collisions occurring on the bus, which saves bandwidth. This is referred to
as non-destructive bitwise arbitration.

Figure 7. Arbitration example: node 1 wins

Node 1
Node 2
Node n
Recessive
CAN Bus
Dominant

10/100

4

ST7 pCAN PERIPHERAL DRIVER

1.4.2 Message Acknowledgement

Any cell having received a message correctly, regardless of the result of the acceptance test,
must acknowledge it by sending a dominant bit during the ACK slot of the current frame, thus
overwriting the recessive bit sent by the current transmitter.

1.5 ERROR MANAGEMENT

The Error Management System of the CAN protocol is proof of the protocol’s robustness. This
system provides a way to automatically distinguish permanent failures from sporadic errors. It
can lead to self-disconnection of a failing node from the bus. This feature is named Error Con-
finement. An error is defined as a violation of one of the protocol’s rules. It can happen after
one of following events:
— Bit error: A transmitter detects a difference between the actual bus state and what it
sends.
— Acknowledgement error: A frame is not acknowledged (ACK slot recessive).
— Stuffing error: More than five identical bits were received consecutively.
— CRC error: The CRC received does not match the calculated CRC.
— Format error: One of the fixed-format fields (CRC delimiter, ACK delimiter, End Of Frame)
does not have the expected format.
An Error frame is immediately sent by all the cells that have detected an error on the bus. Note
that the Error frame does not yield to the Stuffing rule. Upon reception of this frame, all cells in
the network detect a Stuffing error and react by sending an Error frame. The dominant state of
the bus caused by the occurrence of an error can last at most 12 bits (case when a node de-
tects the error only at the end of the error flag).

The Error Confinement system is based on two counters:

— A TransmissionError counter (TEC)
— A ReceptionError Counter (REC)

The rules handling the counters are basically the following:

—When an emitting node detects an error, it increments its TEC and sends an error frame.
—When a receiving node detects an error it increments its REC and sends an error frame.
—When a transmission is successful, the TEC counter is decremented.

—When a reception is successful, the REC counter is decremented.

Note: The complete set of rules is quite complicated taking into account the possibility of receiving over-
load frames, etc. Consequently, it's beyond the scope of this document. This document describes
the basic reactions of the cell. For more information, refer to the original Robert Bosch GmBH doc-
ument or to the ISO 11898 norm.

The behaviour of the cell concerning the state of the counters is shown in the following dia-

gram.

172 11/100

ST7 pCAN PERIPHERAL DRIVER

Figure 8. CAN Error States

Error Active TEC>127 or REC>127
128 blocks of 11 suc-

cessive recessive bits
TEC<127 and REC<127 \

TEC >255

-

When both counters contain values between 0 and 127, the CAN node is in Error Active
state, which means that it can send and receive normally. If it detects an error, it will send Ac-
tive Error flags.

When one of the two counters reaches a value between 128 and 255, the node is in Error
Passive state. It will go on receiving and sending normally but will only be authorized to send
Passive Error flags. Therefore, if this node causes trouble by sending unjustified Error frames,
it will not disturb the network for too long.

When one of the counters reaches a value over 255 (i.e. it overflows), the CAN node enters
Bus Off state. It is then physically disconnected from the bus. It can go back to Active mode
if it successfully detects 128x11 consecutive recessive bits on the bus.

1.6 ST7 PCAN PERIPHERAL
1.6.1 Main Features

The ST7 pCAN peripheral implements a CAN 2.0B passive protocol. This means that ex-
tended frames are recognized and acknowledged, but cannot be saved nor processed by the
microcontroller.

— The pCAN peripheral is based on three 10-byte hardware buffers that can be used either
for transmission or reception. They are prioritized in the increasing priority order 1 to 3 for
transmission and 3 to 1 for reception. Each buffer has a control register indicating if a job is
pending, if new data has been received or if the buffer is currently being written/read. A bit
in this register is used to lock the buffer for transmission (See ST72511 datasheet p.116).

— The baud rate is programmable up to 1 Mbps. The length of the bit synchronisation fields is
also programmable. The baud rate is configured by setting three values: the size of time
guanta (in clock ticks) and the length of the two synchronization segments (in time quanta).
See ST72511 datasheet p.114, Baud Rate Prescaler Register and Bit Timing Register.

12/100 172

ST7 pCAN PERIPHERAL DRIVER

— Two 11-bit filters and two 11-bit masks are used for hardware filtering with identifier/iden-
tifier-range definition. The masks define which bits of the filters are to be ignored and which
are to be tested. Any message whose identifier does not match will not be saved in the buff-
ers.

— The cell automatically enters Low Power mode after the reception of 20 recessive bits, or
Standby state on command.

— The pCAN peripheral can wake-up the ST7 microcontroller from HALT mode. See Section
2.1.3.2 "Waking-up from HALT Mode" to learn how.

— The CAN Error Confinement feature, as defined by the CAN protocol, is fully implement-
ed, with read-only access to the counters and maskable interrupts on state changes. Once
in Bus Off state, the cell automatically returns to Bus Active state if it has detected 128x11
recessive bits on the bus (see Section 2.1.3.1 "Controlling Status Changes"). See note on
Section 2.1.3.2 "Waking-up from HALT Mode" to see how the driver can provide you with full
control over the bus-off to bus-active transition.

— The three Send/Receive buffers, filters, masks and counters are mapped at a unique ad-
dress space, allowing efficient software access.

1.6.2 Cell Behaviour

In Standby state, the node monitors the bus in order to detect a dominant pulse that could gen-
erate an interrupt (See ST72511 datasheet p.112, Interrupt Control Register, SCIE bit).

When the RUN bit of the Control Status Register is set (See ST72511 datasheet p.113), the
cell leaves standby mode. It then enters resynchronization mode before it really starts running.
If the WKPS bit of the Control/Status Register is set, then the cell will send a dominant pulse
when it wakes up. You can choose between two resynchronization durations: 11 recessive
bits if the FSYN bit of the CSR is set or 128*11 recessive bits if not (See ST72511 datasheet
p.113).

If the cell resynchronizes after leaving bus-off state, it will wait 128*11 recessive bits, whatever
the value of FSYN may be.

To send data, a buffer has to be selected first by writing to the Page Selection Register (See
datasheet p. 114). Then it has to be locked for transmission by setting the LOCK bit in the
Buffer Control/Status Register (See datasheet p.116: LOCK bit and RDY bit). Then data can
be written in the buffer registers: identifier, data length code, data bytes. Writing in the seventh
data register starts transmission.

Received data is automatically stored in one of the buffers configured for reception (LOCK bit
reset) each time a message identifier matches the hardware filters of the pCAN cell, and pro-
vided that this buffer is marked as free (RDY bit reset. See datasheet p.116: LOCK bit and
RDY bit). The masks/filters can be configured through the Filter/Mask High/Low Registers
(See datasheet p.117).

172 13/100

ST7 pCAN PERIPHERAL DRIVER

Any event (successful transmission, data reception, error, state change, overrun) can gen-
erate a maskable interrupt. The Interrupt Control Register (see datasheet p.112) allows you to
set/reset these masks. Note that each buffer has its own reception interrupt, allowing the data
to be saved rapidly.

Note: For further, more detailed explanations, please read the ST72511R/ST72512R/ST72532R Datash-
eet, downloadable from the ST web site, http://mcu.st.com.

Figure 9. ST7 pCAN State Diagram
? RESET
RUN & WKPS

Standby \‘
Wake-up Pulse
Generation

FSYN & BusOFF|& 11 Recessive bits or...
(FSYN | BusOFF)[& 128*11 Recessive bits

G{esynchronisation

TX OK

Transmission

Arbitration lost

Error

RX Error

TX Error

BusOFF

14/100

4

ST7 pCAN PERIPHERAL DRIVER

2 CAN DRIVER

To quickly start developing your own CAN applications using the ST7 pCAN peripheral, STMi-
croelectronics provides you with a driver. The source code (can.h and can.c) is given as an ex-
ample, and can therefore be used as provided or be modified to fit specific needs.

There are two customization files which make the driver’s functionality flexible and able to
meet a wide range of needs.

The entire processing is interrupt driven, so no polling is required. The application is notified of
CAN events through function calls from the interrupt routine.

To immediately use the driver, without modifying its structure, see Section 2.2 "How to Use the
CAN Driver: A Demo Application".

The following sections will explain the details of the driver architecture and describe all the
functions and data types implemented in the software.

2.1 USER INTERFACE
2.1.1 Files Furnished

The driver consists of five files:
— can.c. Driver function definitions and internal data types. This file may not be modified.
— can.h. Header file of can.c. This file may not be modified.

—can_hr.h. Hardware description (register mapping of the ST7 MCU memory space). This file
is hardware dependent and must not be modified.

—can_custom.c. Frames of customization functions. They are called (some optionally) by the
driver to notify the application of events when some user-specific processing is required (for
example on reception of data). This file has to be completed by the user.

— can_custom.h. Contains a pre-processor directive list (#define types) which allows user
customizations to be taken into account at compilation time. This file has to be modified by
the user.

2.1.2 Architecture

The cell is statically configured with one transmission buffer and two reception buffers, which
reduces the need for processor responsiveness in reception.

For the same purpose, a 3-message deep transmission FIFO is implemented. It is not acces-
sible by the user, and is automatically managed by the software.

The entire processing is interrupt driven. The user can choose which interrupts are to be taken
into account and which are not, due to the compilation options in can_custom.h. Some inter-
rupts request an immediate answer from the application, e.g. a reception event. To avoid
having the user modify the interrupt routine (in can.c), the routine calls one of the notification

172 15/100

ST7 pCAN PERIPHERAL DRIVER

functions defined in can_custom.c on certain events. The user only has to enter these func-
tions according to his needs before compiling the software.

2.1.3 Principle of Use

During compilation, the values of the hardware control registers are calculated by the preproc-
essor according to the compilation options selected in can_custom.h.

If the software filtering feature is enabled, the values of accepted identifiers have to be entered
by the user as a list in can_custom.h (See “Filtering” on page 29)

The functions in can.c are compiled or not, according to the selected #define directives. (The
unwanted ones are simply left as comments).

Figure 10. Driver Customization System

CAN_CUSTOM.H FILE

#define | Nl T_BRPROx11 - Oxll

#def i ne STATUS_CHANGE_NOTI FI CATI ON G
Compilation

/| #def i ne DEBUG

CAN_CUSTOM.C FILE Compilation BRPR Register

#i f def STATUS_CHANGE_NOTI FI CATI ON :

voi d CAN _Bus_Passi ve_Noti ficati on(void) A ST7 Registers

{

;/To i mpl enent i f defi ned | Compi/ed

#endi f v

#i f def DEBUG

voi d CAN_Overrun_Notification(void) A

{

/1 Toinplenment if defined I Not Compiled

| \

#endi f

During the first initialization (performed using the CAN_First_Init function), the peripheral’'s
registers are written with the values defined at compilation time, the transmission FIFO is ini-
tialized and the cell starts (a wake up by bus can be chosen).

Then:

— The CAN_Transmit_Request function initiates a transmission which begins with an in-queu-
ing of the message to be sent. Then, hardware buffer no.1 (the static transmission buffer) is
filled according to hardware requirements. (See Section 1.6.2 "Cell Behaviour").

16/100 172

ST7 pCAN PERIPHERAL DRIVER

—The CAN_Switch_Offand CAN_Sleepfunctions are used to switch the cell to Standby mode.
The first function kills any pending jobs and erases all data in the reception buffers, even if
the data is unread. The second function is executed the same way as long as no work is in
progress, the transmission FIFO is empty and all reception buffers have already been read.
These two functions also define the way the cell will be woken-up: either by bus or by soft-
ware (by enabling or disabling the corresponding interrupt). They can help you to manage
status changes by controlling the transition between Bus Off and Bus Active states (See Sec-
tion 2.1.3.1 "Controlling Status Changes").

— CAN_Switch_Onresets the cell and returns to RUN mode. It can also place the cell in a state
waiting for a dominant pulse to be woken-up.

— CAN_Get_Status returns the current status of the peripheral (run, standby, error passive...)
— CAN_Get _TEC returns the current content of the transmission error counter.
— CAN_Get_REC returns the current content of the reception error counter.

2.1.3.1 Controlling Status Changes

Your application can be notified by the driver when the error state of the cell changes. (See
“Compilation Options” on page 25). If you don’t want the microcontroller to directly resynchro-
nize after leaving bus-off state for example, you can call the CAN_Switch_Off function from in-
side of the CAN_Bus_Off Notification function (See “Can_custom.c File” on page 26), then
perform any operations you want before calling the CAN_Switch_On function to restart the pe-
ripheral.

2.1.3.2 Waking-up from HALT Mode

If you want to switch the ST7 to HALT mode and have it woken-up by the CAN, the correct in-
terrupt routine must be enabled. Before switching to HALT mode, call the CAN_Sleep or
CAN_Switch_Off function with the BUS_WAKEUP parameter that is used to enable the CAN
interrupt on the bus dominant state while in Standby state.

Then, enter the CAN_Dominant_Bit_Reception_Noatification function to customize the waking
up of the microcontroller.

Note: See ST72511 datasheet p.37 for more information about HALT mode.

2.1.4 Interrupts (ITs)

Once the interrupt routine is entered, the first thing you want to know is “What triggered the

event?” Priority is then given to reception if more than one IT has occurred simultaneously, un-
less the DEBUG compilation option was set. In this case, the Error ITs are processed first.

—In the event of a Transmission IT, the driver tries to send the following message in the queue,
if it's not empty. The driver then notifies the application of the event before leaving the rou-
tine.

172 17/100

ST7 pCAN PERIPHERAL DRIVER

Figure 11. Transmission IT Procedure

What A Application
you
see 3 o Error notification, only
| Notification 51 jf DEBUG defined
A ST Driver
1 2 4 Fills buffer
Driver I Clears flags with next data
Processjng
Y ST7 Hardware
Successful Next
Transmission .
CAN BUs Transmission attempt

—In the event of a reception IT, after having found which buffer is involved, the driver performs
an optional software filtering, then notifies the application. If the cell received a remote frame,
the CAN_Remote_Reception_Notification function is called. Otherwise, if the cell received
data, the CAN_Request_Buffer function is called to request a buffer from your application.
After the buffer is filled, the driver calls the CAN_Data Reception_Notification function to no-
tify you that the data is ready. If the DEBUG option is set, the CAN_Reception_Status func-
tion is called just before leaving the IT routine, which passes the status of the reception
processing procedure (Error, Success...) as a parameter. This is used to detect the causes
of any problems. See “Can_custom.h File” on page 24 for more information about notification
routines.

Figure 12. Reception IT Procedure

A Application
What § Notification: 4 Notification s A Error notification
you o 2 T Data or Remote (case data) Only if DEBUG defined
see
ST Driver
gr ver | 1 3 |Save data in software buffer
rocessing IT (case data) + clears flags
ST7 Hardware
Successful C Buffer free for
Reception AN Bus ¢ next reception
18/100 /S7]

ST7 pCAN PERIPHERAL DRIVER

— Error ITs are only processed if the DEBUG option was chosen in can_custom.h. Then, the
application is notified of any other events through function calls. (Functions entered in
can_custom.c).

2.1.5 User Interface Description

This section describes the user interface in a “black-box” way. The parameters and the return
values of the function declared in can.h and can_custom.h are described in this section. For a
complete description of the algorithms and internal data type variables, please see Section 3
"Detailed Description”.

2.1.5.1 Data-type Variables

CAN_Buffer -type variables
typedef struct CAN Buffer{
ulénsg_identifier;
CAN Dat a_Si ze dat a_si ze;
u8 CAN_nsg_dat a[CAN_MAX_DATA_SI ZE] ;
CAN_Bool buffer_rw;
CAN_Bool buffer_free;
} CAN_Buf f er;

Software representation of CAN data. The translation into hardware buffers is performed by
the driver.

A variable of this data-type must be passed to the driver each time it is requested by the
CAN_Reqguest_Buffer notification function (See “Functions called unconditionally” on
page 26). Otherwise, data in the hardware buffer will be lost.

A pointer to this structure is also used as parameter of the CAN_Transmit_Request function
(See “Functions” on page 21).

— msg_identifier: 2 bytes field containing the identifier of the CAN message. The identifier is
stored in the 12 most significant bits. The 4 least significant bits MUST be zero. The ul6
type means 2 bytes unsigned variable and is defined in lib.h.

— data_size: 1 byte field containing the length of the data in the message (in bytes). The
CAN_Data_Size type is an enum type (See below for its description).

— CAN_msg_data: array of 8 bytes containing the data to be sent. The u8ul6 type means 1
byte unsigned variable and is defined in lib.h.

— buffer_rw: this boolean variable is to be used as a flag to prevent simultaneous writing/
reading on the structure. It is checked and modified by the driver each time an operation
is being performed on the buffer. If CTRUE, the structure will not be read or written. If
CFALSE, it can be used. Always check/modify this variable in your application for this pur-
pose.

— buffer_free: boolean variable used to mark if the data in the buffer can be overwritten or
not. It has to be used as the security by the user’'s application. If CFALSE, the driver will
refuse to perform any write operation on the data in the structure and return an error code.

172 19/100

ST7 pCAN PERIPHERAL DRIVER

If CTRUE, the data can be modified. Take care to check and/or initialize it before passing
a buffer to the driver.

