1Mx32 3.3V Flash Module

FEATURES

■ Access Times of 100, 120, 150ns

- Packaging
- 66 pin, PGA Type, 1.185" square, Hermetic Ceramic HIP (Package 401)
- 68 lead, Low Profile CQFP (G2T), 4.6 mm (0.180") square (Package 509)
- 1,000,000 Erase/Program Cycles
- Sector Architecture
- One 16KByte, two 8KBytes, one 32KByte, and fifteen 64kBytes in byte mode
- Any combination of sectors can be concurrently erased. Also supports full chip erase
- Organized as $1 \mathrm{M} \times 32$
- Commercial, Industrial and Military Temperature Ranges
- 3.3 Volt for Read and Write Operations
- Boot Code Sector Architecture (Bottom)
- Low Power CMOS, 1.0 mA Standby
- Embedded Erase and Program Algorithms
- Built-in Decoupling Caps for Low Noise Operation
- Erase Suspend/Resume
- Supports reading data from or programing data to a sector not being erased
- Low Current Consumption

Typical values at 5 MHz :

- 40 mA Active Read Current
- 80 mA Program/Erase Current

- Weight

WF1M32B-XG2TX3-8 grams typical WF1M32B-XHX3-13 grams typical
Note: For programming information refer to Flash Programming 8M3 Application Note.

PIN CONFIGURATION FOR WF1M32B-XHX3

Top View

1	$12 \quad 23$	$34 \quad 45 \quad 56$
$\bigcirc 1108$	$\bigcirc_{\text {RESEETH }} \bigcirc_{\text {V1015 }}$	$1024 \bigcirc$ vcc $\bigcirc 11031 \bigcirc$
Olo9	$\bigcirc \mathrm{cs22}$ O 1014	$1025 \bigcirc$ cssi\# $\bigcirc 11030 \bigcirc$
O 11010	Ognd Olo13	$1026 \bigcirc$ nc $\bigcirc 11029 \bigcirc$
OA14	Oro11 \bigcirc_{1012}	A7 $^{\bigcirc} \bigcirc 1027 \bigcirc 1028 \bigcirc$
$\bigcirc{ }^{\text {A16 }}$	Oa10 ○ oe\#	$A_{12} \bigcirc \quad A_{4} \bigcirc \quad A_{1} \bigcirc$
$\bigcirc{ }_{\text {Al1 }}$	Oag $\bigcirc_{\text {alit }}$	$\begin{array}{lllllllllll}\mathrm{Nc} \bigcirc & \mathrm{A}_{5} \bigcirc \quad \mathrm{~A}_{2} \mathrm{O}\end{array}$
$\bigcirc \mathrm{AaO}^{\text {a }}$	\bigcirc A15 O we\#	$A_{13} \bigcirc \quad A_{6} \bigcirc \quad A_{3} \bigcirc$
$\bigcirc{ }^{\text {A18 }}$	Ovec Onlot	${ }^{\text {A8 }} \bigcirc \mathrm{NC}^{\bigcirc} \bigcirc{ }^{1023} \bigcirc$
$\bigcirc 100$	Ocsil \bigcirc^{1106}	
Orow	Oal9 Olios	$1017 \bigcirc$ GND $\bigcirc 11021 \bigcirc$
$\bigcirc 1102$	Orio3 ○104	$1018 \bigcirc 1019 \bigcirc 11020 \bigcirc$
11	$22 \quad 33$	$44 \quad 55$

Pin Description

I/O0-31	Data Inputs/Outputs
A0-19	Address Inputs
WE\#	Write Enable
CS1-4\#	Chip Selects
OE\#	Output Enable
RESET\#	Reset
Vcc	Power Supply
GND	Ground
NC	Not Connected

Block Diagram

Pin Configuration for WF1M32B-XG2TX3

Top View

The White 68 lead G2T CQFP fills the same fit and function as the JEDEC 68 lead CQFJ or 68 PLCC. But the G2T has the TCE and lead inspection advantage of the CQFP form.

