

2.5 A single high-side smart power switch

Features

Туре	Vdemag	RDSon	lout	Vs
L6370Q	Vs-50 V	0.1 Ω	2.5 A	50 V

- 2.5 A output current
- 9.5 V to 35 V supply voltage range
- Internal current limiting
- Thermal shutdown
- Open ground protection
- Internal negative voltage clamping to V_S 50 V for fast demagnetization
- Differential inputs with large common mode range and threshold hysteresis
- Undervoltage lockout with hysteresis
- Open load detection
- Two diagnostic outputs
- Output status LED driver
- Non dissipative short circuit protection
- Protection against and surge transient (IEC61000-4-5)
- Immunity against burst transient (IEC61000-4-4)
- ESD protection (human body model ±2kV)

Applications

- Programmable logic control
- Industrial PC peripheral input/output
- Numerical control machines
- Drivers for all type of loads (resistive, capacitive, inductive load)

Description

The L6370 is a monolithic intelligent power switch in Multipower-BCD Technology, for driving inductive or resistive loads. An internal clamping diode enables the fast demagnetization of inductive loads. Diagnostic for CPU feedback and extensive use of electrical protections make this device extremely rugged and specially suitable for industrial automation applications.

Table 1. Device summary

Part number	Package	Packaging
L6370Q	VFQFPN 7x7x1 48L	Tube
L6370QTR	VI QITIN /X/XI 40L	Tape and reel

Contents L6370Q

Contents

1	Bloc	Block diagram and pin description				
	1.1	Pin description				
2	Elec	trical specifications 6				
	2.1	Absolute maximum ratings 6				
	2.2	Thermal data 6				
	2.3	Electrical characteristics				
	2.4	AC operation 8				
3	Circ	uit description				
	3.1	Diagnostic truth table 10				
	3.2	Input section				
	3.3	Diagnostic logic 10				
	3.4	Short circuit operation11				
	3.5	Overtemperature protection (OVT)				
	3.6	Undervoltage protection (UV)				
	3.7	Demagnetization of inductive loads				
4	Pack	kage mechanical data				
5	Revi	sion history15				

1 Block diagram and pin description

Figure 1. Block diagram

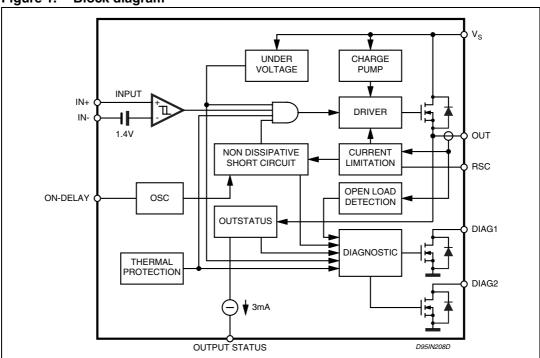
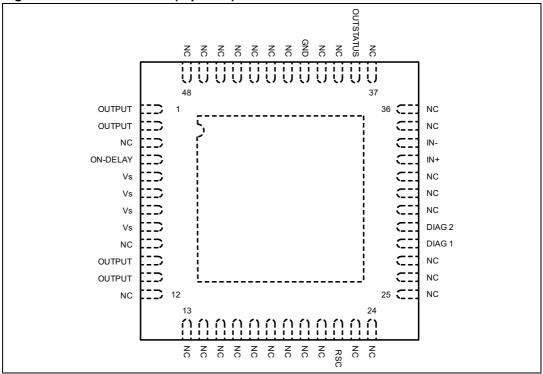



Figure 2. Pin connection (top view)

1.1 Pin description

Table 2. Pin description

Pin N°	Name	Description
1	OUTPUT	High side output with built-in current limitation
2	OUTPUT	High side output with built-in current limitation
3	NC	Not connected
4	ON-DELAY	Programmable ON time interval duration during short circuit operation
5	Vs	Supply voltage input, the value of the supply voltage is monitored to detect under voltage condition
6	Vs	Supply voltage input, the value of the supply voltage is monitored to detect under voltage condition
7	Vs	Supply voltage input, the value of the supply voltage is monitored to detect under voltage condition
8	Vs	Supply voltage input, the value of the supply voltage is monitored to detect under voltage condition
9	NC	Not connected
10	OUTPUT	High side output with built-in current limitation
11	OUTPUT	High side output with built-in current limitation
12	NC	Not connected
13	NC	Not connected
14	NC	Not connected
15	NC	Not connected
16	NC	Not connected
17	NC	Not connected
18	NC	Not connected
19	NC	Not connected
20	NC	Not connected
21	NC	Not connected
22	RSC	Current limitation setting.
23	NC	Not connected
24	NC	Not connected
25	NC	Not connected
26	NC	Not connected
27	NC	Not connected
28	DIAG1	DIAGNOSTIC 1 output. This open drain reports the IC working conditions. (See diagnostic truth <i>Table 6</i> .)