Init_Data -type variables
t ypedef struct {

u8 brpr_init;
u8 btr_init;
u8fhrl_ init;
ugflrl_ init;
u8 mhrl_ init;
u8 mMrl init;
u8fhrO_init;
u8 flrO_init;
u8 mhrO_init;
u8 MrO_init;

u8 }Init_Data;

This structure contains the value of registers that can be reinitialized when switching on the
cell after a passage in Standby state (see Section 2.1.5.2 "Functions"”, CAN_Switch_On).

It is used for hardware initialization.

— brpr_init. value of the CANBRPR register (set length of a CAN time quantum in number of
CPU clock ticks). See “Bit timing” on page 9.

— btr_init. value of the CANBTR register (Ilength of both time segments 1 and 2 in number of
time quanta). See “Bit timing” on page 9.

— fhrl_init. value of Filter 1 High Register.

— flrl_init. value of the Filterl Low Register.

— mhrl_init. value of the Mask 1 High Register.

— mirl_init. value of the Mask 1 Low Register.

— fhr0_init. value of Filter OHigh Register.

— flrO_init. value of the Filter 0 Low Register.

— mhr0_init. value of the Mask OHigh Register.

— mir0_init. value of the Mask OLow Register.

Enum -type variables

The names of the variables are in principle self-explanatory.

t ypedef enum

{DLCO, DLC1, DLC2, DLC3, DLC4, DLC5, DLC6, DLC7, DLC8, REMOTE_FRANME} CAN _Dat a_Si ze;
Possible values of the CAN_Message data_size field (See “CAN_Buffer -type variables” on
page 19)

t ypedef enum

20/100 172

ST7 pCAN PERIPHERAL DRIVER

{ CAN_RUN, CAN_STANDBY, CAN_BUS_ACTI VE, CAN_BUS_PASSI VE, CAN_BUS_OFF} CAN_St at us;

Describes the different states of the cell.
t ypedef enum{ CFALSE=0, CTRUE=1} CAN_Bool ;

Custom Boolean type variable.
t ypedef enum{BUS_WAKEUP, SOFT_WAKEUP} WakeUp_Cause;

Possible parameters of the CAN_Sleep and CAN_Switch_Off functions. (See Section 2.1.5.2
"Functions".)

t ypedef

enun{ CAN_SLEEP_ERROR, CAN_SLEEP_SUCCESS, CAN_SW TCH_ON_SUCCES, CAN_SW TCH_ON_FA
| LURE} CAN_Swi tch_Error;

Possible values returned by CAN_Sleep, CAN_Switch_Off and CAN_Switch_On functions
(See Section 2.1.5.2 "Functions")
t ypedef enum{ CAN_I NI T_SUCCESS, CAN_ | NI T_FAI LURE} CAN I nit_Error;

Possible values returned by CAN_First_Init function (See Section 2.1.5.2 "Functions")

t ypedef enum

{ CAN_TRANSM T_SUCCESS, CAN_TRANSM T_FAI LURE, CAN_TRANSM T_NO_MSG, CAN_FI FO_FULL
, CAN_TRANSM T_BUFFER_FULL, CAN_TRANSM SSI ON_ERROR | T} CAN_Transmit _Error;

Error codes used in Transmission functions.(See Section 2.1.5.2 "Functions")

t ypedef enum

{ CAN_RECEI VE_SUCCESS, CAN_RECEI VE_REMOTE, CAN_| LLEGAL | DENTI FI ER, CAN_FI LTERI NG

_FAI LURE, CAN_RECEI VE_FAI LURE, CAN_BUFFER | N_USE, CAN_NO BUFFER, CAN_RCV_BUFFER _

NOT_READY} CAN_Recei ve_Error;

Error codes used in Reception functions. (See Section 3.2.2 "Internal Routines").

Note: With some compilers, an option is used to define the size, in bytes, of enum-type variables. We rec-
ommend selecting 1 byte, if possible, to save memory space.

You can see in which case the different error codes are returned by the functions by studying

the flow charts in Section 3.2.2 "Internal Routines" for internal functions and Section 3.1 "User

interface functions" for user interface functions.

You also find this information in the arrays of Section 2.1.5.2 "Functions" for user-interface
routines and Section 3.2.2 "Internal Routines" for internal routines.

2.1.5.2 Functions
CAN_Init_Error CAN_First_Init(void):

Input --
Output Error status

21/100

4

ST7 pCAN PERI

PHERAL DRIVER

CAN Cell Power-on initialization routine.

During its execution, all registers are initialized with values entered in can_custom.h
or calculated from the compilation options chosen

Description It initializes the transmission queue.
This function must be called in the main routine prior to any use of the CAN cell.
Possible return values: CAN_INIT_FAILURE and CAN_INIT_SUCCESS.
Comments Calls CAN_Init() (See Section 3.2.2 "Internal Routines")

void CAN_It_Dis(void):

Input

Output

Description

Disables all CAN interrupts.

Comments

CAN_Status CA

N_Get_Status (void):

Input --

Output Current status of the cell
Retrieves the current status of the CAN cell.

Description Possible return values: CAN_STANDBY, CAN_BUS_PASSIVE, CAN_BUS_OFF
and CAN_BUS_ACTIVE following the current state of the cell.

Comments Useful if the STATUS_CHANGE_NOTIFICATION option is enabled in can_custom.h

u8 CAN_Get_TEC(void):

Input --

Output Value of the TECR register (Transmission Error Counter)
Description Returns the value of the TECR

Comments --

u8 CAN_Get_REC(void):

Input --

Output Value of the RECR register (Reception Error Counter)
Description Returns the value of the RECR

Comments -

CAN_Switch_Er

ror CAN_Switch_Off(WakeUp_Cause):

Input Chip Wake-up function: BUS_WAKEUP or SOFT_WAKEUP
Output Error status
22/100 Iy,

ST7 pCAN PERIPHERAL DRIVER

Description

Puts the CAN node into Standby state.

This function aborts any pending transmissions and does not wait for the reception
buffers to be read. Then, it resets the driver in the same state as after power-on ini-
tialization.

If BUS_WAKEUP is selected, the next dominant bit detected on the bus will restart
the cell. If SOFT_WAKEUP is selected, the cell will not take the bus state into ac-
count. It can only be woken up by the CAN_Switch_On function.

Possible return value: CAN_SLEEP_SUCCESS or CAN_FATAL_ERROR (if the
RUN bit fails to reset after a time out or if the CAN_Clean function fails).

There is a time out mechanism implemented in this function (about 30ms), waiting for
the RUN bit to be actually reset. So if your application uses the watchdog REFRESH
IT BEFORE calling the function

Comments

Calls CAN_Clean (See Section 3.2.2 "Internal Routines™.)

CAN_Switch_Error CAN_Sleep (WakeUp_Cause):

Input

Chip Wake-up function: BUS_WAKEUP or SOFT_WAKEUP

Output

Error status

Description

Puts the CAN node into Standby state.

Returns CAN_SLEEP_ERROR if a transmission request is pending, or if a hardware
reception buffer is still unsaved.

Possible return values:

CAN_SLEEP_ERROR if there are jobs pending in the hardware registers,
CAN_FATAL_ERROR if the RUN bit fails to reset after a time out,

or CAN_SLEEP_SUCCESS

Comments

This function will not reset the CAN node.

CAN_Switch_Error CAN_Switch_On(Init_Data_Ptr,CAN_Bool):

Input

Pointer on an Init_Data structure (See Section 2.1.5.1 "Data-type Variables"),
Boolean (CTRUE, CFALSE)

Output

Error status

Description

Puts the CAN node into Active state

The Boolean is used to transmit a dominant pulse (CTRUE) or not (CFALSE) upon
wake-up.

The bit timing and the mask/filter parameters can be reinitialized in this function. In
most cases, the cell will be initialized the same way as in the Power-on sequence.
So, you can re-use the first_init_data structure is declared in can.h.

Possible return values: SWITCH_ON_SUCCES and SWITCH_ON_FAILURE.

Comments

Calls CAN_Init (See Section 3.2.2 "Internal Routines").

CAN_Transmit_

Error CAN_Transmit_Request(CAN_Buffer*):

Input

Pointer to the CAN message to be sent

Output

Error status

4

23/100

ST7 pCAN PERIPHERAL DRIVER

Puts a buffer into the transmission queue, and may request an immediate transmis-
sion if the queue is empty.

The buffer_rw field has to be CFALSE before passing it to the function. It is immedi-
ately marked as CTRUE after entering the routine. In case of an error, during the ex-
ecution, this parameter is reset to CFALSE before exiting. Else it is only reset by
CAN_Fill_Transmission_Buffer (See Section 3.2.2 "Internal Routines").

Possible return values:

CAN_TRANSMIT_FAILURE if the cell is in stand-by,

CAN_FIFO_FULL if the 3 messages deep FIFO is full,

CAN_TRANSMIT_FATAL if CAN_Fill_Transmission_Buffer fails,

or CAN_TRANSMIT_SUCCESS otherwise.

This function MUST NOT be interrupted, so protect it with SIM and RIM statements
when used OUTSIDE the notification functions of CAN_custom.c!

Calls CAN_Init_Queue and CAN_Fill_Transmission_Buffer (See Section 3.2.2 "Inter-
nal Routines™)

Description

Comments

2.1.5.3 Constants

Those constants are defined internally, but are made visible to the user because they may be
useful.

externconst Init_Datafirst_init_data

This is the initialization data structure that is used on power-on. It is made visible to allow you
to pass it to the CAN_Switch_On function when you do not want to modify the parameters it
contains. (See Section 2.1.5.1 "Data-type Variables")

externconst ul6i _filters[];

This is the array of filters used to perform software filtering on incoming messages. The max-
imum number of identifiers stored is 127 (See “Filtering” on page 29). It is made visible in case
you would like to link the behaviour of your application upon reception of a message with the
offset of the identifier in the array (managing an array of pointers to functions for example).
One can of course imagine other applications.

2.1.5.4 Can_custom.h File

The preprocessor directives used to configure the hardware and to customize the driver are
located in this file.

Cell Configuration Values
#define | NNT_BRPR 0x00
#define INNT_BTR 0x00

These values are used to initialize bit timing registers. (See Section 2.2.2.1 "Bit Timing").

/| *Masks &filters*/
#define INIT_FHRO 0x00

4

24/100

ST7 pCAN PERIPHERAL DRIVER

#define | NIT_FLRO 0x00
#define | NIT_MHRO 0x00
#define | NIT_M.RO 0x00
#define | NIT_FHR1 0x00
#define | NIT_FLR1 0x00
#define | NIT_MHR1L 0x00
#define | NIT_M.R1 0x00

These values are used to initialize hardware filters and masks. (See “Filtering” on page 29).

Compilation Options

/] Start options

/| #def i ne WAKE_UP_PULSE
#defi ne RUN_ON_START_UP

You may decide whether or not to include these options in the code.

If enabled:

—WAKE_UP_PULSE enables the cell to send a dominant bit when leaving Standby mode.

—RUN_ON_START_UP starts the cell in the Initialization function CAN_First_Init. If not en-
abled, make sure that a dominant bit detected on the bus can make the cell start. To do
this, complete the CAN_Dominant_Bit Reception_Notification() function in can_custom.c
in calling CAN_Switch_On.

/ 1 #def i ne FI LTERS_ENABLED
/1 #define | NI T_FILTERS{}

These options are used for software filtering.
Select both of them if you want to use the feature.

If selected, enter the list of identifiers to be accepted between the curly braces as shown in
“Software Filter Configuration” on page 30.

Enabling one of the following options implies modifying the corresponding function in the
can_custom.c file:
/| #def i ne STATUS_CHANGE_NOTI FI CATI ON

This option is used to monitor status changes (active/passive/bus-off). Setting this option will
change the priority order in which the interrupts are taken into account. The interrupts con-
cerning status change will be checked first, before considering reception and transmission in-
terrupts. It will also allow compilation of the corresponding notification functions
(CAN_Bus_Passive_Notification, CAN_Bus_Active_Notification, CAN_Bus_Off Notification).

To use the Error Notification functions (called when an Error IT is received), enable:
/1 #def i ne DEBUG

172 25/100

ST7 pCAN PERIPHERAL DRIVER

If DEBUG is defined, you can then chose to add the following options:
/| #def i ne GENERAL_RECEPTI ON_ERROR

All reception errors trigger an interrupt. You CANNOT use this option and the Status Change
Notification function together because both use the same IT flag. This option does not exclude
the bus Wake-Up feature.

/1 #defi ne SI MULTANEOUS_EM SSI ON_RECEPTI ON
Only if Debug is also defined.

This function is used for forcing the cell to simultaneously send and receive any message it is
ordered to transmit to check the hardware integrity of the CAN transceiver and controller.

2.1.5.5 Can_custom.c File

This is a source file you have to complete, to allow your application to react on hardware
events as they happen. An example of implementation is given in Section 2.2.3 "Implementing
the Notification Functions”.

Functions called unconditionally
CAN_Buf f er* CAN_Request _Buffer(ul6ident_of nessage)

This function is called unconditionally when a new data message is available in the hardware
buffer of the cell. This function has to be completed to return a pointer on a buffer structure. To
ignore it, return NULL. To help you to manage your reception buffer(s), the ID of the message
is passed as a parameter.

voi d CAN_Renpt e_Reception_Notification(ul6ident_of _renpte)

This function is called unconditionally when a remote message has been saved in a hardware
buffer. Its ID is passed as a parameter for a quick answer.
voi d CAN _Dat a_Reception_Notification(ul6 nmessage_i dent)

This function is called unconditionally when a data message has been successfully saved in a
software buffer supplied by the application. Its ID is passed as a parameter.
voi d CAN_Transm ssion_Notification(void)

This function is called unconditionally upon the successful transmission of a message.
Functions called conditionally

The following functions are called only if the corresponding option is set in can_custom.h.
voi d CAN_Doni nant _Bit_Reception_Notification(void)

This function is called upon reception of a dominant bit while in Standby mode, if the
RUN_ON_STARTUP option was not defined in can_custom.h. The corresponding interrupt
will be accepted only once. Then its acceptance flag will be cleared.

voi d CAN_Bus_Passi ve_Notification(void)

voi d CAN_Bus_Active_Notification(void)

4

26/100

ST7 pCAN PERIPHERAL DRIVER

voi d CAN Bus_Of _Notification(void)
These functions are called after a status change.

Option: #define STATUS_CHANGE_NOTIFICATION
voi d CAN_Gener al _Reception_Error_Notification(void)
This function notifies the application of any hardware reception errors.

Option: #define DEBUG and #define GENERAL RECEPTION_ERROR
voi d CAN_Recepti on_St at us(CAN_Recei ve_Error st at us)

This function is called after a reception attempt and returns the status of the software
processing (See “Enum -type variables” on page 20).

Option: #define DEBUG
voi d CAN_Overrun_Noti fication(void)

This function notifies the application of any overruns.

Option: #define DEBUG
voi d CAN_Transm ssion_Error_Notificati on(CAN_Transmit_Error status)

This function notifies the application of any hardware transmission errors.

Option: #define DEBUG

2.2 HOW TO USE THE CAN DRIVER: A DEMO APPLICATION

In this section, we will describe step-by-step the configuration and programming of a simple
test application using the ST7 CAN driver.

2.2.1 Application

First of all, we must define how the application will look, i.e. which messages our cell will be
able to send, which ones it will accept to receive, and how it will behave when specific mes-
sages are received.

Let’s imagine the following:

— The cell has to run immediately after power-on, and does not have to send a dominant pulse.

— Every 15 ms the cell must send the contents of the ST7 A/D Converter data register. The
identifier (ID) of this message could be, for example, 0x402.

— Upon reception of a remote frame (see Section 1.2 "CAN Frame") it must reply with the trans-
mission of a given message. The ID of the remote frame could be, for example, 0x500 (con-
sequently, the ID of the answer will also be 0x500).

— Upon reception of a given data item, the CAN cell must shut down. This ID of the message
could be 0x600, and the data item OxFF, in its first data byte.

— The cell is supposed to receive 3 other data messages coming from other nodes. Let's im-
agine they are identified by 0x127, 0x311, 0x3A5.

172 27/100

ST7 pCAN PERIPHERAL DRIVER

— Identifiers may exist on the bus that do not concern our cell.
2.2.2 Cell Configuration

Open then the can_custom.h file. You can see the two first lines of code:
/ | #def i ne WAKE_UP_PULSE
/| #def i ne RUN_ON_START_UP

According to our requirements (See Section 2.2.1 "Application"), we only want to define the
RUN_ON_STARTUP option.

So modify the code the following way:

/ | #def i ne WAKE_UP_PULSE

#defi ne RUN_ON_START_UP

2.2.2.1 Bit Timing
First of all, we have to decide the speed of our network. Let’s say, for example, 250 kilobaud.

Look in your can_custom.h file. You see the following code:
#define I NIl T_BRPR0Ox00

#define I NIl T_BTROx00

The following two registers define the bit timing in the cell.

The BRPR register contains the size of time quantum, in number of clock ticks, in a bit field
named BRP (See Section 1.3.2 "Bit timing").This field ranges from 0 to 63. The true value for
a time quanta is then BRPR+1.

The BTR register contains the size of the two synchronization segments in time quanta, in two
different bit fields: BS1 and BS2(*). BS1 ranges from 0 to 7and BS2 from 0 to 3. The actual
length of bit segments in time quanta is then BS1+1 and BS2+1.

You must always chose BS1>BS2, so that the sampling point takes place in the second half of
the bit.