Pin Description

I/OO-31	Data Inputs/Outputs
AO-19	Address Inputs
WE1-4	Write Enables
CS1-4	Chip Selects
OE	Output Enable
RESET	Reset/Powerdown
VcC	Power Supply
GND	Ground

Block Diagram

ABSOLUTE MAXIMUM RATINGS

Parameter		Unit
Operating Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
Supply Voltage Range (Vcc)	-0.5 to +4.0	V
Signal Voltage Range	-0.5 to $\mathrm{Vcc}+0.5$	V
Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 seconds)	+300	${ }^{\circ} \mathrm{C}$
Endurance (write/erase cycles)	$1,000,000$ min.	cycles

NOTES:

1. Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V_{CC}	3.0	3.6	V
Input High Voltage	V_{H}	$0.7 \times \mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
Input Low Voltage	V_{IL}	-0.5	+0.8	V
Operating Temp. (Mil.)	T_{A}	-55	+125	${ }^{\circ} \mathrm{C}$
Operating Temp. (Ind.)	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$

CAPACITANCE

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Max	Unit
OE\# capacitance	Coe	$\mathrm{VIN}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	50	pF
WE\#1-4 capacitance	CWe	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	20	pF
CS1-4 capacitance	Ccs	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	20	pF
Data I/O capacitance	C/Io	$\mathrm{V}_{1 / 0}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	20	pF
Address input capacitance	CAD	$\mathrm{VIN}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	50	pF

This parameter is guaranteed by design but not tested.

DATA RETENTION

Parameter	Test Conditions	Min	Unit
Minimum Pattern Data	$150^{\circ} \mathrm{C}$	10	Years
Retention Time	$125^{\circ} \mathrm{C}$	20	Years

DC CHARACTERISTICS - CMOS COMPATIBLE

$V_{c c}=3.3 \mathrm{~V}, \mathrm{~V}_{s s}=0 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Min	Max	Unit
Input Leakage Current	ILI	$V_{c c}=3.6, \mathrm{~V}_{\text {IN }}=\mathrm{GND}$ or Vcc		10	$\mu \mathrm{A}$
Output Leakage Current	ILOx32	$V_{c c}=3.6, \mathrm{~V}_{\text {IN }}=\mathrm{GND}$ or $\mathrm{V}_{\text {cc }}$		10	$\mu \mathrm{A}$
Vcc Active Current for Read (1)	Icc1	CS\# = VIL, OE\# = VIH, $\mathrm{f}=5 \mathrm{MHz}$		120	mA
Vcc Active Current for Program or Erase (2)	Icc2	CS\# = V $\mathrm{V}_{\text {LL }}$, OE\# = $\mathrm{V}_{\text {IH }}$		140	mA
Vcc Standby Current	Icc3	$\mathrm{V}_{\text {cc }}=3.6, \mathrm{CS}=\mathrm{V}^{\text {IH, }} \mathrm{f}=5 \mathrm{MHz}$		200	$\mu \mathrm{A}$
Output Low Voltage	Vol	$\mathrm{loL}=5.8 \mathrm{~mA}, \mathrm{Vcc}=3.0$		0.45	V
Output High Voltage	VoH1	$\mathrm{IOH}=-2.0 \mathrm{~mA}, \mathrm{~V}_{\text {cc }}=3.0$	$0.85 \times \mathrm{Vcc}$		V
Low Vcc Lock-Out Voltage (4)	Vıko		2.3	2.5	V

NOTES:

1. The Icc current listed includes both the DC operating current and the frequency dependent component (at 5 MHz). The frequency component typically is less than $8 \mathrm{~mA} / \mathrm{MHz}$, with OE\# at V_{IH}.
2. Icc active while Embedded Algorithm (program or erase) is in progress.
3. DC test conditions: $\mathrm{V}_{\mathrm{IL}}=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{Cc}}-0.3 \mathrm{~V}$
4. Guaranteed by design, but not tested.

AC CHARACTERISTICS - WRITE/ERASE/PROGRAM OPERATIONS - CS\# CONTROLLED
$\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$

Parameter	Symbol		-100		-120		-150		Unit
			Min	Max	Min	Max	Min	Max	
Write Cycle Time	tavav	twc	100		120		150		ns
Write Enable Setup Time	twLEL	tws	0		0		0		ns
Chip Select Pulse Width	teleh	tcp	45		50		50		ns
Address Setup Time	tavel	tas	0		0		0		ns
Data Setup Time	toveh	tos	45		50		50		ns
Data Hold Time	tehdx	toh	0		0		0		ns
Address Hold Time	telax	tah	45		50		50		ns
Chip Select Pulse Width High	tehel	tcPH	20		20		20		ns
Duration of Byte Programming Operation (1)	twhwh 1			300		300		300	$\mu \mathrm{s}$
Sector Erase Time	twhwH2			15		15		15	sec
Read Recovery Time (2)	tGHEL		0		0		0		$\mu \mathrm{s}$
Chip Programming Time				50		50		50	sec

