

MiniSKiiP[®]1

3-phase bridge inverter

SKiiP 11AC12T4V1

Features

- Trench 4 IGBT's
- · Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications*

- Inverter up to 8 kVA
- Typical motor power 4 kW

Remarks

- V_{CEsat}, V_F= chip level value
 Case temp. limited to T_C = 125°C max. (for baseplateless modules $T_{C} = T_{S}$) • product rel. results valid for
- T_j≤150 (recomm. T_{op} = -40 ... +150°C)

Absolute Maximum Ratings T _c = 25 °C, unless otherwise specified					
Symbol	Conditions		Values	Units	
IGBT					
V _{CES}	T _j = 25 °C		1200	V	
I _C	T _j = 175 °C	T _c = 25 °C	12	А	
		T _c = 70 °C	12	А	
I _{CRM}	I _{CRM} = 3xI _{Cnom}		24	А	
V_{GES}			±20	V	
t _{psc}	V_{CC} = 800 V; $V_{GE} \le 15$ V; VCES < 1200 V	T _j = 150 °C	10	μs	
Inverse I	Diode		•		
I _F	T _j = 175 °C	T _c = 25 °C	15	А	
		T _c = 70 °C	12	А	
I _{FRM}	I _{CRM} = 3xI _{Cnom}		24	А	
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	36	А	
Module					
I _{t(RMS)}			20	А	
T _{vj}			-40+175	°C	
T _{stg}			-40+125	°C	
V _{isol}	AC, 1 min.		2500	V	

Characteristics T _c =			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 1 \text{ mA}$		5	5,8	6,5	V	
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,3	mA	
V _{CE0}		T _i = 25 °C		0,8	0,9	V	
		T _j = 150 °C		0,7	0,8	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		131	144	mΩ	
		T _j = 150°C		194	206	mΩ	
V _{CE(sat)}	I _{Cnom} = 8 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,85	2,05	V	
		T _j = 150°C _{chiplev.}		2,25	2,45	V	
C _{ies}				0,49		nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,05		nF	
C _{res}				0,03		nF	
Q _G	V _{GE} = -8 +15V			45		nC	
R _{Gint}	T _j = 25 °C			0		Ω	
t _{d(on)}				32		ns	
t,	R _{Gon} = 56 Ω	V _{CC} = 600V		28		ns	
É _{on}	di/dt = 280 A/µs	I _C = 8A		0,87		mJ	
τ _{d(off)}	$R_{Goff} = 56 \Omega$	T _j = 150 °C		300		ns	
t _f	di/dt = 90 A/µs	$V_{GE} = \pm 15V$		65		ns	
E _{off}				0,75		mJ	
R _{th(j-s)}	per IGBT			1,84		K/W	

MiniSKiiP[®]1

3-phase bridge inverter

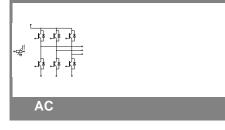
SKiiP 11AC12T4V1

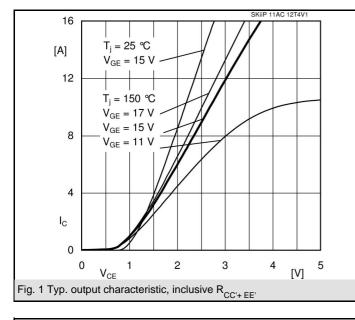
Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse D	ode					
$V_F = V_{EC}$	I _{Fnom} = 8 A; V _{GE} = 15 V			2,4	2,75	V
		T _j = 150 °C _{chiplev.}		2,45	2,8	V
V _{F0}		T _j = 25 °C		1,3	1,5	V
		T _j = 150 °C		0,9	1,1	V
r _F		T _j = 25 °C		138	156	mΩ
		T _j = 150 °C		194	213	mΩ
I _{RRM}	I _F = 8 A	T _j = 150 °C		7,7		Α
Q _{rr}	di/dt = 350 A/µs	2		1,3		μC
E _{rr}	$V_{GE} = \pm 15V$			0,53		mJ
R _{th(j-s)}	per diode			2,53		K/W
M _s	to heat sink		2		2,5	Nm
w				35		g
Tempera	ture sensor					•
R _{ts}	3%,Tr=25°C			1000		Ω
R _{ts}	3%,Tr=100°C			1670		Ω

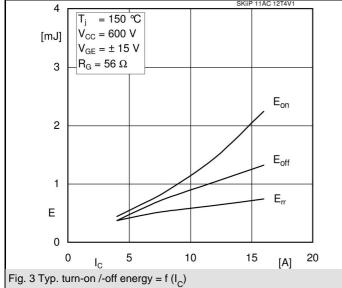
Features

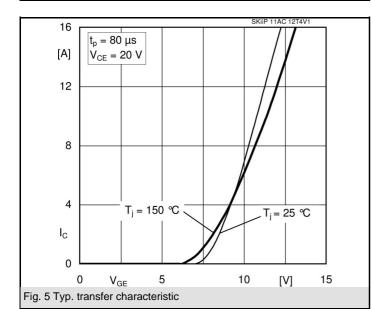
- Trench 4 IGBT's
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