Table 2. Pin description (continued)

Pin N°	Name	Description
29	DIAG2	DIAGNOSTIC 2 output. This open drain reports the IC working
		conditions. (See diagnostic truth <i>Table 6</i> .)
30	NC	Not connected
31	NC	Not connected
32	NC	Not connected
33	IN+	Comparator inverting input
34	IN-	Comparator non inverting input
35	NC	Not connected
36	NC	Not connected
37	NC	Not connected
		This current source output is capable of driving a LED to signal the
38	OUTSTATUS	status of the output pin. The pin is active (source current) when the output pin is considered high
39	NC	Not connected
40	NC	Not connected
41	GND	Ground
42	NC	Not connected
43	NC	Not connected
44	NC	Not connected
45	NC	Not connected
46	NC	Not connected
47	NC	Not connected
48	NC	Not connected

2 Electrical specifications

2.1 Absolute maximum ratings

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vs	Supply voltage (Tw<10ms)	50	V
Vs-Vo	Supply to output differential voltage. See also Vcl	Internally limited	V
Vod	Externally forced voltage	-0.3 to 7	V
lod	Externally forced current	±1	mA
Vin	Input voltage	-10 to Vs+10	V
Vi	Differential input voltage	43	V
lin	Input current	20	mA
lout	Output current. See also Isc	Internally limited	Α
Ei	Energy inductive load T _j =85°C	1	J
P _{TOT}	Power dissipation. Se also thermal characteristics	Internally limited	W
Тор	Operating temperature range	-25 to +85	°C
T _{STG}	Storage temperature	-55 to 150	°C

2.2 Thermal data

Table 4. Thermal data

Symbol	Description	Value	Unit	
R _{thJC}	Thermal resistance junction to case	Max.	4	°C/W
R _{thJA}	Thermal resistance junction to ambient (1)	Max.	50	C/VV

^{1.} Mounted on a 2-side + vias PCB with a ground dissipating area on the bottom side.

2.3 Electrical characteristics

(V $_{S}$ = 24 V; T $_{J}$ = –25 to +125 $^{\circ}C,$ unless otherwise specified)

Table 5. Electrical characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{smin}	Supply voltage for valid diagnostics	I _{diag} > 0.5mA; V _{dg1} = 1.5V	4		35	V
V _s	Supply voltage (operative)		9.5	24	35	V
Iq	Quiescent current I _{out} = I _{os} = 0	V _{il} V _{ih}		0.8	1.4 4	mA
V _{sth1}	Undervoltage threshold 1	(See <i>Figure 4</i>), T _{amb} = 0 to +85°C	8.5	9	9.5	V
V _{sth2}	Undervoltage threshold 2		8	8.5	9	V
V _{sth3}	Supply voltage hysteresis		300	500	700	mV
I _{sc}	Short circuit current	V_{S} = 9.5 to 35V; R_{L} = 2Ω 5k Ω < R_{SC} < 30k Ω	1	15/R _{SC} (kΩ	2)	Α
		0< R _{SC} < 5kΩ	2.6	3.2	4	Α
W	Output voltage drop	$I_{out} = 2.0A, T_j = 25^{\circ}C$ $T_j = 125^{\circ}C$		200 320	280 440	mV
V _{don}	Output voltage drop	$I_{out} = 2.5A, T_j = 25^{\circ}C$ $T_j = 125^{\circ}C$		250 400	350 550	mV
I _{oslk}	Output leakage current	$V_i = V_{il}$; $V_0 = 0V$			500	μΑ
V _{ol}	Low state out voltage	$V_i = V_{il}; R_L = \infty$		0.8	1.5	V
V _{cl}	Internal voltage clamp (V _S - V _O)	$I_O = 1A$ Single pulsed: $T_p = 300 \mu s$	48	53	58	V
I _{old}	Open load detection current	$V_i = Vi_h$; $T_{amb} = 0$ to +85 °C	1	3	6	mA
V _{id}	Common mode input voltage range (operative)	V _S = 18 to 35V	-7		15	V
I _{ib}	Input bias current	V _i = -7 to 15V; -In = 0V	-250		250	μА
V _{ith}	Input threshold voltage	V +ln > V -ln	0.8	1.4	2	V
V _{iths}	Input threshold hysteresis voltage	V +In > V -In	50		400	mV
R _{id}	Diff. input resistance	0 < +ln < +16V; -ln = 0V -7 < +ln < 0V; -ln = 0V		400 150		ΚΩ
		V +ln = V -ln +li 0V < Vi < 5.5V -li	-20 -75	-25	+20	
l _{ilk}	Input offset current	-In = GND +li 0V < V+In <5.5V -li	-250	+10 -125	+50	μΑ
		+In = GND +Ii 0V < V-In <5.5V -Ii	-100 -50	-30 -15		