1. Typical value for twhwh is $9 \mu \mathrm{~s}$.
2. Guaranteed by design, but not tested.

AC TEST CIRCUIT		AC TEST CONDITIONS		
	$\mathrm{V}_{\mathrm{z}} \approx 1.5 \mathrm{~V}$ (Bipolar Supply)	Parameter	Typ	Unit
		Input Pulse Levels	$\mathrm{V}_{\text {IL }}=0, \mathrm{~V}_{\text {IH }}=2.5$	V
		Input Rise and Fall	5	ns
		Input and Output Reference Level	1.5	V
		Output Timing Reference Level	1.5	V
		NOTES:		
		Vz is programmable from -2 V to +7 V .		
		loL \& loн programmable from 0 to 16 mA . Tester Impedance $\mathrm{ZO}=75 \Omega$.		
		Vz is typically the midpoint of Vor and VoL. loL \& Іoн are adjusted to simulate a typical ATE tester includes jig capacitance.	istive load circuit.	

AC CHARACTERISTICS - WRITE/ERASE/PROGRAM OPERATIONS - WE\# CONTROLLED
$\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$

Parameter	Symbol		-100		-120		-150		Unit
			Min	Max	Min	Max	Min	Max	
Write Cycle Time	tavav	twc	100		120		150		ns
Chip Select Setup Time	telwl	tcs	0		0		0		ns
Write Enable Pulse Width	twLwh	twp	50		50		65		ns
Address Setup Time	tavwL	tas	0		0		0		ns
Data Setup Time	tDvwh	tDs	50		50		65		ns
Data Hold Time	twhdx	tDH	0		0		0		ns
Address Hold Time	twlax	taH	50		50		65		ns
Write Enable Pulse Width High	twhwL	twPH	30		30		35		ns
Duration of Byte Programming Operation (1)	twhwH1			300		300		300	$\mu \mathrm{s}$
Sector Erase	twhwH2			15		15		15	sec
Read Recovery Time before Write (3)	tghwl		0		0		0		$\mu \mathrm{s}$
VCC Setup Time	tvcs		50		50		50		$\mu \mathrm{s}$
Chip Programming Time				50		50		50	sec
Output Enable Setup Time		toes	0		0		0		ns
Output Enable Hold Time (2)		toEH	10		10		10		ns

1. Typical value for twhwh is $9 \mu \mathrm{~s}$.
2. For Toggle and Data Polling.
3. Guaranteed by design, but not tested.

AC CHARACTERISTICS - READ-ONLY OPERATIONS

Vcc $=3.3 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$

Parameter	Symbol		-100		-120		-150		Unit
			Min	Max	Min	Max	Min	Max	
Read Cycle Time	tavav	trc	100		120		150		ns
Address Access Time	tavqv	tacc		100		120		150	ns
Chip Select Access Time	telqv	tce		100		120		150	ns
Output Enable to Output Valid	tglov	toe		40		50		55	ns
Chip Select High to Output High Z (1)	tehQz	tDF		30		30		40	ns
Output Enable High to Output High Z (1)	tghaz	tDF		30		30		40	ns
Output Hold from Addresses, CS\# or OE\# Change, whichever is First	taxax	toh	0		0		0		ns

1. Guaranteed by design, not tested.

AC WAVEFORMS FOR READ OPERATIONS

WRITE/ERASE/PROGRAM OPERATION, WE\# CONTROLLED

White Electronic Designs Corp. reserves the right to change products or specifications without notice.

AC WAVEFORMS CHIP/SECTOR ERASE OPERATIONS

White Electronic Designs Corp. reserves the right to change products or specifications without notice.

ALTERNATE CS\# CONTROLLED PROGRAMMING OPERATION TIMINGS

NOTES:

1. PA represents the address of the memory location to be programmed.
2. PD represents the data to be programmed at byte address.
3. D7\# is the output of the complement of the data written to each chip.
4. DOUT is the output of the data written to the device.
5. Figure indicates the last two bus cycles of a four bus cycle sequence.

PACKAGE 509: 68 LEAD, CERAMIC QUAD FLAT PACK, CQFP (G2T)

ALL LINEAR DIMENSIONS ARE MILLIMETERS AND PARENTHETICALLY IN INCHES

PACKAGE 401: 66 PIN, PGA TYPE, CERAMIC HEX-IN-LINE PACKAGE, HIP (H1)

ALL LINEAR DIMENSIONS ARE MILLIMETERS AND PARENTHETICALLY IN INCHES

ORDERING INFORMATION