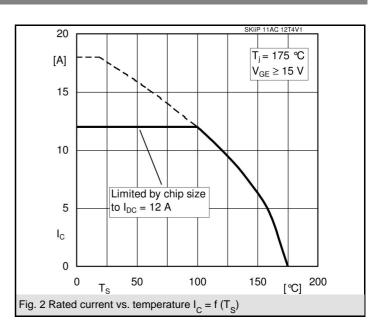
Typical Applications*

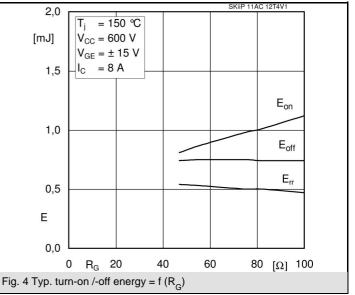

- Inverter up to 8 kVA
- Typical motor power 4 kW

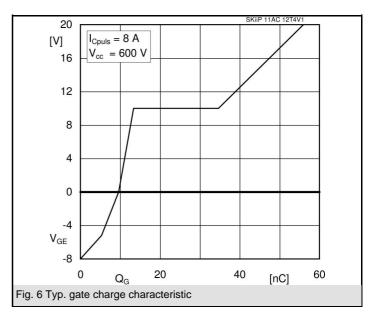

Remarks

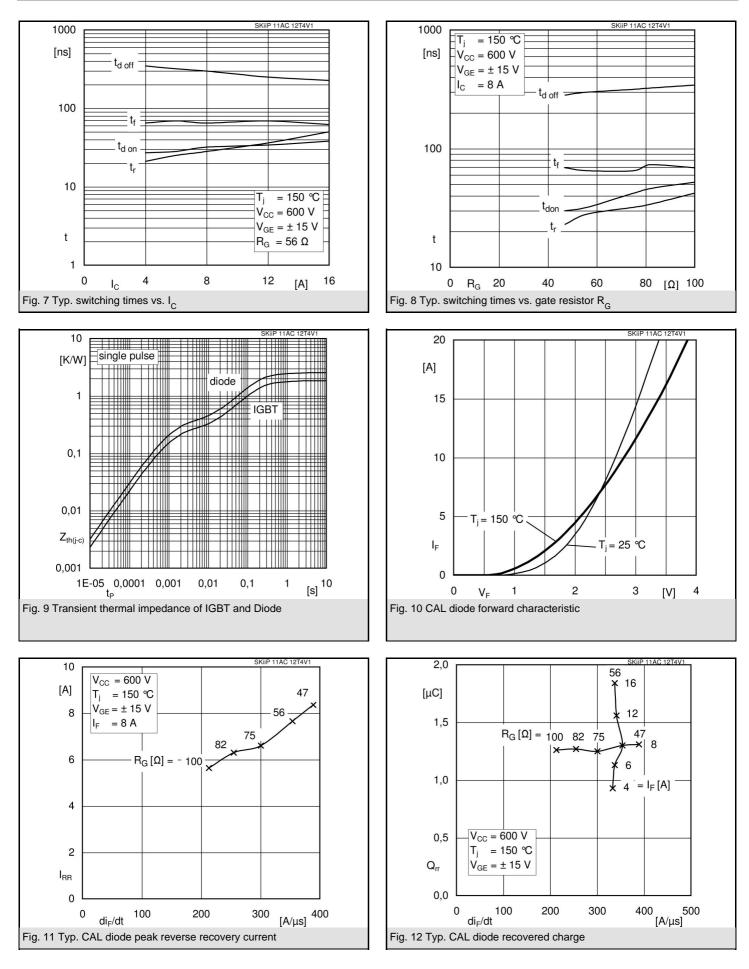

- V_{CEsat}, V_F= chip level value
- Case temp. limited to $T_C = 125^{\circ}C$ max. (for baseplateless modules $T_C = T_S$)
- product rel. results valid for $T_j \le 150$ (recomm. $T_{op} = -40 \dots +150$ °C)

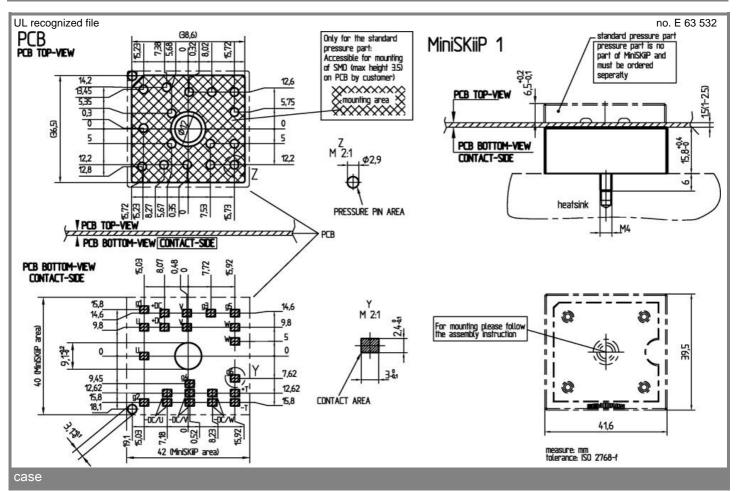

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

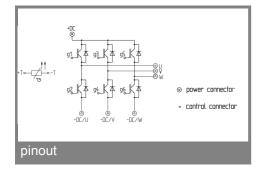

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.











29-10-2008 LAN

4