Use the following formula:

fcpu(Hz)
(1+BRP) x (3+BS1+BS2)

fbus(Bauds)=

For example, in our case, fcpu = 8 MHz.
So, fbus = fcpu/32.

We have then the following possibilities:

BTR+1 BS1+BS2+3
2 16

4

28/100

ST7 pCAN PERIPHERAL DRIVER

BTR+1 BS1+BS2+3
4 8
8 4

Let’s choose, for example, BTR = 3, BS1 = 3, BS2 = 2 (second row).
We have to complete the code:

#define I NIl T_BRPROx03

#define I NI T_BTR 0x23

2.2.2.2 Filtering

The driver is able to filter out all messages not heeded by the application. First by using hard-
ware filters, and second by using software filters.

Use the hardware filters to eliminate as many identifiers as possible and to avoid further
processing. Use the software filters to eliminate IDs that are unwanted, but that can not
stopped by the hardware.

Hardware Filter Configuration

Let’s define the values of hardware masks and filters. To do this, we must split the IDs into two
groups:

— 0x127, 0x311 and 0x3A5, on one hand; and,

— 0x500 and 0x600 on the other.

Note: When grouping the IDs, try to maximize the number of identical bits inside the same group, thus
minimizing the width of the ID ranges accepted by the cell.

Then let’s find the first filter/mask pair (12 bits to be determined):

— 0x500 is written in binary: 101 0000 0000

— 0x600 is written in binary: 110 0000 0000

In the first three bits, only the most significant bit (MSB) of both identifiers is the same, the fol-

lowing two being different. So, the three MSBs of the mask will be 1 0 0 (match, don't care,
don't care) and the three MSBs of the filter will be 1 and then either 1 or 0.

The following eight bits are identically null. So the last eight bits of the filter will be 0, and the
last eight bits of the mask will be 1 (match required).

The least significant bit (LSB) of the filter/mask is used to separate remote frames and data
frames. Here we have a data frame and a remote frame, so it does not have to be checked (1
or 0 into the filter, 0 into the mask).

So we have:

— Filter 2000 0000 0000

— Mask 1001 1111 1110

172 29/100

ST7 pCAN PERIPHERAL DRIVER

Now look at the can_custom.h file:

There are several #define statements, including:
#define I NI T_FHRi 0x00
#define I NI T_FLRi 0x00

where i is either 0 or 1.

These are the two registers containing hardware filters. In the FHRI register, the 8 MSBs for
the filters are given, and in the second register the 4 LSBs are given followed by 4 zeros.

We have to do the same thing for the mask. First, let's write O for the filter.

Finally we have:

#define I NI T_FHRO 0x80
#define I NI T_FLRO 0x00
#define | NI T_MHRO Ox9F
#define I NIl T_M.RO OXEOQ

Doing the same thing with the other group of identifiers leads to:
#define I NI T_FHR1 0x20
#define I NI T_FLR1 0x20

#define | Nl T_MHR1 OxA9
#define | NI T_M.R1 0x30

Software Filter Configuration

You need to use software filtering feature if the hardware cannot stop all the undesired identi-

fiers. Look at the following code in can_custom.h:
/| SOFTWARE ACCEPTANCE MASKS

/| #defi ne FI LTERS_ENABLED

/1 #define | NI T_FI LTERS{}

To allow software filtering, remove the “//” comment signs, and enter the identifiers between
the parentheses. Please note that the filters must be given in hexadecimal format with four
digits, always terminated by zero, and in increasing order.

That is to say in our case:
SOFTWARE ACCEPTANCE MASKS: opti onal choice
#def i ne FI LTERS_ENABLED

#define I NI T_FILTERS {0x1270, 0x3110, 0x3a50, 0x5000, 0x6000}
Note: There can not be more than 127 identifiers in the array.

2.2.3 Implementing the Notification Functions

The cell is now configured, we no longer need to worry about hardware.

4

30/100

ST7 pCAN PERIPHERAL DRIVER

We have then to write our code. Look at the last lines of can_custom.h. There is a set of #de-
fine options. As we want to be notified neither of status changes, nor of errors, we will leave
them as comments. Please see Section 2.1.5.5 "Can_custom.c File" for more details about
notification functions.

We must then open can_custom.c, and learn how to use the notification functions that are al-
ways compiled.

If your application uses the watchdog timer, you have to write on top of the file:
#include “wdg.h”

to be able to use the refresh function in this module.

The CAN_Request_Buffer function

To retrieve data stored in the ST7 buffers after reception, the application must pass a software
buffer when requested. The following prototype is given in the code:

CAN_Buffer* CAN_Request_Buffer(ul6 ident_of_message)

{

/IThe application must here return a pointer to a physical structure CAN_Buffer

}

This routine is called each time a message has been successfully filtered and is ready to be
used. The parameter passed (i.e. the ID of the recovered message) may help you manage
your buffer(s) more easily.

You then have to create a buffer that will be used to save all data messages.

At the top of the file, add:
|
IINARIABLES/TTTTTTTTTTTTTTTTTTNT
T
CAN_Buffer reception_buffer;

And then in the function body:

CAN_Buffer* CAN_Request_Buffer(ul6 ident_of_message)
{

reception_buffer.buffer_rw=CTRUE;

return &reception_buffer;

}

The two first lines are used as a safety device: the driver will then be sure that the buffer is not
currently in use and the data in that buffer can be overwritten. In your programs, use these
fields as keys to know whether the data in a buffer can be accessed and whether it has already
been processed.

Note 1: There is only ONE buffer here that will be used to save all the receive messages. This is only an

172 31/100

ST7 pCAN PERIPHERAL DRIVER

example! You can implement a buffer for each message type, a FIFO of standardized buffers etc.
Note 2: For safe programming, you should systematically verify whether the buffer is not currently being
read/written, and whether the buffer is really free before further processing.
(For specific information concerning the buffer data type, see Section 2.1.5.1 "Data-type Var-
iables").

Remember that one of the received messages may switch off the cell. Once a message is re-
ceived, we have to check to see if it is this one. This is done using the
CAN_Data_Reception_Noatification function.

CAN_Data_Reception_Notification Function

The CAN_Data_Reception_Notification function is the following prototype in can_custom.c.
The routine is called once the data in a data frame has been saved in the buffer passed in the
CAN_Request_Buffer function. Before calling the CAN_Switch_on function, refresh the
watchdog (See “Functions” on page 21, CAN_Switch_Off for further explanation). Let's add
the following code:

voi d CAN _Dat a_Reception_Notification(ul6 nmessage_i dent)

{
i f (message_i dent ==0x6000)//checks the i d of nmessage
{
i f (reception_buffer.CAN nsg_dat a[0] ==0xFF)// Checks t he cont ent of data
{
CAN_Swi t ch_Of f (BUS_WAKEUP) ;
}
}
}

So, if the first data byte of the message whose identifier is 0x600 contains OxFF, the cell will
switch off and wait for a bus Wake-Up command (a dominant bit).

CAN_Remote Reception_Notification Function

When a remote frame is received, we must send a message with a 0x500 ID. Let's do it inside
this routine which is called each time a remote frame is received.

The message does not exist yet. As for the buffer, we have to create a variable message, by
adding the following code in the file:

[HEEEEEErr it rrirrrr

[INVARVABLES/ [Tt riirir

[HEEEEEE it riirrrr

CAN_Buf f er message_t o_send_on_request =/
{0x5000, DLC5, { 0x00, 0x01, 0x02, 0x03, 0x04} , CFALSE, CFALSE} ;

4

32/100

ST7 pCAN PERIPHERAL DRIVER

The structure is initialized here with 0x500 ID, which has a length of five and five data items.

Note: In a real network, the message would not be statically initialized, but would be filled with the content
of one or several variables. The aim here is only to show the way the function can be used.

Then we fill the function with a transmission request:
voi d CAN_Renpt e_Reception_Notification(ul6ident_of renote)

{

i f (ident_of _renmote==0x5000)
{
CAN_Transni t _Request (& essage_t o_send_on_request);
}

}

CAN_Transmission_Notification Function

This function is called after each successful transmission. It is not required for our application,
so let’s leave it blank.

CAN_Dominant_Bit_Reception_Notification Function

This function is called each time a dominant bit is received while in Standby mode. Here, we
want to be able to wake up the cell when this happens. So we add the following code:
voi d CAN_Doni nant _Bit_Reception_Notification(void)

{
CAN_Switch_On(&first_init_data, CFALSE);

}

The cell will be woken-up with the same configuration as when first initialized and a dominant
pulse will not be sent at wake-up.

Note: For the exact meaning of the data parameters, see Section 2.1.5.2 "Functions"

All other notification functions can be used in the same way. They are compiled only if the cor-
responding options are chosen in can_custom.h.

2.2.4 Transmissions outside the CAN Interrupt Function

As part of the user interface, the CAN_Transmit_Request routine can be used outside the in-
terrupt function of the CAN driver. Below is an example of a message transmission on a timer
event. The content of the A/D converter of the ST7 microcontroller will be sent every 15 ms.

First of all, we must configure the timer by modifying the existing code.

At the top of the tima.c file, add:
#include “can.h”

#include “lib.h”

#include “adc.h”

Then declare a CAN_Message -type variable:

172 33/100

ST7 pCAN PERIPHERAL DRIVER

CAN_Buf f er peri odi c_transni ssi on;

In the TIMA_Init() function, make sure the following lines are included:
TACR1=0x40
TACR2=0x08

TACC1HR=0x3A
TACC1LR=0x98

and finally,

#asm

LD _TAOC2HR, A; /* Witethe Qut put Conpare 2 highregister todisablethe OC2 */
LDA, TASR /* Clear theflagsincaseit isalreadyset. Tod ear */
LDA, TACCILR /* OC1F fl ag: Read St at us Regi st er and Access OCLRI owbyt e,
clearing OClFflag */

LDA, TAOC2LR /* OC2F fl ag: Read St at us Regi st er and Access OC2RI ow

byt e, cl eari ng OC2F f | ag*/

LD _TAOC2HR, A/ / No access t ol owbyt e: Qut put Conpare 2 | Ts di sabl ed

#endasm

Note: The explanation of the code written here concerns timer programming and is beyond the scope of

this document. Its purpose is to configure timer A to trigger a timer interrupt every 15 ms. Further
explanations of timer functions can be found in the microcontroller datasheet.

Then we have to fill in the IT function of the timer:
void TI MA_I nterrupt (void)
{
ul6 out put _val ue;
if (Vval Bit(TASR, OCF1))
{
TASR;
out put _val ue = ((unsignedint) TAOCIHR<< 8)| TAOCLLR;

}
out put _val ue += 0x3A98;

TAOCLHR = out put _val ue >>8;
TAOCLLR = (unsi gned char) out put _val ue;

/1 Not e: The code aboveis only nmeant toupdatethevaluefor thenext I T
/1 Nowcomes t he code t hat i nterests us
if (!periodic_transm ssion.nessage_i n_queue) //Checks if the messagei s al ready
/linthetransm ssion queue
{
periodi c_transm ssion. meg_i denti fier=0x4020;
periodi c_transm ssion. data_si ze=DLCL;
periodi c_transm ssi on. CAN_Msg_dat a[0] =ADC_Get (0x00) ;

34/100

4

ST7 pCAN PERIPHERAL DRIVER

CAN_Transnit _Request (&peri odi c_transni ssi on);

}

/1 W& have gi ven atransm ssion order here, that will becall edonevery
/1timer ITif the nessageisnot alreadyinthetransm ssionqueue.

// Thedataisfilledeachtimew ththeval ue of the AADconverter data
/lregister. For i nfo. about the ADC, pl ease see t he dat asheet .

}

IMPORTANT: Please note that WHEN USED OUTSIDE AN INTERRUPT ROUTINE, AND
ONLY THEN, the transmission request MUST NOT BE INTERRUPTED. So, disable all ITs
before a function call (SIM) and re-enable them afterwards (RIM) in the last step of the main.c
file.

In the adc.c file, enter also the following code:

In the ADC_Init routine:
ADCCSR=0x20; // Starts t he ADC peri pher al

and write a function:
u8 ADC_Cet (u8 channel)

{
ADCCSR | = channel ;

ret ur n ADCDR,;
}

Our application is almost entirely written now. Our last step is to fill the main.c file, to allow the
entire program to run.

At the beginning of the file add:
#include “lib.h"

#include “adc.h”

#include “tima.h"

#include “can.h”

#include “can_custom.h”

Then complete the main function as follows:
void main(void)

{
_asm(“SIM”); //IDisable interrupts

I* */
S I NI TI ALI SATI ON */
[*/

172 35/100

ST7 pCAN PERIPHERAL DRIVER

ADC Init(); //1nitializesthe ADC

if ((CAN_First Init())==CAN_INIT_FAILURE) //Initializesthe CANperi pheral
{
return;
}

TIMA Init();//Initializesthetiner

_asm(“RIM");// Enablelnterrupts;

/* ___________________ */
I LOOP */
while (1) e %/
{
}

}

Finished! Now compile the entire code and run the software. Once the while {1} loop is en-
tered, the microcontroller will run non-stop until it is shut down, reacting to every event, saving
data in our buffer, sending data periodically and answering remote requests.

If you own a CAN bus simulation tool, you can monitor messages being received and sent by
the ST7.

The next section of this application note will explain in detail the driver architecture and all soft-
ware functions (including internal functions).

2.2.5 IMPORTANT: Reentrant Functions

If the memory model you chose for compiling your application does not use the physical stack
but simulates it in RAM, you CANNOT allow functions to be reentrant.

The COSMIC compiler will generate an error if it finds some code that could be reentrant. For
example, this may occur if you use a subroutine inside both an initialization function and an in-
terrupt routine.

This is, of course, not a real error, but the compiler does not know this and prevents you from
going further.

To fix this problem with the COSMIC compiler, use the following trick:
— Change the name of the function in your code, in the call that makes the error appear.

36/100 172

ST7 pCAN PERIPHERAL DRIVER

— For example, rename f unctiontofunction_init_call.

— In the link file (extension .lkf), define an alias the following way:

+def _function=_function_init_call //!!

Note the underscore as first character.
— If the function takes parameters, add also:

+def _function$L=_function_init_call$L//!!

This is the way the parameters hames are generated by the compiler
— Save the file and compile.

IN ANY CASE, ALWAYS MAKE SURE THAT YOUR CODE IS NOT ACTUALLY REEN-
TRANT, IfIT IS, IT WON'T RUN THE WAY YOU EXPECT, EVEN IF YOU HAVE COMPILED
IT SUCESSFULLY!

4

37/100

ST7 pCAN PERIPHERAL DRIVER

3 DETAILED DESCRIPTION

In the following section we will give a detailed description of function algorithms. We will also
look at the internal aspects of the driver.

3.1 USER INTERFACE FUNCTIONS

As described above in the routine parameters and return values, the algorithm will only be
shown on flowcharts. For more information, refer to Section 2.1.5.2 "Functions".

void CAN_It_Dis(void):
Simply clears the CAN Interrupt control register.

u8 CAN_Get_TEC(void):

Simply returns the value of TEC.

u8 CAN_Get_REC(void):

Simply returns the value of REC.

CAN_Init_Error CAN_First_Init(void)

Figure 13. CAN_First_Init Flowchart

Begin

Initializes
Transmission
Queue

>

Returns
CAN_INIT_FAILURE

Locks Buffer 1 —» Calls CAN_Init
N Success?

Y

Returns

CAN_INIT_SUCCESS

38/100

4

ST7 pCAN PERIPHERAL DRIVER

CAN_Status CAN_Get_Status (void)

Figure 14. CAN_Get_Status Flowchart

Begin

Returns
CAN_BUS_ACTIVE

Returns

Returns

Returns

CAN_STANDBY CAN_BUS_PASSIVE CAN_BUS_OFF

CAN_Switch_Error CAN_Switch_Off(WakeUp_Cause)
Figure 15. CAN_Switch_Off Flowchart

Begin

Sets RUN=0
Sets Counter = OxXFFF

Returns
CAN_SLEEP_FATAL

Decrements counter

Calls CAN_Clean

v

Y

Modifies CANICR register
following the parameter
(enables or disables IT)

y

Returns
CAN_SLEEP_SUCCESS

CAN_Switch_Error CAN_Sleep (WakeUp_Cause)

b7

39/100

ST7 pCAN PERIPHERAL DRIVER

Figure 16. CAN_Sleep Flowchart

Begin
Hardware - Hardware Y
status_counter=0 Buffer 2 Locksit — Buffer 3
is empty is empty
Locks it
Returns
CAN_SLEEP_ERROR [¢ A4
Sets RUN =0
Returns <
CAN_SLEEP_FATAL
N
Returns
CAN_SLEEP_SUCCESS
Y
Modifies CANICR register Y
following the parameter < Unlocks buffers
(enables or disables IT) 1and2
CAN_Switch_Error CAN_Switch_On(Init_Data_Ptr,CAN_Bool)
Figure 17. CAN_Switch_On Flowchart
Begin vy
Calls CAN_Init
A
Y
Cancels any pending
job (clears LOCK bit) N
N
Returns Returns
CAN_SWITCH_ON_FAILURE <« CAN_SWITCH_ON_SUCCESS

CAN_Transmit_Error CAN_Transmit_Request(CAN_Message?*)

4

40/100

ST7 pCAN PERIPHERAL DRIVER

Figure 18. CAN_Transmit_Request Flowchart

Begin
i Y CAN_In_Queue
message_to_send.buffer_ rw=CTRUE (msg_to_send)
N i
Returns Y

CAN_TRANSMIT_FAILURE
- - Nl message_to_send.buffer rw=CFALSE

Returns
CAN_FIFO_FULL

'¢— message_to_send.buffer_rw=CFALSE

N
Y

message_to_send.buffer_rw=CFALSE No message? CAN_Fill_Transmission_Buffer

v

Returns
CAN_TRANSMIT_FATAL

Returns status
(Result of CAN_Fill_Transmission_Buffer)

3.2 INTERNAL FUNCTIONS AND DATA TYPES
3.2.1 Internal Data Types and Variables
3.2.1.1 Transmission FIFO

To avoid losing data, messages to be sent are queued in a 3-message length FIFO prior to
transmission.