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{oth1}	Output status threshold 1 voltage		4.5	5	5.5	V
V _{oth2}	Output status threshold 2 voltage	(See <i>Figure 3</i>)	4	4.5	5.0	V
V _{ohys}	Output status threshold hysteresis		300	500	700	mV
I _{osd}	Output status source current	$V_{out} > V_{oth1}$; $V_{os} = 2.5V$	2		4	mA
V _{osd}	Active output status driver drop voltage	$V_s - V_{os}$; $I_{os} = 2mA$ $T_{amb} = 0$ to $+85^{\circ}C$		1.5	3	V
I _{oslk}	Output status driver leakage current	$V_{out} < V_{oth2}$; $V_{os} = 0V$ $V_{S} = 9.5 \text{ to } 35V$			25	μΑ
V _{dgl}	Diagnostic drop voltage	D1 / D2 = L; Idiag= 0.5mA D1 / D2 = L; Idiag= 3mA		40 250		mV
I _{dglk}	Diagnostic leakage current	D1 / D2 = H; 0 < Vdg < V _s V _S = 9.5 to 35V			5	μΑ
Source dr	ain NDMOS diode					
V _{fsd}	Forward on voltage	@ I _{fsd} = 2.5A		1	1.5	V
I _{fp}	Forward peak current	t = 10ms; d = 20%			6	Α
t _{rr}	Reverse recovery time	I _f = 2.5A di/dt = 25A/μs		200		ns
t _{fr}	Forward recovery time			100		ns
Thermal c	haracteristics					
⊚Lim	Junction temp. protect.		135	150		°C
ΘΤΗ	Thermal hysteresis			20		°C

Note: $V_{il} \le 0.8V$, $V_{ih} \ge 2V$ @ (V+In > V-In)

2.4 AC operation

Table 6. AC operation

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
t _r - t _f	Rise or fall time	$V_S = 24V$; $R_I = 70\Omega$; R_I to ground		20		μS
t _d	Delay time			5		μS
dV/dt	Slew rate (rise and fall edge)		0.7	1	1.5	V/μs
t _{ON}	On time during short circuit condition	50pF < C _{DON} < 2nF		1.28		μs/pF
t _{OFF}	Of time during short circuit condition			64		t _{ON}
f _{max}	Maximum operating frequency			25		KHz

L6370Q Circuit description

3 Circuit description

Figure 3. Output status hysteresis

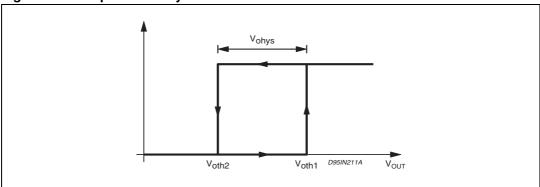


Figure 4. Undervoltage comparator hysteresis

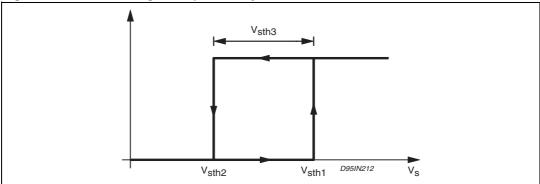
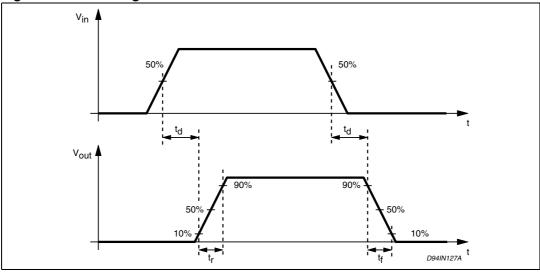