Queue Unit

In fact, no physical CAN_Message structure is put into the queue. The objects handled are de-
scribed below:

t ypedef struct FI FO_Obj ect

{ CAN_Message* nessage,;

struct FI FO_bj ect* next _obj ect;

struct FI FO_bj ect* precedi ng_obj ect;

}FI FO_bj ect;

Only a pointer to the message appears in the structure, to avoid complex data manipulations.
The two following fields are pointers to other FIFO_Object structures.

172 41/100

ST7 pCAN PERIPHERAL DRIVER

FIFO Management Structure

In the main structure, we find:
t ypedef struct {
ugfifo_size;

FI FO_Cbject* first_object;
FI FO_Cbj ect* | ast _obj ect;
CAN_Bool i si nuse;

} FIFQ

The structures shown here look more like parts of a chained-list. Indeed, the data-type imple-
mented is not pure FIFO, but simulates the behaviour of a real queue.

Three FIFO_Objects are statically defined and linked together in a circular way (in the
CAN_First_Init routine). One FIFO variable is also defined and initialized in the meantime (cf.
in can.c):

// Transm ssi on queue

static FI FOCAN transm t _queue;

static FI FO_ bj ect CAN_queue_obj ect _1;
static FI FO_ bj ect CAN_queue_obj ect _2;
static FI FO_ bj ect CAN_queue_obj ect _3;

The maximum size of the queue is therefore 3.

To simulate in-queuing/out-queuing, you only have to verify that the size limit will not be over-
ridden, and update the fields in the FIFO structure.

The “isinuse” Boolean is checked each time the variable is accessed to prevent read/write
conflicts.

4

42/100

ST7 pCAN PERIPHERAL DRIVER

Figure 19. FIFO Transmission System

FIFO Management
Next data to send g

-—_——— — 1st object in use?
' last object current size = xx
| T
' I
| |
1 1
A 4 A 4
Next Next
Object 1 " Object 2 Object 3
& message i & message & message
<Preced/ng ¢ Preceding
A A
‘ Preceding ‘
Next

For more information, refer to Section 3.2.2 "Internal Routines", (CAN_In_Queue and
CAN_Out_Queue).

3.2.1.2 Software Filters

Once the SOFTWARE_FILTERS option is defined in can_custom.h and the list of filters is
completed, the compiler will define and initialize a structure containing the data.

typedef struct{

u8 array_si ze;

ule* filters_array;

}CAN Filters_Array;

This structure is composed of the size of the array, automatically calculated at compilation,
and of an array of 2-byte long numbers.

Consequently, the following constants are defined in the can.c file:
const ul6i _filters[]=IN T_FILTERS;
const CAN_Filters_Array CAN filters={
Size_ O _Words_Array(i_filters),
i _filters
1
As we can see, they are immediately initialized. Size_ Of Words_Array is a macro and i_filters
is the array filled with your data.

You can access the i_filters array, declared as extern constin can.h.
3.2.1.3 Enum Types

They are used as return values for some internal routines.

172 43/100

ST7 pCAN PERIPHERAL DRIVER

t ypedef enum{ CAN_FI LTER_MATCH, CAN_FI LTER_NO_MATCH} CAN_Fi | t er _St at us;

Return values of the software filtering routine.

t ypedef enum{| TERR, | TRECEPT, | TTRANSM T, | TSCI F} I T_Type;

Return values of the routine that determines which IT has to be processed first.

t ypedef enum
{ CAN_CLEAN_FATAL, CAN_CLEAN_SUCCESS, CAN_CLEAN_FAI LURE} CAN_Cl ean_Error;

Return values of the Cleaning function.

3.2.1.4 Status Counter
static u8 status_counter=0;

This is a variable used by the Sleep function to determine the state of the reception and trans-
mission registers. It is updated the following way:

—+1, when a reception IT is taken into account

— -1, when a reception buffer is released

—+1, when a message is put into the transmission queue

—-1, when a message is sent (in the IT function)

When the CAN_Sleep function is called, a simple test of this variable lets the driver know if
there are still pending jobs and if the Sleep operation must be cancelled.

3.2.2 Internal Routines

3.2.2.1 Static CAN_Filter_Status CAN_Filter(ul6 ident_code)

INPUT CAN message identifier

OUTPUT Error status

Tests matching of IDs of received messages and software filters.

Possible returned status: CAN_FILTER_MATCH and CAN_FILTER_NO_MATCH
Called by CAN_Receive

COMMENTS Compiled only if FILTERS_ENABLED is set.
Priority is given here to SPEED, that's why the code may look strange.

DESCRIPTION

Performs a classical dichotomy algorithm and compares the value given as parameter with the
contents of the i_filters array.

44/100

4

ST7 pCAN PERIPHERAL DRIVER

3.2.2.2 static IT_Type CAN_Get_IT_Type(void)

INPUT -

OUTPUT Generic type of the event that caused the IT

Tests matching of IDs of received messages and software filters.

If the DEBUG option is defined, checks the IT Error flags first. Otherwise checks the
DESCRIPTION Reception ITs first.

Possible status returned: ITRECEPT for reception IT, ITTRANSMIT for transmission
IT and ITERR for error IT.

COMMENTS Called by CAN_Interrupt.

Figure 20. CAN_Get_IT_Type Flowchart

Begin (Case DEBUG) Begin (Case no DEBUG)

if status__
change_notification

Returns ITERR

RXIFi=1

Returns ITSCIF <

Returns ITRECEPT

'

Returns ITTRANSMIT

if not status_
change_notification

4

45/100

ST7 pCAN PERIPHERAL DRIVER

3.2.2.3 static CAN_Init_Error CAN_Init(Init_Data Ptr data_ptr, CAN_Bool run_set,
CAN_Bool wkup_set)

INPUT Pointer to an Init_Data structure, Boolean, Boolean
OUTPUT Error status
CAN cell internal registers initialization.
Not executed if RUN bit set.
DESCRIPTION The first Boolean determines if the RUN bit has to be set or not. The second Boolean
determines if the cell has to send a wake-up dominant bit.
Possible status returned: CAN_INIT_FAILURE and CAN_INIT_SUCCESS
COMMENTS Called by CAN_Switch_On, CAN_First_Init

Figure 21. CAN_Init Flowchart

Begin

RUN=1

Y

Writes timing registers

v

Writes Interrupt Control register

Returns CAN_INIT_FAILURE

v

Writes filters/masks

v

Writes Control Status Register

v

Returns CAN_INIT_SUCCESS

46/100

4

ST7 pCAN PERIPHERAL DRIVER

3.2.2.4 static CAN_Transmit_Error CAN_In_Queue (CAN_Message* msg_to_queue)

INPUT Pointer on a CAN message

OUTPUT Error code

Tests matching of IDs of received messages and software filters.

DESCRIPTION Possible return values: CAN_FIFO_FULL, CAN_TRANSMIT_SUCCESS and
CAN_TRANSMIT_FATAL.

COMMENTS

Must not be interrupted
Called by CAN_Transmit_Request

Figure 22. CAN_In_Queue Flowchart

Begin

Queue in use

Y

Returns CAN_TRANSMIT_FATAL

Unlocks queue

Returns CAN_FIFO_FULL

PR

Returns CAN_TRANSMIT_SUCCESS

» Locks queue

I

N

Updates FIFO parameters

A4

Unlocks queue

4

47/100

ST7 pCAN PERIPHERAL DRIVER

3.2.2.5 static CAN_Message* CAN_Out_Queue (void)

INPUT --

OUTPUT Pointer to a CAN message

DESCRIPTION Returns a pointer to the first message in the transmission queue and updates the
gueue parameters

Must not be interrupted
Called by CAN_Fill_Transmission_Buffer

COMMENTS

The algorithm is exactly the same as for CAN_In_Queue().

3.2.2.6 static CAN_Clean_Error CAN_Clean (void)

INPUT --
OUTPUT Error status

Cleans the reception and transmission buffers, and resets the transmission queue in
the first initialization state.

DESCRIPTION Only affects pointers

Possible return values: CAN_CLEAN_FAILURE, CAN_CLEAN_SUCCESS and
CAN_CLEAN_FATAL

Must be called only in Sleep mode (run bit reset)
COMMENTS Must not be interrupted

Called by CAN_Sleep and CAN_Switch_Off

Figure 23. CAN_Clean Flowchart

Begin

Queue in use

Locks queue
v
Retms Reinitializes queue
CAN_CLEAN_FAILURE g
v
Returns P Unlocks queue
CAN_CLEAN_FATAL b v
Clears all pending jobs
v
Returns P i
CAN_CLEAN_SUCCESS < Clears all pending ITs

48/100

4

ST7 pCAN PERIPHERAL DRIVER

3.2.2.7 static CAN_Transmit_Error CAN_Fill_Transmission_Buffer()

INPUT --

OUTPUT Error status

Fills the hardware buffer for transmission.

DESCRIPTION Possible return values: CAN_TRANSMIT_BUFFER_FULL,
CAN_TRANSMIT_NO_MSG and CAN_TRANSMIT_SUCCESS

ITs have to be disabled

Calls CAN_Out_Queue

COMMENTS Called by CAN_Transmit_Request

Figure 24. CAN_Fill_Transmission_Buffer Flowchart

Begin

!

Selects buffer 1

Returns
CAN_TRANSMIT_BUFFER_FULL

Returns
CAN_TRANSMIT_NO_MSG

RDY=1

N Message exists

A 4

CAN_Out_Queue()

Returns
CAN_TRANSMIT_SUCCESS

A

i.e. not NULL

Fill the hardware buffer

v

message.buffer_rw=CFALSE

4

49/100

ST7 pCAN PERIPHERAL DRIVER

3.2.2.8 static CAN_Receive_Error CAN_Store Rcvd _Msg(u8 num_buff_hard,
CAN_Recept_Buffer* dest_ptr)

INPUT Number of the hardware buffer to release, pointer to the buffer where the data must
be saved
OUTPUT Error status

Fetches data received in a hardware buffer.
DESCRIPTION | Possible return values: CAN_ILLEGAL_IDENTIFIER and
CAN_RECEIVE_SUCCESS

ITs have to be disabled.

COMMENTS This function is called by CAN_Reception, only in case of reception of data.
The priority was given to SPEED here, that's why the code may look strange.

Figure 25. CAN_Store_Rcvd_Msg Flowchart

Begin ————»{ Retrieves data length

Legal value
i.e. <9

Returns
CAN_ILLEGAL_IDENTIFIER <«

Saves data in
the software buffer

v

Releases the hardware
buffer, therefore clearing
the IT flag

Returns
CAN_RECEIVE_SUCCESS <

50/100

4

ST7 pCAN PERIPHERAL DRIVER

3.2.2.9 static CAN_Receive _Error CAN_Receive(u8 num_buff_hard)

INPUT ID of the buffer to void, pointer on the software buffer to fill.
OUTPUT Error status

DESCRIPTION thches data rec_eivc_ad in a hardware buffer and saves them in a software buffer sup-
plied by the application.

ITs have to be disabled

Calls CAN_Filter (if SOFTWARE_FILTER option is enabled)

COMMENTS Calls CAN_Request_Buffer

Possible return values: CAN_FILTERING_FAILURE,.CAN_RECEIVE_REMOTE,
CAN_NO_BUFFER, CAN_RECEIVE_FATAL and CAN_RECEIVE_SUCCESS

Figure 26. CAN Receive Flowchart

Retrieves message identifier | < Begin

L

CAN_Filter()

Remote frame?

if SOFTWARE_FILTERS defined

Releases hardware buffer (¢

Calls

v CAN_Request_Buffer()
Calls 4 I

CAN_FILTERING_FAILURE

Releases hardware buffer
Calls |
CAN_Remote_Reception_Notification()

Buffer exists?

y

v

Returns Releases hardware buffer
CAN_Receive_Remote

Y
Returns accessed?
CAN_NO_BUFFER h g
Returns v
CAN_RECEIVE_FATAL — N
Releases hardware buffer [« Buffer free?
N
Releases hardware buffer v Y
4—— CAN-Store_Received_Message
Calls Returns
CAN_Data_Reception_Notification() CAN_RECEIVE_SUCCESS

172 51/100

ST7 pCAN PERIPHERAL DRIVER

3.2.2.10 Interrupt Routine

INPUT -
OUTPUT -
DESCRIPTION Interrupt processing function.
Calls CAN_Get_IT_Type
CAN_Reception_Notification
CAN_Transmission_Notification
CAN_Fill_Transmission_Buffer
CAN_Dominant_Bit_Reception_Notification
May call (optional, see Section 2.1.5.4 "Can_custom.h File"):
COMMENTS

CAN_Transmission_Error_Notification
CAN_Bus_Passive_Notification
CAN_Bus_Active_Noaotification
CAN_Bus_Off_Noaotification
CAN_Overrun_Notification
CAN_General_Reception_Error_Notification

Figure 27. Interrupt Routine Flowchart

Begin

Get_IT_Type()

y

SWITCH:

Case: ITRECEPT
Buffer 3
filled

CAN_Receive

v

CAN_Reception_Status

Buffer 2
filled

Same processing
as buffer 3

if DEBUG defined

52/100

4

ST7 pCAN PERIPHERAL DRIVER

continued

Clears interrupt flag

CAN_Transmission_Noatification()

CAN_Fill_Transmission_Buffer()

CAN_Transmission_Error_Notification() if DEBUG defined

BREAK

Case: ITTRANSMIT

Clears interrupt flag
Case | ITSCIF

if STATUS_CHANGE_NOTIFICATION defined
or RUN_ON_STARTUP not defined

CAN_Get_Status()

status = STANDBY CAN_Dominant_Bit_Reception_Notification ()

if STATUS_CHANGE_NOTIFICATION defined

Remove IT
authorisation

SWITCH:

Case: CAN_BUS_PASSIVE

_ O CAN_Bus_Passive_Notification()
if GENERAL_RECEPTION_ERROR defined

Case: CAN_BUS_ACTIVE

] CAN_Bus_Active_Notification()

CAN_General_Reception_Error

_Notification() Case: CAN_BUS_OFF

] CAN_Bus_Off_Natification()

BREAK

4

53/100

ST7 pCAN PERIPHERAL DRIVER

continued

if DEBUG defined

Case: ITERR

CAN_Overrun_Notification()

v

Clears interrupt flag

TEIFIT

CAN_Transmission_Error_Notification()

|

Clears interrupt flag

A 4

A

BREAK

54/100

4

ST7 pCAN PERIPHERAL DRIVER

3.3 A FEW WORDS ABOUT DRIVER PERFORMANCE
3.3.1 CPU Load

Let’s imagine the following situation:

— Bus rate: 100 kilobauds

— Bus load: 80%

— Fcpu: 8 MHz

— 14 identifiers (typical value) have to be received.

Let’'s measure the time spent inside the interrupt function when a message is received. The
application processing inside the notification functions must be minimal: they only return a
buffer to be filled.

We retrieve the following results:

— 8 bytes data message, filter match: 105 s

— 0 bytes data message, filter match: 90 ps

— Any message, filter no match: 50 us

Note: Any message, if only the eight most significant bits match, takes 100 us. That is to say almost as
much time as with matching identifier. So it is better to chose the identifiers wisely, in order to prevent
this from occurring as much as possible.

The longest possible message (2.0A standard) is 130 bits long (including stuffing bits). Im-

agine that all messages on the bus are that long. Consequently, there will be 615 messages

per second on the bus, that's to say one message every 1.625 ps. The saving of data lasts

105 ps, so the CPU load is in this case 6.5%.

The same calculation for 0-byte messages (shortest possible) leads us to 15.3% CPU load.

Note that these are worst case scenarios! Not all the messages on the bus have to be saved.
And the bus load chosen here is pretty heavy (typical values are rather around 40%).

Do not forget to multiply or divide these values if you want an estimation of CPU load under
other bus speed/bus loading conditions and other F-p_; speeds.

4

55/100

ST7 pCAN PERIPHERAL DRIVER

3.3.2 Code Size

The numbers given here correspond to the size of the driver code WITHOUT any addition of

application specific code.

3.3.2.1 Can.o Module
Table 2. Can.o Code Size

ROM RAM (page 0) RAM (Default)
Functions 1326 bytes - -
Variables
& Constants 10 bytes 19 bytes (shared segment) 28 bytes

3.3.2.2 Can_custom.o Module
Table 3. Can_custom.o Code Size

ROM

RAM (page 0)

RAM (Default)

Functions 5 bytes

Variables
& Constants

56/100

4

ST7 pCAN PERIPHERAL DRIVER

4 DRIVER CODE

4.1 CAN.C

/*********************** (C) 2000 STM CI’09| eCtrOHI CcS R Sk S S S R IR R R

PRQIECT :
COWPI LER: ST7 COSM CCv4. 2e

MODULE : can.c
VERSION: V1.1.6build80

CREATI ONDATE : 04/ 00

AUTHOR: Central Europe 8bit M cro Application Group

Kk _k_k_k_Kk_k_Kk_K*_K*_K _*_*_K*_*_*__*_*k_*_*_* _*_* _*_* _*_*_* _*_* _*_*_*_*_%*_%*_%_%_

DESCRI PTI ON: CANrouti nes

Kk _k_k_ Kk _Kk_k_k_Kk_K*_K _*k_* _*_*k_*K _*_*K _*_* _*_*_*__*_* _*_*_* _*_* _*_*_*_*_%*_%*_%_%_

MODI FI CATI ONS : RI Mst at erent renoved fromi nterrupt routine (1. 0.0)
Transni ssi on and reception structures nmergedinto one "buffer

type"(1.1.1)

Managenent of semaphores (buffer_rwand
buffer_free)slightly nodified(1.1.2)

Updatedto conplywith ST7ap_II (1. 1.2 build 80)

I T managenent slightly nodified(1.1.3)

Modi f. transmissionl T>>flagreset(1.1.4)

Bug correctedin CAN Switch O f(1.1.5)

Reset of I Tsvector in CAN_Init(1.1.6)
EIE I I R I I S I I I I I I I I I I I I I I I IR I I I I I I I IR I R I I I I I R R A R R A I R I R R I A I I S
THE SOFTWARE | NCLUDED | N THI S FI LE | S FOR GUI DANCE ONLY. ST M CROELECTRONI CS
SHALL NOT BE HELD LI ABLE FOR ANY DI RECT, | NDI RECT OR CONSEQUENTI AL DAMAGES
W TH RESPECT TOANY CLAI MS ARI SI NG FROMUSE OF THI S SOFTWARE.

***/

#include"lib.h"
#i ncl ude "can. h"
#i ncl ude "can_hr. h"

#i ncl ude "can_custom h"

172 57/100

ST7 pCAN PERIPHERAL DRIVER

// Conpi |l ati on opti ons coherence check

#i f ndef DEBUG
#i f def GENERAL_RECEPTI ON_ERROR
#error "Debug not definedin CAN _custom h"
#endi f
#i f def SI MULTANEQUS_EM SSI ON_RECEPTI ON
#error "Debug not defi nedin CAN _custom h"
#endi f
#endi f

#i f def GENERAL_RECEPTI ON_ERRCR
#i f def STATUS_CHANGE_NOTI FI CATI ON
#error " GENERAL_RECEPTI ON_ERROR and
STATUS_CHANGE_NOTI FI CATI ONi nconpati bl es i n CAN_cust om h"
#endi f
#endi f

/

* BHHHBHHHBHHHH B H B H B R R R R R AR R R R AR |
I * CONSTANTS ALI AS */

/

* BHHHBHHH B H AR R H R H R H R R R R R R R R |

#define PAGE_11 [* *]
#defi ne PAGE_2 2 /* CAN */
#defi ne PAGE_3 3 /* pages */
#defi ne PAGE_FI LTERS 4 [* */

#def i ne RECEPTI ON_2 2 / *Recepti ons buf fers*/
#def i ne RECEPTI ON_3 3

#defi ne MAX_FI FO_SI ZE 3 /*Si ze of the em ssi on FI FO*/

#def i ne RECEPT_MASK 0xCO [/ *Masks */
#defi ne TRANSM T_MASK 0x10/*toretrieve specific*/
#define SCIF_MASK 0x08 /*ITflags*/

#defi ne ERROR_MASK 0x01

#define FILTER_SH FT 1 /*Shift appliedtotheidentifiers mnaged by software

58/100 172

ST7 pCAN PERIPHERAL DRIVER

*/
/1 togivethemthe correct hardware f or mat
#define REMOTE BIT 5 /*Place of theremptebit inthelDfield*/

#define REA STER _SIZE8 /*Sizeof aregister*/

/

* BHHHBHHHBHHHHBHHH B H R R |
/* STRUCTURES TYPEDEF */

/

* BHHHBH AR HHH BB H R R H R H R H R H R R R R R R R R AR R |

/] Transm ssi on queue el enent

typedef struct FI FO_Object{ /1 Definitionof thereceptionFlIFOunit
CAN_Buf f er* message; // Pointer toa CANnessage structure
struct FI FO_Obj ect* next _obj ect; /1 Pointer tothe foll ow ngobject

i nthe queue

struct FI FO_Object* preceding_object; // Pointer onthe
precedi ng obj ect i nthe queue

} FI FO_bj ect; /1

/1 Transm ssi on queue
t ypedef struct { /1 Definitionof thereceptionFIFOtype
ug fifo_size; /1 Size of the FI FO
FI FO Cbject* first_object; // Next object tobe outqueued
FI FO_Cbj ect* | ast _obj ect ; /1 Next placetofill
CAN_Bool i si nuse; /1 Datasharing control
} FIFG

#i f def FI LTERS_ENABLED

[lFilteringresults

t ypedef enum{ CAN_FI LTER_MATCH, CAN_FI LTER_NO_MATCH} CAN_Fi | t er _St at us;
#endi f

/11 Ttypes

t ypedef enum{| TERR, | TRECEPT, | TTRANSM T, | TSCI F} | T_Type;

/1 Cl ean error codes

t ypedef enum

{ CAN_CLEAN_FATAL, CAN_CLEAN_SUCCESS, CAN_CLEAN_FAI LURE} CAN_Cl ean_Error;

/

* BHHHBHHHBHHHH R R R R H R H R H R H R H R H R H R H R H R H R |
/* VARI ABLES */

172 59/100

ST7 pCAN PERIPHERAL DRIVER

/
* BHHHBHHHBHHHH B H B H B H B H R R R R R AR R |

//Static vari abl es

// Transm ssi on queue

static FI FOCAN transm t _queue;

static FI FO_bj ect CAN_queue_obj ect _1;
static FI FO_ bj ect CAN_queue_obj ect _2;
static FI FO_ bj ect CAN_queue_obj ect _3;

vol atilestaticu8status_counter=0; //thiscounter is usedbythesleepfunc-
tiontodeterninethestate

/1 of thereceptionandem ssionreg-

isters

/11t isusedthefoll ow ngway:

/1 +1whenareceptionl Tistakenintoaccount

/1-1whenareceivedbuffer isreleased

/1 +1 when a message i s put i nto em ssi on queue

/1-1whenanmessageissent (inthelTfunction)

/1 Thisisnot ashared data, sonoparticul ar protection

/

* BHHHBHHHBHHHH B H B H B H R R R R R R R AR |
/* CONSTANTES */

/

* HRHH AR H AR H AR H AR H R H R H R H R H R H R H R H R H R H R R R R R |
#i f def FI LTERS_ENABLED

const ul6i _filters[]=IN T_FILTERS,; /1l Initializationof thefilters

const u8 CAN Filters_Array_Size=Size O _Words_Array(i _filters); [/ is defined

incan_hr.h

/1 Conditionnal conpi -
lation: onlyif FILTERS _ENABLED

// the datas arethenstored
i nt o ROM
#endi f

const Init_Datafirst_init_data={I N T_BRPR, [/l That structureiswittenbythe
pr eprocessor

60/100 172

ST7 pCAN PERIPHERAL DRIVER

I Nl T_BTR, /land storedintoROM It can’t be
nodi fi ed t hen.

I NIl T_FHRO, // But can be accessed (defi ned as ex-
ternal incan.h)

I NI T_FLRO,

I NI T_MHRO,

I NI T_M_RO,

I NI T_FHR1,

I NI T_FLR1,

I NI T_MHRL,

I NI T_M.R1,

s

/

* BHHHBHHHBHHHH B H B H B R R R R R R R |
/* FUNCTI ONS */

/

* BHHHBHHH AR H R RHHHRHHHRHHHRHHH R H R R R R R R R R R |

LEPEEEEEr bbb bbb bbb rrrrr i
[INotificationfunctions//// /111111111 EETEE bbb
LEPEEEEr b r bbb bbb bbb rr e rrrr iy

CAN_Buf f er* CAN_Request _Buffer (ul6);

voi d CAN_Dat a_Reception_Notification(ul6);

voi d CAN_Renpt e_Recepti on_Notification(ul6);

voi d CAN_Transm ssion_Notification(void);

voi d CAN_Doni nant _Bit_Reception_Notification(void);

#i f def DEBUG

voi d CAN_Overrun_Notification(void);

voi d CAN_Transm ssion_Error_Notificati on(CAN _Transmit_Error);
voi d CAN_Recepti on_St at us(CAN_Recei ve_Error);

#endi f

#i f def GENERAL_RECEPTI ON_ERROR

voi d CAN_General _Reception_Error_Notification(void);

#endi f

#i f def STATUS_CHANGE_NOTI FI CATI ON
voi d CAN _Bus_Passi ve_Notification(void);
voi d CAN _Bus_Active_Notification(void);

172 61/100

ST7 pCAN PERIPHERAL DRIVER

voi d CAN Bus_Of _Notification(void);
#endi f

THELEITEEr i
//can.c static functions//
FEETEETLE i rririrriri
#i f def FI LTERS_ENABLED

ROUTI NENAME: CAN Filter
I NPUT/ QUTPUT : identifier code/ error status

DESCRI PTI ON : Tests mat chi ng of | Ds of recei ved nessages and softwarefilters.

COMMENTS : Cal | ed by CAN_Recept
Conpiledonly if FILTERS_ENABLEDI s set .
Possi bl ereturned status : CAN_FI LTER _MATCH
CAN_FI LTER_NO_MATCH

static CAN Filter_Status CAN Filter(ul6ident_code)
{

u8 current first;

u8 current _| ast;

u8 current _checked;
int current_content;

current _first =0;
current _last =CAN Filters_Array_Size- 1;

for (55)
{
current _checked =(u8)(current_first +current_last) >>1;
current _content =i _filters[current_checked] - i dent_code;

if (current_content <0)
{
current _first =current_checked + 1;
if (current_first >current_|I ast)
br eak;

62/100

4

ST7 pCAN PERIPHERAL DRIVER

}

elseif (current_content ==0)
return (CAN_FI LTER_MATCH) ;

el se
{
current | ast =current_checked - 1;
if (current_last <current_first)

br eak;

}

}

return (CAN_FI LTER_NO MATCH) ;

}

#endi f /*ifdef FI LTERS_ENABLED*/

| ® o o e i e o e o -
ROUTI NE NAME : CAN_Get _I T_Type
I NPUT/ QUTPUT : -- / generictype of the event that causedthel T

DESCRI PTION : I Ttype fetchingroutine

COMMENTS @ Cal | ed by CAN_I nt errupt
Possi bl e status returned: | TRECEPT for reception| T
| TTRANSM Tfor transmssion| T
| TERRfor error I T

static | T_Type CAN Get I T_Type(void)

{

#ifdef DEBUG /*Inthis case, priorityisgiventoerror detection*/
i f ((ERROR_MASK & CANI SR) ! =0)

{
return | TERR;
}
elseif ((SClF_MASK & CANI SR) ! =0)
{
return| TSCI F;
}
#endi f

#i f def SATUS_CHANGE_NOTI FI CATION/*I nthis case, prioitygivento status change,
eg. toearlydetect bus-off state*/

#i f ndef DEBUG [*If debugis defined, thisIThas al ready been
takeninto account */

172 63/100

ST7 pCAN PERIPHERAL DRIVER

i f ((SCl F_MASK & CANI SR) ! =0)

{
return!| TSCI F;

}
#endi f
#endi f

i f ((RECEPT_MASK & CANI SR) ! =0) /11f not debug, priorityisgiventorecept.,

t hen em ssi on, then St at us- Change/ Wake- up condi tion//

{
return | TRECEPT;
}
elseif ((TRANSMT_MASK&CANISR)!'=0) //If not, testsatransmt. |IT
{
return | TTRANSM T;
}
#i f ndef DEBUG /*Inthiscase, this|Thasn't beentestedyet*/

#i f ndef SATUS_CHANGE_NOTI FI CATI ON
elseif ((SClF_MASK & CANI SR) ! =0)
{
return| TSCI F;
}
#endi f
#endi f

ROUTI NENAME: CAN Init
I NPUT/ QUTPUT : Pointer onaninit structure/ Error status

DESCRI PTION : CANcell internal registersinitialization

COWENTS : Calledby CAN Switch_On, CAN First_Init
Not executedif RUNbit reset

Possi bl e status returned : CAN_I NI T_FAI LURE

CAN_I NI T_SUCCESS

CAN I nit_Error CAN Init(lnit_Data_Ptr data_ptr, CAN_Bool run_set, CAN_Bool

wkup_set)

{
i f (!Val Bi t (CANCSR, RUN))

64/100

4

ST7 pCAN PERIPHERAL DRIVER

{

/*Registersinit*/

CANBRPR=dat a_ptr->brpr_init;//Init of tinmingvariables
CANBTR=data_ptr->btr_init;

/1 Reset CANI SRr egi ster
CANI SR = 0x00;

/1 Cal cul ati on of the CANI CRval ue

CANI CR=0x30; /] Default value: recept., transmt.
#i f def STATUS_CHANGE_NOTI FI CATI ON

CANI CR=CANI CR| 0x08; // Abus wake up may not be wi shed, but a st atus change
toringis wanted

#endi f

#i f def DEBUG

CANI CR=CANI CR] 0x06;

#endi f

#i f def GENERAL_RECEPTI ON_ERROR

CANI CR=CANI CR] 0x40; //Setsthe ESCI bit &the SCI Fbit
#endi f /* GENERAL_RECEPTI ON_ERROR*/

non

/1 Sel ect filters/ masks page
CANPSR=PAGE_FI LTERS;

CANM_LRO=data_ptr->mrO0_init;
CANVHRO=dat a_ptr->nmhr0_i ni t;
CANFLRO=data_ptr->flr0_init;
CANFHRO=dat a_ptr->fhr0_init;

CANMLR1=data_ptr->mrl_init;
CANVHR1=data_ptr->mhrl_init;
CANFLR1=data_ptr->flrl_init;
CANFHR1=data_ptr->fhrl_init;

/*Cal cul ati on of t he CANCSRr egi st er val ue*/
CANCSR=0x00;

i f (wkup_set)
{
Set Bi t (CANCSR, VKPS) ;

}
#i f def SI MULTANECQUS_EM SSI ON_RECEPTI ON

4

65/100

ST7 pCAN PERIPHERAL DRIVER

Set Bi t (CANCSR, SRTE) ;
#endi f /*SI MULTANEOUS_EM SSI ON_RECEPTI ON*/
if (run_set)

{
CAN_RUN_Cel | ();
}
return CAN_I NI T_SUCCESS;
}
el se {
return CAN_I NI T_FAI LURE;
}
}
| ¥ o o o o o e e e o eee e -

ROUTI NE NAME : CAN_I n_Queue
I NPUT/ OQUTPUT : poi nter ona CANbuffer
out put error code

DESCRI PTI ON : Put a nessage gi ven by the applicationintothetransni ssion queue
Updat es t he queue paraneters

COMMVENTS : Cal |l ed by CAN_Transm t _Request
Must not beinterrupted
Possi bl e return val ues : CAN_FI FO FULL
CAN_TRANSM T_SUCCESS
CAN_TRANSM T_FATAL

static CAN Transmit_Error CAN_I n_Queue (CAN Buffer* nmsg_t o_queue)
{

if (CAN_transmt_queue.isinuse) //Necessarytoavoidnmultiplesinmultaneous
access

{
ret urn CAN_TRANSM T_FATAL; /1 Ti me out ?

} //tothe datas
CAN transnit_queue. i si nuse=CTRUE; /I Locks t he queue

if ((CAN_transnmit_queue.fifo_size)>=MAX FIFO SIZE) //Testsif theFlIFOis
al ready ful |

{

CAN transnit _queue. i si nuse=CFALSE; [11f yes, rel eases t he queue
return CAN_FI FO_FULL; /l...and aborts process

66/100 172

ST7 pCAN PERIPHERAL DRIVER

el se

{

/11f not, goes on processing

CAN transnit_queue. |l ast _object=(CAN_transm t_queue. | ast _obj ect -
>next _obj ect);
CAN_transnit _queue. | ast _obj ect - >nessage=nsg_t 0_queue;
CAN transnit_queue.fifo_size=(CAN transmit_queue.fifo_size)+1;

CAN _transmi t _queue. i si nuse=CFALSE;

ret urn CAN_TRANSM T_SUCCESS; /| Rel eases t he queue
}
}
| o o m o e meaa oo
ROUTI NE NAMVE : CAN_Qut _Queue
I NPUT/ OUTPUT : -- / poi nter ona CANbuffer

DESCRI PTION : Returns apointer onthefirst messageinthetransni ssion queue.
Updat e t he queue par anet er s

COMMENTS : Call ed by CAN_Transni t Request
Must not be i nterrupted

stati c CAN Buf fer* CAN_Qut _Queue (voi d)

{
CAN Buf fer* result;

if (CAN_transmit_queue.isinuse) //Necessarytoavoidnultiplesinultaneous
access

{ //tothe datas

ret urn CAN_TRANSM T_FATAL; /1 CAN_TRANSM T_FATAL=0, t hat’ s why t he conpi | er
aut hori ses such areturnval ue (<=>NULL)

}

CAN transmit_queue. i si nuse=CTRUE; /1 Locks t he queue

if ((CAN_transnmit_queue.fifo_size)==0) //1f the queueis enmpty
{
CAN transnmit_queue.isinuse=CFALSE; //Releasesit
return NULL;
}

el se
{ /| El se goes on processi ng

4

67/100

ST7 pCAN PERIPHERAL DRIVER

resul t=CAN_transm t _queue. first_object->nessage;

CAN_transmit_queue. first_object->nmessage=NULL; /I Updat es queue
par aneters
CAN transnit_queue. first_object=CAN transm t_queue. first_object-
>next _obj ect;
CAN transnmit_queue.fifo_size=(CAN_transmit_queue.fifo_size)-1;

CAN transnit_queue. i si nuse=CFALSE; /| Rel eases t he queue
returnresult;

ROUTI NE NAME : CAN _Cl ean
I NPUT/ QUTPUT : -- /error status

DESCRI PTION : Cleanstherecept. and emni ssionbuffers, andresetsthetransni s-
si on queue.