Figure 5. Switching waveforms

Circuit description L6370Q

3.1 Diagnostic truth table

Table 7. Diagnostic truth table

Diagnostic conditions	Input	Output	Diag1	Diag2
Normal operation	L	L	Н	Н
Normal operation	Н	Н	Н	Н
Open load condition (I _o < I _{old})	L	L	Н	Н
Open load condition (1 ₀ < 1 _{old})	Н	Н	L	Н
Short to V _S	L	Н	L	Н
Short to v _S	Н	Н	L	Н
Short circuit to ground (I _O = I _{SC}) ⁽¹⁾	Н	Х	Н	Н
(pin ON-DELAY grounded)	L	L	Н	Н
Output DMOS open	L	L	Н	Н
Output DMOS open	Н	L	L	Н
Overtemporatura	L	L	Н	L
Overtemperature	Н	L	Н	L
Cumhu undanialtaga (V x V)	L	L	L	L
Supply undervoltage (V _S < V _{sth2})	Н	L	L	L

A cold lamp filament, or a capacitive load may activate the current limiting circuit of the IPS, when the IPS is initially turned on.

3.2 Input section

The input section is an high impedance differential stage with high common and differential mode range. There's built-in offset of +1.4 V (typical value) and an hysteresis of 400 mV (maximum value), to ensure high noise immunity.

3.3 Diagnostic logic

The operating conditions of the device are permanently monitored and the following occurrences are signalled via the DIAG1/DIAG2 open-drain output pins:

- Short circuit versus ground. A current limiting circuit fixes at I_{sc} = 3.2 A (typical value) the maximum current that can be sourced from the OUTPUT pin (for more details see short circuit operation section).
- Short circuit versus Vs.
- Under voltage (UV)
- Over temperature (OVT)
- Open load, if the output current is less than 3 mA (typical value).
- Output DMOS open according to the diagnostic truth Table 7.

L6370Q Circuit description

3.4 Short circuit operation

In order to minimize the power dissipation when the output is shorted to grounded, an innovative, non dissipative short circuit protection (patent pending) is implemented, avoiding, thus the intervention of the thermal protection in most cases.

Whenever the output is shorted to ground, or, generally speaking, an overcurrent is sinked by the load, the output devices is driven in linear mode, sourcing the lsc current (typically 3.2 A) for a time interval (ton) defined by means of the external CON capacitor connected between the ONDELAY pin and GND. Whether the short circuit crease within the ton interval the DIAG2 output status is not affected, acting as a programmable diagnostic delay.

This function allow the device to drive a capacitive load or a filament lamp (that exhibits a very low resistance during the initial heading phase) without the intervention of the diagnostic. If the short circuit lasts for the whole t_{ON} interval, the output DMOS is switched OFF and the DIAG2 goes low, for a time interval t_{OFF} lasting 64 times t_{ON} .

At the end of the t_{OFF} interval if the short circuit condition is still present, the output DMOS is turned ON (and the DIAG2 goes high - see *Figure 7*) for another t_{ON} interval and the sequence starts again, or, whether not, the normal condition operation is resumed.

The t_{ON} interval can be set to lasts between 64 ms and 2.56 ms for a C_{ON} capacitor value ranging between 50 pF and 2 nF to have:

$$t_{ON} (\mu s) = 1.28 C_{ON} (pF)$$

If the ON-DELAY pin is grounded the non dissipative short circuit protection is disabled, and the Isc current is delivered until the overtemperature protection shuts the device off. The behaviour of the DIAG2 output is, in this situation, showed in the Diagnostic Truth *Table 7*.

3.5 Overtemperature protection (OVT)

If the chip temperature exceeds Qlim (measured in a central position in the chip) the chip deactivates itself.

The following actions are taken:

all the output stage is switched off;

the signal DIAG2 is activated (active low).