COMMENTS : Must becalledonlyinsleepnode (runbit reset)
Must not beinterrupted
Only af fects pointers
Cal | ed by CAN_SI eep and CAN Ki | |
Possi bl e return val ues : CAN_CLEAN_FAI LURE
CAN_CLEAN_SUCCESS
CAN_CLEAN_FATAL

static CAN_Cl ean_Error CAN_Cl ean (voi d)
{

i f (!Val Bi t (CANCSR, RUN)) /1 No cl eani ng whi |l et he CANnode i s runni ng
{

/1 Cl eaning transm ssi on queue
if (CAN_transnit_queue.i si nuse)

{

return CAN_CLEAN_FATAL;

}

CAN transm t_queue. i si nuse=CTRUE; /1 Locks t he queue

CAN transmit_queue. first_object =&CAN _queue_object _1; //Reinit. the
queue
CAN transmt _queue. | ast _obj ect =&CAN_queue_object _3; //(Inthe sane

68/100 172

ST7 pCAN PERIPHERAL DRIVER

statethanafter 1st. init
CAN transnit_queue. fifo_size=0;

CAN_queue_obj ect _1. message=NULL;
CAN_queue_obj ect _2. nessage=NULL;
CAN_queue_obj ect _3. nessage=NULL;

CAN_transmit _queue. i si nuse=CFALSE; // Rel eases t he queue
/I Har dwar e cl eani ng (rel eases t he hardwar e buffers)
CANPSR=PACE_3;

whi | e (CANPSR>0)

{

Clr_RDY_Bit();

CANPSR- - ;

/11 Tcleaning: clears any pendingl Tflag
CANI SR=CANI SR&O;
ret ur n CAN_CLEAN_SUCCESS;

}
el se
{
ret urn CAN_CLEAN FAI LURE;

}
}
| ¥ o o o o e o e o e e o o ee e
ROUTI NENAME: CAN_Fill _Transm ssi on_Buffer
I NPUT/ QUTPUT : -- [error status

DESCRI PTION : Fill s the hadrware buffer for transm ssi on.

COWMMENTS : | Ts have t o be di sabl ed
Cal | ed by CAN_Transm t _Request
Cal | s CAN_Qut _Queue
Possi bl e return val ues : CAN_TRANSM T_BUFFER_FULL
CAN_TRANSM T_NO_MsG
CAN_TRANSM T_SUCCESS

CAN Transmt_Error CAN_Fill _Transm ssi on_Buffer(void)

{
CANPSR=PAGE_1;

172 69/100

ST7 pCAN PERIPHERAL DRIVER

i f (Val Bi t (CANBCSR, RDY)) /1 Checkif theregisterisalreadyinuse
{
return CAN_TRANSM T_BUFFER_FULL; /1Exitif yes
}
el se
{

CAN Buf fer* nsg_to_send_ptr;
u8* data_ptr;
CAN Dat a_Si ze dat a_| engt h;

nsg_t o_send_pt r=CAN_Qut _Queue(); /11f no, get thefirst message
i nthe queue
if (neg_to_send_ptr==NULL)
{
ret urn CAN_TRANSM T_NO_MsG, /1 Aborts processif queue

enpty

CANI DLR=0x00;
CANI DHR=0x00;

data_| engt h=msg_t o_send_ptr->data_si ze;
data_ptr=nsg_t o_send_ptr->CAN _nsg_dat a;

/1111 Codeis here dependant of the order of thefieldsinthedatastructure
/1 Witing both CANI DHR and CANI DLR

CANI DLR=*(((unsi gned char*)nsg_to_send_ptr) +1);
CANI DHR = *((unsi gned char*) nsg_to_send_ptr);
_asm("SLL _CANI DLR\ n RLC _CANI DHR") ;

{

regi ster u8 counter;

i f (data_l engt h==REMOTE_FRAME) /*If renpte frane, sendi medi at el y*/

{
Set Bi t (CANI DLR, RTR) ;

}

el se

{

CANI DLR | = dat a_I engt h;
for (counter=0; counter<data_l ength; count er ++)

{

4

70/100

ST7 pCAN PERIPHERAL DRIVER

CANDR[count er] =data_ptr[counter];

}
}
count er =7;
CANDR[7] =dat a_ptr[counter];
}

nmeg_to_send_ptr->buffer_free=CTRUE;
nmeg_t o_send_ptr->buffer_rw=CFALSE;

}
ret urn CAN_TRANSM T_SUCCESS;
}
2

ROUTI NE NAME : CAN_St ore_Rcvd_Msg
I NPUT/ QUTPUT : | Dof the buffer tovoi d/ St atus nessage

DESCRI PTI ON : Fetches t he datas recei ved i n a hardwar e buffer.

COMMENTS : I Ts have t o be di sabl ed
This fuctionis calledby CAN Recept, onlyincase of reception of datas
Priority givento SPEEDhere, that‘s why t he code may | ook strange
Possi bl ereturn val ues : CAN_|I LLEGAL_I DENTI FI ER
CAN_RECEI VE_SUCCESS

stati c CAN_Receive_Error CAN_Store_Rcvd_Msg(CAN Buffer* dest_ptr)

{
u8* data_ptr;

u8 dat a_si ze;

/1 CANPSR=num buf f _hard,;
data_ptr=(dest_ptr->CAN_nsg_dat a) ;

dat a_si ze=(CANI DLR&OxOF) ;

i f (data_si ze>8)

{

Clr_RDY_Bit();

return CAN_I LLEGAL_I| DENTI FI ER;
}

dest _ptr->data_si ze=data_si ze; // Savi ng data si ze

{

regi ster u8 counter;

172 71/100

ST7 pCAN PERIPHERAL DRIVER

for (counter=0; count er<dat a_si ze; count er ++)

{
data_ptr[count er] =CANDR|[count er];
}
}
Cr_ RDY Bit(); /1 Rel eases the buffer andclearsthel Tflag

r et ur n CAN_RECEI VE_SUCCESS;
}

ROUTI NE NAME : CAN_Recei ve
I NPUT/ QUTPUT : | Dof the buffer tovoi d/ St atus nessage

DESCRI PTI ON : Fetches the datas recei vedin a hardwar e buf fer and saves themin a
soft buffer
furni shed by t he appl i cati on.

COMMENTS : | Ts haveto be di sabl ed

Calls CAN Filter (optionnal)

CAN_Request _Buf fer

CAN_St ore_Rcvd_Msg

Possi bl e return val ues : CAN_FI LTERI NG_FAI LURE
CAN_NO_BUFFER
CAN__ RECEI VE_FATAL
CAN_RECEI VE_SUCCESS

static CAN _Recei ve_Error CAN Recei ve(u8 num buff _hard)

{
CAN_Buf fer* soft_buffer_ptr;

CAN_Recei ve_Error recei ve_stat us;
ul6 nessage_i dent;

#i fdef FILTERS _ENABLED /*Conditionnal conpilation*/
CAN Filter_Statusfiltering_status;
#endi f

/'l Retrievingthel Dof the nessage
CANPSR=num buf f _har d;

72/100

4

ST7 pCAN PERIPHERAL DRIVER

message_i dent = (((unsi gned i nt) CANI DHR) <<8) | CANI DLR;

message_i dent >>=FILTER SHI FT; //Appropriaterigthshift
nmessage_i dent &= OxXFFFO;

[IFilteringfunction
#i fdef FILTERS_ENABLED /*Conditionnal conpilation*/
filtering status=CAN Filter(nmessage_ident); //Filteringfonctioncall
if (filtering_status==CAN_FI LTER_NO_MATCH)
{
Clr_RDY_Bit(); /I Frees t he hardwar e buffer for a
newreception
ret urn CAN_FI LTERI NG_FAI LURE;

}
#endi f

[l Testsif renpte frane
i f(Vval Bit(CAN DLR, 4))
{
Clr_RDY Bit();
CAN_Renot e_Recepti on_Notification(nessage_i dent);
r et ur n CAN_RECEI VE_REMOTE;
}

/1 El se, saves the datas in abuffer passed by the application

soft _buffer_ptr=CAN_Request Buffer(message_ident); //Requests abuffer for
t he messsage t hat successfully passedthefilters

i f (soft_buffer_ptr==NULL) /1 The buf f er nmust exi st prior tobeeingfilled
Ny
{
Clr_RDY_Bit();
ret ur n CAN_NO BUFFER; /1 Ki nd of "softwareoverrun®
}

if (soft_buffer_ptr->buffer_rw

{

dr_RDY Bit();

r et ur n CAN_RECEI VE_FATAL;
}

soft _buffer_ptr->buffer_rw=CTRUE; //Locks the buffer

if (!(soft_buffer_ptr->buffer_free))
{

172 73/100

ST7 pCAN PERIPHERAL DRIVER

Cr_RDY_Bit();
soft_buffer_ptr->buffer_rw=CFALSE;//If thebuffer isfull, releasesit
ret urn CAN_RECEI VE_FATAL; //and exi t

}

recei ve_status=CAN_Store_Rcvd_Msg(soft_buffer_ptr); //Saves nessage andr e-
| eases t he har dwar e buf f er

[IWitingidentifier:

(int)soft_buffer_ptr =nessage_i dent;

/1 End of routine:
i f (receive_status! =CAN_RECEI VE_SUCCESS)
{
Cr_RDY_Bit();
soft_buffer_ptr->buffer_rw=CFALSE;//In case of failure, rel easesthe
buffer andexits
ret ur n CAN_RECEI VE_FATAL;

}
soft_buffer_ptr->buffer_free=CFALSE; /11ncase of success, marks t he buffer
asinuse
soft _buffer_ptr->buffer_rw=CFALSE; /1'Unlockit

CAN _Dat a_Reception_Notification(nmessage_ident);

return CAN_RECEIl VE_SUCCESS;
}

ROUTI NE NAME : CAN_I nt er r upt
I NPUT/ QUTPUT : -- [--

DESCRI PTI ON : i nterrupt processing function

COVMENTS : Each case nust be takeninto account.

Calls CAN Get I T _Type
CAN_Reception_Notification
CAN_Transni ssion_Notification
CAN_Fi Il _Transm ssi on_Buffer
CAN_Dom nant _Bit_Reception_Notification

May cal | (optionnal) :
CAN_Transm ssi on_Error_Notification
CAN_Bus_Passi ve_Notification
CAN _Bus_Active_Notification
CAN Bus_Off _Notification

74/100

4

ST7 pCAN PERIPHERAL DRIVER

CAN_Overrun_Notification
CAN_Ceneral _Reception_Error_Notification

@ nterrupt @ostack void CAN_I nterrupt(void)
{

| T _Typeit_type;

it_type=CAN Cet _|I T_Type();

switch(it_type)

{
case | TRECEPT :
{
CAN_Recei ve_Error error_status;
if (Val Bit(CANI SR, RXI F3)) // Check thel ower priority buffer
first
{
st at us_count er =st at us_count er +1;
error_stat us=CAN_Recei ve(RECEPTI ON_3) ;
#i f def DEBUG
CAN_Reception_Status(error_status);
#endi f
st atus_count er =st at us_counter-1;
}
i f(Val Bit(CAN SR, RXI F2)) //Then checks t he ot her
{
st at us_count er =st at us_count er +1;
error_stat us=CAN_Recei ve(RECEPTI ON_2) ;
#i f def DEBUG
CAN_Reception_Status(error_status);
#endi f
status_count er =st at us_count er-1;
}
br eak;
}
case | TTRANSM T : [/ Transmission|T
{

CAN_Transmi t _Error status;
Clr_TXIF Bit();//Cearingtheflag

stat us_count er =st at us_count er- 1; // Decrenmentingthe
st at us counter

172 75/100

ST7 pCAN PERIPHERAL DRIVER

CAN_Transni ssi on_Notification();

status=CAN_IT_Fill _Transni ssi on_Buffer();

#i f def DEBUG
i f (status!=CAN_TRANSM T_SUCCESS)

{

CAN_Transmi ssion_Error_Notification(status); [/
When an unsuccesful | transm ssionoccured (argunent : error status?)

}
#endi f

br eak;

}
case | TSCI F:

CAN_St at us st at us;

Cr_SCIFBit();

st at us=CAN _Get _Stat us();

i f (status==CAN_STANDBY)
{

CAN Dominant_Bit_Reception_ Notification(); //Re-

ceptionof adom nant bit whileinstanby node
#i f ndef STATUS_CHANGE_NOTI FI CATI ON

CrBit(CAN CR, SCI E); [IAfter firstinit, thislTis
no nor e needed i f

#endi f
* STATUS_CHANGE_NOTI FI CATI ONi s not request ed*/

}

#i f def STATUS_CHANGE_NOTI FI CATI ON
switch (status)

{
case CAN_BUS_PASSI VE :

CAN_Bus_Passi ve_Notification();

bus passi ve

br eak;

case CAN_BUS_ACTI VE :

CAN_Bus_Active_Notification();
bus active

br eak;

case CAN_BUS_OFF :

CAN Bus_OfFf _Notification();
change t o bus- of f

br eak;

defaul t :

LEEEEEEErrr i rirnn

76/100

/] Status changeto

/] Status changeto

// Responsetoastatus

4

ST7 pCAN PERIPHERAL DRIVER

/1 Default casel///1111111]
/1 Shoul d never happen////
/1 Wite debug code here//
THEEEETErr i rririirrri
br eak;
}
#endi f
#i f def GENERAL_RECEPTI ON_ERROR
{
CAN_Ceneral _Reception_Error_Notification();
Cr SCIF Bit();
}
#endi f
br eak;
}
#i f def DEBUG
case | TERR:
{
i f (Val Bit(CANI SR, ORI F))
{
CAN_Overrun_Notification();
Cr ORIF Bit();
}
el seif (Val Bit(CAN SR, TEI F))

{

CAN_Transni ssion_Error_Notificati on(CAN_TRANSM SSI ON_ERROR I T);
Clr_TEIF_Bit();
}

br eak;

}
#endi f

defaul t :

FEEELETEEEE i rrnd
/| Def aul t case (shoul d never bereached)//
[Debug code/ [/ 111111 TT00TT0 00000000001
FEEELETE i rrnry
br eak;

}

/ * PUBLI C FUNCTI ONS

172 77/100

ST7 pCAN PERIPHERAL DRIVER

**/

/* List of all functions definedinthis ndul eandusedinother nodules */

ROUTI NE NAME : CAN_Get _TEC()
I NPUT/ QUTPUT : -/ Val ue of the TECRregi ster (transmni ssionerror counter)

DESCRI PTI ON : Returnstheval ue of t he TECRr egi ster

COMMENTS
__ *
u8 CAN_Cet _TEC(voi d)
{
ret ur n CANTECR;
}
| ¥ o o o o o e o e o e e e o e o -
ROUTI NE NAME : CAN_GCet _REC()
I NPUT/ OQUTPUT : -/ Val ue of the RECRregi ster (receptionerror counter)
DESCRI PTI ON : Returns the val ue of the TECRregi ster
COVMENTS
__ * [
u8 CAN_Cet _REC(voi d)
{
r et ur n CANRECR,;
}
| ¥ o o o o e o o e e e o ee e
ROUTI NE NAME : CAN_Cet _St at us
I NPUT/ OQUTPUT : --/ current status of the cell
DESCRI PTI ON : Retrievesthe current status of the CANcel |.
COMMVENTS : Possi bl ereturnval ues : CAN_STANDBY

CAN_BUS_PASSI VE

CAN_BUS_OFF

CAN_BUS_ACTI VE

__ * [

CAN_St at us CAN_Get _St at us (voi d)

78/100 172

ST7 pCAN PERIPHERAL DRIVER

{
i f (!Val Bi t(CANCSR, RUN))
{
ret ur n CAN_STANDBY;
}
el se
{
i f (Val Bi t (CANCSR, EPSV))
{
ret urn CAN_BUS_PASSI VE;
}
el se
{
i f (Val Bi t (CANCSR, BOFF))
{
ret urn CAN_BUS_OFF;
}
el se return CAN_BUS_ACTI VE;
}
}
}
| ¥ o o o e e o e e e o e -

ROUTI NENAME: CAN First Init
I NPUT/ QUTPUT : --/ error status

DESCRI PTION : Can Cel | power oninitialisationRoutine.
COWENTS : Calls CAN_Init

Possi bl ereturnval ue: CAN_I NI T_FAI LURE
CAN_I NI T_SUCCESS

__ *
CAN_ I nit_Error CAN First _Init(void)
{
i f (!Val Bi t (CANCSR, RUN)) /1 The CANnode i s not runningandthereisaninit
structure
{

CAN_Bool run_set, wkps_set;

[*Transm tionqueueinit*/
[7[79/100

ST7 pCAN PERIPHERAL DRIVER

CAN_queue_obj ect _1. next _obj ect =&CAN_queue_obj ect _2; /1 The
transm ssi on obj ects are beinglinked

CAN_queue_obj ect _1. precedi ng_obj ect =&CAN_queue_obj ect _3;

CAN_queue_obj ect _1. message=NULL;

CAN_queue_obj ect _2. next _obj ect =&CAN_queue_obj ect _3;
CAN_queue_obj ect _2. precedi ng_obj ect =&CAN_queue_obj ect _1;
CAN_queue_obj ect _2. nessage=NULL;

CAN_queue_obj ect _3. next _obj ect =&CAN_queue_obj ect _1;
CAN_queue_obj ect _3. precedi ng_obj ect =&CAN_queue_obj ect _2;
CAN_queue_obj ect _3. nessage=NULL;

CAN transnit_queue. fifo_size=0;
CAN transnit_queue. first_object =&CAN_queue_obj ect _1;

CAN transnit_queue. | ast _obj ect =&CAN_queue_obj ect _3; //Hastobeinitial-
i zedthat way, or thefirst input will fail

CAN transnit_queue. i si huse=CFALSE; /| Rel eases queue

CANPSR=PAGE_1,

Cr LOCK Bit(); /1 Cancel s any pendi ngtransni ssi on
Set Bi t (CANBCSR, LOCK) ; /1 Thus t he buf fer 2 cannot be used f or
reception

[11nit of the hardware buffers
run_set =CFALSE

#i f def RUN_ON_START_UP
run_set =CTRUE

#endi f

wkps_set =CFALSE

#i f def WAKE_UP_PULSE
wkps_set =CTRUE;

#endi f

st at us_count er =0;

#i f ndef RUN_ON_START_UP
CANI CR=CANI CR| 0x08; /lie. abus wake-upis w shed
#endi f

if(CAN_1 Init(&irst_init_data, run_set,wkps_set)==CAN_|I NI T_FAI LURE)

80/100 172

ST7 pCAN PERIPHERAL DRIVER

{
return CAN_I NI T_FAI LURE;
}
return CAN_I NI T_SUCCESS;
}

el sereturn CAN_I NI T_FAI LURE;

}

| % o o o o eeeo s

ROUTI NENAME: CAN It _Dis
| NPUT/ OUTPUT : -~/ - -

DESCRI PTI ON : Reset of t he CANI CRregi ster.

COMMENTS

void CAN_It_Di s (void)
{
CANI CR=0x00;

}

ROUTI NE NAME : CAN_Swi t ch_OF f
I NPUT/ QUTPUT : way t he chi p can be waken up : BUS_WAKEUP or SOFT_WAKEUP/ err or
stat us

DESCRI PTI ON : Puts the CANnode i nt o standby state. Aborts any pendi ngtransni s-
si on

and doesn’t wait for the receptionbuffer to havi ng been read.

Atime out nechani smis inplenmentedhere (about 30nms). Soif
you use t he

wat chdog i n your applicati on, REFRESHI T BEFORE CALLI NG THE
FUCNTI ON !

COMMENTS : Calls CAN_C ean
Possi bl e return val ue : CAN_SLEEP_SUCCESS
CAN_SLEEP_FATAL

CAN_Swi tch_Error CAN Swi tch_O f (WakeUp_Cause wucause)

172 81/100

ST7 pCAN PERIPHERAL DRIVER

{

CAN_Cl ean_Error cl ean_st at us;
CAN It _Dis(); // Reset s the CANI CRr egi st er
Cl rBi t (CANCSR, RUN) ;

whi | e (Val Bi t (CANCSR, RUN))

{

static ul6 count er =0OxFFF; /11 nplement hereatinme out (171990 CPUcycl es,
~21,4nms Wi t h 8IVHz f cpu)

count er=counter-1;
i f (counter==0)
{
return CAN_SLEEP_FATAL,;

}
}

cl ean_st at us=CAN_Cl ean() ;
i f (clean_status==CAN_CLEAN_FAI LURE)

{
return CAN_SLEEP_FATAL;
}
i f (wucause==BUS_WAKEUP) /W aretheninthe case whenthe uChas to be
waken up by t he bus
{
Cr_SCFBit(); /lclearsthe CANISRTXI Ffl ag, beforereenablinglTs
Set Bi t (CANI CR, SCI E) ; /lsetsthe CANICRTXI Efl ag, beforereenablinglTs
}
el se i f (wicause==SOFT_WAKEUP)
{
Cr _SCAFBit(); /lclearsthe CANIl SRTXI Fflag, beforereenablinglTs
}

st at us_count er =0;
ret urn CAN_SLEEP_SUCCESS;

}

ROUTI NE NAME : CAN_SI eep
| NPUT/ QUTPUT : way t he chi p can be waken up : BUS_WAKEUP or SOFT_WAKEUP/ Er r or
status

82/100

4

ST7 pCAN PERIPHERAL DRIVER

DESCRI PTI ON : Puts the CANnode i nto passive state. Returns anerror if any
transm ssi on request i s pendi ngor i f a hardware reception

buf f er

isstill unsaved. Dedi cat edt obuswake-up (for power save).

COMMENTS : Doesn’t call CAN_Cl ean.
Possi bl e return val ues : CAN_SLEEP_ERROR

CAN_SLEEP_FATAL
CAN_SLEEP_SUCCESS

CAN_Swi t ch_Error CAN_SI eep (WakeUp_Cause wucause)

{

i f (status_counter==0)

{

CANPSR=PAGE_2;
Set Bi t (CANBCSR, LOCK) ;

i f (! Val Bi t (CANBCSR, LOCK))

{

return CAN_SLEEP_ERROR;

}
CANPSR=PAGE_3;
Set Bi t (CANBCSR, LOCK) ;

i f (!Val Bi t (CANBCSR, LOCK))

{

CANPSR=PAGE_2;
Cr_LOCK Bit();
return CAN_SLEEP_ERROR;

}

// Then t he CANcel | can be shut down

Cl rBi t (CANCSR, RUN) ;

i f (Val Bi t (CANCSR, RUN))
{

return CAN_SLEEP_FATAL;
}

CANPSR=PAGE_2;
Clr_LOCK Bit();
CANPSR=PAGE_3;
Clr_LOCK Bit();
i f (wucause==BUS_WAKEUP)

be waken up by t he bus

b7

//IWearetheninthe casewhentheuChasto

83/100

ST7 pCAN PERIPHERAL DRIVER

{
Cr SCIF Bit(); /lclearsthe CANISRTXI Ffl ag, before

reenablinglTs
Set Bi t (CANI CR, SCI E) ; /*sets the CANICRTXI Eflag, before
reenabling | Ts*/

}
el seif(wicause==SOFT_WAKEUP)
{
Clr_SCF Bit(); //clearsthe CANNSRTXI Fflag, before
reenablinglTs
}

ret urn CAN_SLEEP_SUCCESS;

}
return CAN_SLEEP_ERROR, [/ default exit
}
| ¥ o o o o e o o o e e e o e

ROUTI NE NAME : CAN_Swi t ch_on
I NPUT/ OQUTPUT : pointer onaninit data, order : eni ssi on of adoni nant pul se by
wake up or not/error status

DESCRI PTI ON : Puts the CANnodeinto active state
COVWENTS : Calls CAN Init

Possi bl e returnval ue : SWTCH_ON_SUCCES
SW TCH_ON_FAI LURE

CAN_Switch_Error CAN Switch_On(Init_Data_Ptr idptr, CAN _Bool wupul se_al | owed)
{

if (!Val Bit(CANCSR, RUN)) //The can nust not be runni ng
{

CAN_Swi tch_Error error_status;
st at us_count er =0;
CANPSR=PAGE_1,;

Cr_ LOCK Bit(); [/ Cancel s any pendi ng transni ssi on
Set Bi t (CANBCSR, LOCK) ; /1 Thus t he buf fer 1 cannot be used for reception

84/100 172

ST7 pCAN PERIPHERAL DRIVER

i f (idptr!=NULL) /11f NULL, nothingwi |l bereinitialized

{

error_status=CAN_Init(idptr, CTRUE, wupul se_al |l owed); //RUNset automat -
ically

i f (error_status==CAN_I NI T_FAI LURE)

{
return CAN_SW TCH_ON_FAI LURE;
}
}
return CAN_SW TCH_ON_SUCCES;
}
el sereturn CAN_SW TCH_ON_FAI LURE;
}
| ® o o o o o o o o e e e e e e e -

ROUTI NENAME: CAN Transmt _request
I NPUT/ OQUTPUT : poi nter onthe CANbuffer tosend/error status

DESCRI PTI ON : Puts anessage i ntothe queue, and may r equest an i nmredi at e
transmssionifit’svoid

COMMENTS : Calls CAN_Init_Queue and CAN_Fill _Transm ssi on_Buffer

111 This function MJST NOT be interrupted, soprotect it with SI Mand Rl M
statements
when used OUTSI DEt he noti ficationfuctions of CAN customc!!!

CAN Transmit_Error CAN_Transmt _Request (CAN Buffer* nsg_to_send_ptr)
{

CAN _Transmt_Error status;

if (nmeg_to_send_ptr->buffer_rw==CTRUE)

{
return CAN_TRANSM T_FAI LURE;

}
nmsg_t o_send_ptr->buffer_rw=CTRUE;

i f (!Val Bit(CANCSR, RUN)) /I Notransm ssion autorizedwhenthe CANcell is
not runni ng

{

172 85/100

ST7 pCAN PERIPHERAL DRIVER

nmeg_t o_send_ptr->buffer_rw=CFALSE;
ret urn CAN_TRANSM T_FAI LURE;

}
stat us=CAN I n_Queue(nsg_to_send_ptr); /1 Putsthe nessage i nthe queue
i f (status==CAN_FI FO_FULL)

{

nmsg_t o_send_ptr->buffer_rw=CFALSE;
return status;

}

status_counter =stat us_count er +1;

stat us=CAN _Fi || _Transm ssion_Buffer(); //Triestofill thebuffer 2
i f (status==CAN_TRANSM T_NO_MsG) /1 Thi s shoul d never happen

{

st at us_count er =st at us_count er - 1;

nmeg_t o_send_ptr->buffer_rw=CFALSE;

return CAN_TRANSM T_FATAL;

}
el se

{

returnstatus; /1 Can be success or buffer inuse (i e. arequest
i s al ready pendi ng)

} [/ The nodi f of buffer_rww |l be
execut ed by CAN_St ore_Recei ved_Message
}

/****** (C) 2000 STM Croel eCtrOﬂI cS EE R R R R R R R R ENDO: Fl LE_******/

4.2 CAN.H

/*********************** (C) 2000 STM Croel eCtrOHI CcS R Sk Sk S SRR o R A R R
PRQIECT :
COWPI LER: ST7 COSM CCv4. 2e

MODULE : can. h

VERSION: V1.1.6build80
CREATI ONDATE : 04/ 00

86/100

4

ST7 pCAN PERIPHERAL DRIVER

AUTHOR: Central Europe 8bit M cro Application Group

Kk _k_k_ Kk _k_Kk_k_*_K*_Kk_*_K*_) k_ K _*k_*_* _*k_*_* _*_*_*_* _*_*_* _*_*_* _*_*_*_%*_*_%*_%_

DESCRI PTI ON: CANrouti nes

Kk _k_k_Kk_k_Kk_k_K*_Kk_Kk_*_K*__K*_K _*_*_* _*k_*_* _*_*_* _* _*_*_* _*_*_* _*_*_*_%*_*_%*_%_

MODI FI CATI ONS : none

EE Rk S Sk Sk S S kS kR R Rk S S S I SRR I S S R O

THE SOFTWARE | NCLUDED I NTHI SFI LE | S FOR GUI DANCE ONLY. ST M CROELECTRONI CS
SHALL NOT BE HELD LI ABLE FOR ANY DI RECT, | NDI RECT OR CONSEQUENT| AL DAMAGES
W TH RESPECT TOANY CLAI M5 ARI SI NG FROMUSE OF THI S SOFTWARE.

***/

#i f ndef CAN_H
#defi ne CAN_H

#def i ne CAN_MAX_DATA SI ZE 8

#i f ndef _H STDDEF_

#defi ne NULL (void*) O /*Not al ready definedif stddef.hnot included*/
#endi f

#def i ne NULL_DEFI NED

/

* BHBHHBH AR H AR BB B R R H B R H B R R R R R R
*/

[* TYPEDEF */

/

* HHBHHBHBHH BB H BB R R R R R R R R R R R R
*/

FHEELTEErrrrrrrirrr
/1 Sinpledatatypes//
LI rrirrr

t ypedef enum{BUS_WAKEUP, SOFT_WAKEUP} WakeUp_Cause;

t ypedef enum
{DLCO, DLC1, DLC2, DLC3, DLC4, DLC5, DLC6, DLC7, DLC8, REMOTE_FRAME} CAN_Dat a_Si ze;

172 87/100

ST7 pCAN PERIPHERAL DRIVER

/1 Error status nessages

/[llnitialisation

t ypedef enum{ CAN_I NI T_SUCCESS, CAN_| NI T_FAI LURE} CAN_I nit _Error;

/1Sl eep

t ypedef enum

{ CAN_SLEEP_FATAL, CAN_SLEEP_ERROR, CAN_SLEEP_SUCCESS, CAN_SW TCH_ON_SUCCES, CAN_
SW TCH_ON_FAI LURE} CAN_Swi t ch_Error;

/1 St atus

t ypedef enum

{ CAN_RUN, CAN_STANDBY, CAN_BUS_ACTI VE, CAN_BUS_PASSI VE, CAN_BUS_OFF} CAN_St at us;
/1M sc.

t ypedef enum{ CFALSE=0, CTRUE=1} CAN_Bool ;

// Transm ssi on- Recepti on

t ypedef enum

{ CAN_TRANSM T_FATAL, CAN_TRANSM T_SUCCESS, CAN_TRANSM T_FAI LURE, CAN_TRANSM T_N
O_MSG, CAN_FI FO_FULL, CAN_TRANSM T_BUFFER_FULL, CAN_TRANSM SSI ON_ERROR | T} CAN_T
ransmt_Error;

t ypedef enum

{ CAN_RECEI VE_FATAL, CAN_RECEI VE_SUCCESS, CAN_RECEI VE_REMOTE, CAN_| LLEGAL _| DENTI

FI ER, CAN_FI LTERI NG_FAI LURE, CAN_BUFFER_| N_USE, CAN_NO_BUFFER, CAN_RCV_BUFFER_NO
T_READY} CAN_Recei ve_Error;

FHPETEEL i
/1 Transm ssion/ Receptionstructures//
FHEETEELIEr il

/ /1 nput/output structure

t ypedef struct CAN Buffer{
ulé nsg_identifier;
CAN Dat a_Si ze dat a_si ze;
u8 CAN_nsg_dat a[CAN_MAX_DATA_SI ZE] ;
CAN_Bool buffer_rw;
CAN_Bool buffer_free; //sharedvariable
} CAN_Buf fer;

FHEEEETrEr i rrrirr
/llnitializationparanmeters//
[HEEEETEEEr i rrrirr
//1lnitialisationdatastructure
typedef struct {

u8 brpr_init;

u8 btr_init;
u8fhrl_ init;

88/100

4

ST7 pCAN PERIPHERAL DRIVER

ugflrl init;
u8 mhrl init;
u8 mMrl init;
u8 fhro_init;
ugflrO_init;
u8 mhrO_init;
u8 MrO_init;
}Init_Data;

typedef Init_Data* Init_Data Ptr; // Pointer onanlnit_Datastructure

/

* BHHHBHHHBHHHH B H B H B H B H R R R R R R R R AR |
[* VARI ABLES */

/

* BHHHBHHHBHHHH B H B R R R R R R R H R H R H R |

/[llnitializationof the CAN-cell

/I Variabl es decl aredincan.c

externconst Init_Datafirst _init_data; //Initialisationdatas usedat power-on
externconst uléi _filters[]; /'l Array of acceptedfilters

/

* BHAHHBHHHBHHH R R H AR R H R H R H R H R H R R R R R R |
I * FUNCTI ONS */

/

* HHHHHHHH B H BB R H R H B H B H B H R R R R R R |

//Power-oninitialisation
CAN I nit_Error CAN First_Init(void);

/!l Resets | Tauthorizationflags
voi d CAN_It_Di s(voi d);

/1 Gets stateof thecell : active, passive, off
CAN_St at us CAN_Get _St atus (voi d);

/1 Gets val ue of Transnit Error Counter & Recepti on Error Counter
u8 CAN_CGet TEC(voi d);
u8 CAN_Cet _REC(voi d);

/I Modificationof thecell state

CAN_Swi t ch_Error CAN _Swi tch_Of f (WakeUp_Cause);

CAN_Swi t ch_Error CAN_SI eep (WakeUp_Cause) ;
CAN_Switch_Error CAN_ Switch_On(lnit_Data_Ptr, CAN Bool);

172 89/100

ST7 pCAN PERIPHERAL DRIVER

// Transm ssi on request
CAN _Transnit_Error CAN _Transm t _Request (CAN Buffer*);