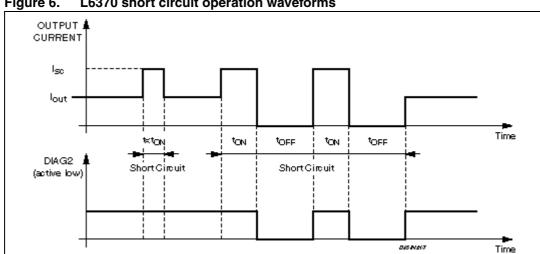
Normal operation is resumed as soon as (typically after some seconds) the chip temperature monitored goes back below Θ_{lim} - Θ_{H} .

The different thresholds with hysteretic behavior assure that no intermittent conditions can be generated.

3.6 Undervoltage protection (UV)

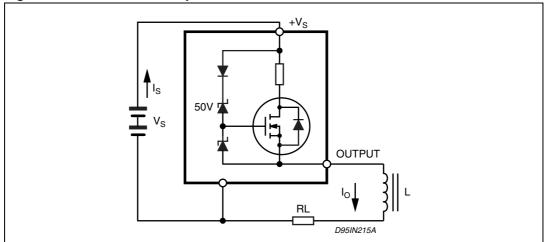
The supply voltage is expected to range from 9.5 V to 35 V, even if its reference value is considered to be 24 V.

In this range the device operates correctly. Below 9.5 V the overall system has to be considered not reliable.


Protection will thus shut off the output whenever the supply voltage falls below the mask fixed by the $V_{sth1}(9 \text{ V typ.})$ and V_{sth2} (8.5 V typ.).

Circuit description L6370Q

> The hysteresis (see Figure 4) ensures a non intermittent behavior at low supply voltage with a superimposed ripple. The under voltage status is signalled via the DIAG1 and DIAG2 outputs (see the Diagnostic Truth Table 7).


3.7 **Demagnetization of inductive loads**

An internal zener diode, limiting the voltage across the Power MOS to between 50 and 60 V (V_{cl}), provides safe and fast demagnetization of inductive loads without external clamping devices. The maximum energy that can be absorbed from an inductive load is specified as 1J (at $T_i = 85^{\circ}C$) (see *Table 3*).

L6370 short circuit operation waveforms Figure 6.

Figure 7. Inductive load equivalent circuit

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

Table 8. VFQFPN48 (7 x 7 x 1.0 mm) package mechanical data

Dim.		(mm)	
Dilli.	Min.	Тур.	Max.
A	0.80	0.90	1.00
A1		0.02	0.05
A2		0.65	1.00
A3		0.25	
b	0.18	0.23	0.30
D	6.85	7.00	7.15
D2	4.95	5.10	5.25
E	6.85	7.00	7.15
E2	4.95	5.10	5.25
е	0.45	0.50	0.55
L	0.30	0.40	0.50
ddd		0.08	

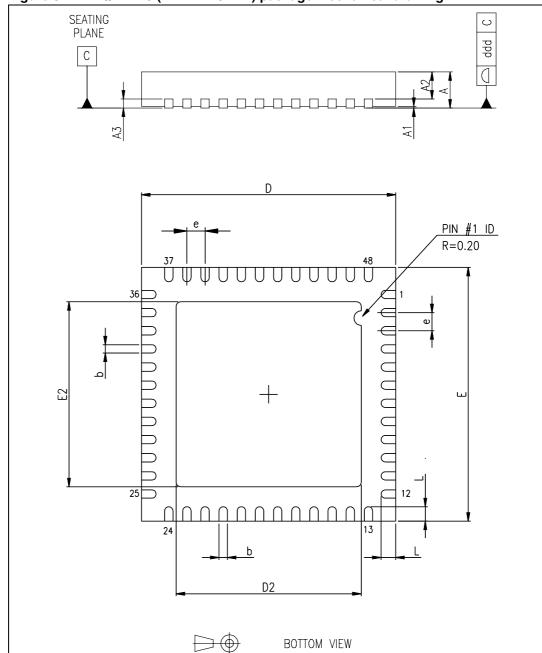


Figure 8. VFQFPN48 (7 x 7 x 1.0 mm) package mechanical drawing

L6370Q Revision history

5 Revision history

Table 9. Document revision history

Date	Revision	Changes
04-Oct-2011	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

16/16 Doc ID 022313 Rev 1