/

* BHHHBHHHBHHHH B H B H B H B H R R R R R AR R AR |
[* MACRCS */

/

* BHHHBHHHBHHH R R AR H R H R H R H R H R H R R R R R R |

/1l Toclear statusregistersflags
#define G r_RXIF3_Bit() (CAN SR=0x7F)
#define O r_RXIF2_Bit() (CAN SR=0xBF)
#define A r_RXIF1_Bit() (CAN SR=0xDF)
#define A r_TXIF_Bit() (CAN SR=0xEF)
#define Clr_SCIF_Bit() (CAN SR=0xF7)
#defineCr_ORIF_Bit() (CAN SR=0xFB)
#define Clr _TEIF_Bit() (CAN SR=0xFD)
#define Clr _EPND Bit() (CAN SR=0xFE)

[/ To cl ear
#define Cr_ LOCK Bit() (CANBCSR=0xFE)
#define Cr_RDY Bit() (CANBCSR=0xFA)

#define Si ze_ O _Words_Array(array) sizeof (array)/si zeof (unsi gnedint)

#def i ne CAN_RUN_Cel | () (CANCSR| = 0x05)

#endi f
/****** (C) 2000 STM CI’06| ectronl CS R I b b b b b 0 b 2 b b b b b b b b ENDO: Fl LE_******/

4.3 CAN_CUSTOM.C

/********************* (C) 1999 STM Croel eCt l’OI’]I CS****************************

/********************* (C) 1999 STM Croel eCt I'OHI CcSs LR S R IRk Ik bk b Ik b R R

90/100 172

ST7 pCAN PERIPHERAL DRIVER

PRQIECT :
COWPI LER: ST7 COSM CCv4. 2e

MODULE : can_customc
VERSION: 1.1.6build 44

CREATI ONDATE : 04/ 99

AUTHOR: Central Europe 8bit M cro Application Group

Kk _k_k_k_Kk_k_Kk_Kk_K*_K _*__*k_*K _*_* _*_*k_* _*_* _*_* _*_* _*_*_* _*_* _*_*_*_*_%*_%*_%_%_

DESCRI PTI ON: Custom sation functions for CANdri ver

Kk _k_k_ Kk _Kk_k_Kk_K*_K*_K _*__*k_* _*k_* _*_*_*_*_* _*_* _*_* _*_*_* _*_* _*_* _*_*_%*_*_%_%_

MODI FI CATI ONS :

EE R S I Sk S S O S kR R S I R S S S O R I O

THE SOFTWARE | NCLUDED I NTHI SFI LE | S FOR GUI DANCE ONLY. ST M CROELECTRONI CS
SHALL NOT BE HELD LI ABLE FOR ANY DI RECT, | NDI RECT OR CONSEQUENT| AL DANVAGES
W TH RESPECT TOANY CLAI M5 ARI SI NG FROMUSE OF THI S SOFTWARE.

***/

#include"lib.h"

#i ncl ude "can. h"
#i ncl ude "sci . h"
#i ncl ude "can_custom h"

#i ncl ude "gat eway. h"
#i nclude "i nterface. h"

FEEEEEErrrr i rrrrtrirri
/ | PREPROCESSOR DI RECTI VES/ /
FEEEEEErrrrt it rrrri

(bt r et rrrrr

[IVARVABLES/ /11T EEE i riirrnn
(et r e rrrrr

b7

91/100

ST7 pCAN PERIPHERAL DRIVER

(EEEEEErr bt r it r bbb
[Optional functions////// /1111 TTTEEEEITTEEEEITTTT
(EEEEEErr bt r bbb

/1A'l those functions areneant tobecalledbytheinterrupt routine
//sodon’t auhorizel Tsinthisfile, otherwiseit couldleadtoundefined
behavi our

/1 of the application

CAN_Buf f er* CAN_Request _Buffer(ul6ident_of nessage)
{

/1 The applicationrmust supply here abuffer.

}

voi d CAN_Renpt e_Reception_Notification(ul6ident_of renpte)

{

/1 Appli cati on behavi our after recepti onof arenote frame

}

voi d CAN _Dat a_Reception_Notification(ul6 nmessage_i dent)
{

/1 Appli cati on behavi our after recepti onof adataframne

}

voi d CAN_Transm ssion_Notification(void)

{

/I Witeyour code here

}

voi d CAN_Doni nant _Bit_Reception_Notification(void)
{

/I Witeyour code here

}

#i f def STATUS_CHANGE_NOTI FI CATI ON

voi d CAN_Bus_Passi ve_Noti fication(void)
{

/1 Toinplenent if defined

}

voi d CAN_Bus_Active_Notification(void)
{

92/100

4

ST7 pCAN PERIPHERAL DRIVER

/1 Toinplenment if defined

}

voi d CAN Bus_O f _Notification(void)
{

/1 Toinplenment if defined

}
#endi f

#i f def GENERAL_RECEPTI ON_ERRCR
voi d CAN_Gener al _Reception_Error_Notification(void)

{

/1 Toinplenent if defined

}

#endi f

#i f def DEBUG

voi d CAN_Recepti on_St at us(CAN_Recei ve_Error st at us)
{

/1 Toinplenment if defined

}

voi d CAN_Overrun_Noti fication(void)
{

/1 Toinplenment if defined

}

voi d CAN_Transm ssion_Error_Notificati on(CAN_Transmit_Error status)

{
/1 Toinplenent if defined

}
#endi f

/******** (C) 1999 STM Croel eCtronI CcS R Sk S R o ENDG: FI LE********/

4.4 CAN_CUSTOM.H

/*********************** (C) 1999 STM CI’09| eCtrOHI CcS R Sk Sk S IR o R R R R

PRQJECT:
COWPI LER: ST7 COSM CCv. 4. 2e

MODULE: can_custom h
VERSION: V1.1.6 build44

CREATI ON DATE: 04/ 00

AUTHOR: Central Europe 8bit Mcro Application G oup

172 93/100

ST7 pCAN PERIPHERAL DRIVER

Kk _k_k_Kk_k_Kk_k_*_K*_Kk_*_K*_K _*_K*_* _*k_*_* _*_*_*_*_*__*_*_* _*_*_* _*_*_*_%*_*_%*_%_

DESCRI PTI ON: CANcust om zati on opti ons

ok _k_k_k_Kk_Kk_Kk_Kk_k_k_K_Kk_Kk_Kk_*_K_Kk_Kk_*_K_Kk_Kk_*_K_)hk_Kk_K*_*_k_k_Kk_*_k_%_*_%*_%*_

MODI FI CATI ONS: none

Rk I Sk S S S S o Rk I kSRR S S o S S S S R S S S R I S S

THE SOFTWARE | NCLUDED I NTHI SFI LE | S FOR GUI DANCE ONLY. ST M CROELECTRONI CS
SHALL NOT BE HELD LI ABLE FOR ANY DI RECT, | NDI RECT OR CONSEQUENTI AL DAMAGES
W TH RESPECT TOANY CLAI M5 ARI SI NG FROMUSE OF THI S SOFTWARE.

***/

#i f ndef CAN_CUSTOM H
#def i ne CAN_CUSTOM H

Frrrtrrrrrrrrrrnsy
[| CUSTOMDEFI NES/ /
[rrrtrrrrrrrrrinsd

/

* BHHHBHHHBHHHH B H B H B H B H R R R R R R R R R AR |
[* PREPROCESSOR DI RECTI VES */

/

* BHHHBHHHBHHH R BB H BB H R H R H R H R H R R R R R R AR |

[IFirstinitialization

[*Ti m ng*/

#define | NIl T_BRPR 0x00
#define INIT_BTR 0x00

/] Start options

/] #define WAKE_UP_PULSE /*Shall the CANcell enit a dom nant pul se by wake- up?*/
#define RUN_ON_START_UP /*Shall thecell runinmrediately or wait for a bus

event ?*/

[*Masks &filters*/

#define INIT_FHRO 0x00
#define INIT_FLRO 0x00
#define INIT_MHRO 0x00

94/100

4

ST7 pCAN PERIPHERAL DRIVER

#define | NIT_M.RO 0x00
#define | NIT_FHR1 0x00
#define I NI T_FLR1 0x00
#define | NIT_MHR1L 0x00
#define | NIT_M.R1 0x00

/ | SOFTWARE ACCEPTANCE MASKS

/] #defi ne FI LTERS_ENABLED

/1 #definel NN T_FILTERS({} /*max i dentifier : 2048, that’sto say 0x0800, max
sizeof thearray: 127*/

/11 Ts COVPI LATI ON OPTI ONS

//Havetobedisabledif adirect i nplementationof thelTfunction

/1is meant

/1 Enabl i ng one of these optionsinpliescodingthecorrespondingfunctioninthe
can_customcfile

/1 The choicew || determinetheinitializationof thestatusregister

// To moni t or st atus changes
/| #def i ne STATUS_CHANGE_NOTI FI CATI ON

/1 To use other error notificationsfunctions:
/1 #def i ne DEBUG
/| #defi ne GENERAL_RECEPTI ON_ERROR / *1f defi ned, repl aces t he st at us change
i nterrupts*/
/1 Onlyif debug al so defi ned
/ | Does not excl ude bus wake-up feature
/| #defi ne SI MULTANEOUS_EM SSI ON_RECEPTI ON /*Only i f debug al so defi ned*/
/1 Al'l ows sinultaneous receptionandreceptionof anmessage
/ltochecktheintegrity of the nessage path
/
* BHHHBHH PR SR AR R H R H R H R H R H R H R H R H R H R H R TR R |
/* VARI ABLES */
/
* HRHHA R H AR H AR H R H R H R H R H R H R H R H R H R SR SR SR TR R |

#endi f
/****** (C) 1999 STM Croel ectronl CS EIR IR IR I I IR IR IR IR I I I I I I b I I I ENDO: Fl LE_******/

172 95/100

ST7 pCAN PERIPHERAL DRIVER

4.5 CAN_HR.H

/*********************** (C) 2000 STM CI’09| eCtrOHI CcS R Sk Sk S SRRk o b O R

PRQIECT :
COWPI LER: ST7 COSM CCv. 4. 2e

MODULE : can.c
VERSION: V1.1.6build44

CREATI ONDATE : 04/ 00

AUTHOR: Central Europe 8bit M cro Application Group

Kk _k_k_k_Kk_k_Kk_Kk_K*_K _*k_*_*_*_*_*_* _*__*_* _*_* _*_* _*_*_* _*_* _*_*_*_*_%*_%*_%_%_

DESCRI PTI ON: CANhardwar e regi sters

Kk _k_k_k_Kk_k_k_Kk_Kk_K _*k_*_K*_*_*_*_*__K*_*_* _*_* _*_*_*_*_* _*_* _*_*_*_*_%*_%*_%_%_

MCDI FI CATI ONS :

EE Rk S Sk b S Rk S kS S S R S S R S I S S R I
THE SOFTWARE | NCLUDED I NTHI S FI LE | S FOR GUI DANCE ONLY. ST M CRCELECTRONI CS
SHALL NOT BE HELD LI ABLE FOR ANY DI RECT, | NDI RECT OR CONSEQUENTI AL DAMAGES

W TH RESPECT TO ANY CLAI M5 ARI SI NG FROMUSE OF THI S SOFTWARE.

***/

#i f ndef CAN_HR _H
#defi ne CAN HR_H

*/

/* Controller Area Network */

@inyvol atil eunsi gned char CANI SR @x5a,; /* Interrupt Status Register */
@inyvol atil eunsi gned char CANl CR @x5b; /* Interrupt Control Register */
@inyvol atil eunsi gned char CANCSR @x5c; /* Control Status Register */
@i ny vol atil eunsi gned char CANBRPR @x5d; /* Baud Rat e Prescal er Regi ster */
@inyvol atil eunsi gned char CANBTR @x5e; /* Bit Timng Regi st er */

@i nyvol atil eunsi gned char CANPSR @x5f ; /* Page Sel ecti on Regi st er */

/* Controll er Area Net wor k Paged Regi sters */
/* PAGE O */

@iny vol atil eunsi gned char CANLI DHR @x60; /* Last Identifier H gh Regi ster */
@inyvol atil eunsi gned char CANLI DLR @x61; /* Last Identifier LowRegi ster */

96/100 172

ST7 pCAN PERIPHERAL DRIVER

@inyvol atil eunsi gned char CANRes00 @x62; /* Reserved */
@iny vol atil eunsi gned char CANRes01 @x63; /* Reserved */
@iny vol atil eunsi gned char CANRes02 @x64; /* Reserved */
@inyvol atil eunsi gned char CANRes03 @x65; /* Reserved */
@inyvol atil eunsi gned char CANRes04 @x66; /* Reserved */
@inyvol atil eunsi gned char CANRes05 @x67; /* Reserved */
@inyvol atil eunsi gned char CANRes06 @x68; /* Reserved */
@inyvol atil eunsi gned char CANResO7 @x69; /* Reserved */
@inyvol atil eunsi gned char CANRes08 @x6a; /* Reserved */

@ iny vol atil eunsi gned char CANRes09 @x6b; /* Reserved */
@inyvol atil eunsi gned char CANRes010 @x6¢c; /* Reserved */
@inyvol atil eunsi gned char CANTSTR @x6d; /* Reserved */

@ iny vol atil eunsi gned char CANTECR @x6e; /* Transnit Error Counter */
@iny vol atil eunsi gned char CANRECR @x6f; /* Receive Error Counter */

/* Pages 1,2,3: ldentifiers */
@iny vol atil eunsi gned char CANl DHR @x60; /* Identifier Hi gh Register */
@inyvol atil eunsi gned char CANI DLR @x61; /* Identifier LowRegi ster */

/* Pages 1, 2, 3: Data */

@inyvol atil eunsi gned char CANDR[8] @x62; /* 8 Data Regi sters */
@inyvol atil eunsi gned char CANRes1230 @x6a; /* Reserved */
@inyvol atil eunsi gned char CANRes1231 @x6b; /* Reserved */
@inyvolatileunsignedchar CANRes1232 @x6¢c; /* Reserved */
@inyvolatileunsignedchar CANRes1233 @x6d; /* Reserved */
@inyvol atil eunsi gned char CANRes1234 @x6e; /* Reserved */

@inyvol atil eunsi gned char CANBCSR @x6f; /* Buffer Control Status Register*/

/* Buffers */

@inyvol atil eunsi gned char CANFHRO @x60; /* Filter O Hi gh Regi ster */
@inyvol atil eunsi gned char CANFLRO @x61; /* Filter O LowRegi ster */
@inyvol atil eunsi gned char CANVHRO @x62; /* Mask O Hi gh Regi ster */
@inyvol atil eunsi gned char CANMLRO @x63; /* Mask O LowRegi ster */
@inyvol atil eunsi gned char CANFHRL @x64; /* Filter 1 Hi gh Regi ster */
@inyvol atil eunsi gned char CANFLRL @x65; /* Filter 1 LowRegi ster */
@inyvol atil eunsi gned char CANVHRL @x66; /* Mask 1 Hi gh Regi ster */
@inyvol atil eunsi gned char CANMLRL @x67; /* Mask 1 LowRegi ster */
R e REG STERBI TSDEFI NI TION- - - - - - - o e e e oo -
*/

#define RXI F3 7 /* I nterrupt Status Register */

#defi ne RXI F2 6
#defi ne RXI F1 5

172 97/100

ST7 pCAN PERIPHERAL DRIVER

#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i

98/100

ne TXl F
ne SClI F
ne ORI F
ne TElI F
ne EPND

ne ESCI

ne RXI E
ne TXI E
ne SClI E
ne ORI E
ne TEI E
ne ETX

ne BOFF
ne EPSV
ne SRTE
ne NRTX
ne FSYN
ne VKPS
ne RUN

ne RIWL
ne RIWD
ne BRP5
ne BRP4
ne BRP3
ne BRP2
ne BRP1
ne BRPO

ne BS22
ne BS21
ne BS20
ne BS13
ne BS12
ne BS11
ne BS10

ne PAGEO
ne PAGELl
ne PAGE2
ne PAGE3
ne PAGE4

O FR,P N W H

OCphbNvwhouo O pbh vwhoao

OFR, N WMo N

OFRL NWMOOWTO

A W NPEFEL O

[* Interrupt Control Register */

/* Control Status Register */

/* Baud Rat e Prescal er Regi ster */

/* Bit Ti m ng Regi ster */

/* Page Sel ecti on Regi ster */

4

ST7 pCAN PERIPHERAL DRIVER

#defi ne RTR 4
#define MSK DLC OxOF

#defi ne ACC 3
#def i ne RDY 2
#def i ne BUSY 1
#def i ne LOCK 0

#endi f

/* ldentifier LowRegi ster */

/* Buf fer Control Status Register */
/* Buf fer Control Status Register */

/****** (C) 2000 STM CI’O€| ectronl cS ER S O I R T ENDG: FI LE_******/

4

99/100

ST7 pCAN PERIPHERAL DRIVER

"THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUS-
TOMERS WITH INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM
TO SAVE TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE
FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY
CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY
CUSTOMERS OF THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH
THEIR PRODUCTS."

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
[J2001 STMicroelectronics - All Rights Reserved.

Purchase of 12C Components by STMicroelectronics conveys a license under the Philips I12C Patent. Rights to use these components in an
12C system is granted provided that the system conforms to the I1°C Standard Specification as defined by Philips.
STMicroelectronics Group of Companies
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain
Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

4

100/100

