16-bit Proprietary Microcontroller cmos

F²MC-16LX MB90570A/570C Series

MB90573/574C/F574A/V570A

■ DESCRIPTION

The MB90570A/570C series is a general-purpose 16-bit microcontroller developed and designed by Fujitsu for process control applications in consumer products that require high-speed real time processing. It contains an I²C bus interface that allows inter-equipment communication to be implemented readily. This product is well adapted to car audio equipment, VTR systems, and other equipment and systems.

The instruction set of F²MC-16LX CPU core inherits AT architecture of F²MC* family with additional instruction sets for high-level languages, extended addressing mode, enhanced multiplication/division instructions, and enhanced bit manipulation instructions. The microcontroller has a 32-bit accumulator for processing long word data.

The MB90570A/570C series has peripheral resources of an 8/10-bit A/D converter, an 8-bit D/A converter, UART (SCI), an extended I/O serial interface, an 8/16-bit up/down counter/timer, an 8/16-bit PPG timer, I/O timer (a 16-bit free run timer, an input capture (ICU), an output compare (OCU)).

*: F²MC is the abbreviation for Fujitsu Flexible Microcontroller.

For the information for microcontroller supports, see the following web site.

http://edevice.fujitsu.com/micom/en-support/

■ FEATURES

Clock

Embedded PLL clock multiplication circuit

Operating clock (PLL clock) can be selected from 1/2 to 4× oscillation (at oscillation of 4 MHz, 4 MHz to 16 MHz). Minimum instruction execution time: 62.5 ns (at oscillation of 4 MHz, 4× PLL clock, operation at Vcc of 5.0 V)

· Maximum memory space

16 Mbytes

Instruction set optimized for controller applications

Rich data types (bit, byte, word, long word)

Rich addressing mode (23 types)

Enhanced signed multiplication/division instruction and RETI instruction functions

Enhanced precision calculation realized by the 32-bit accumulator

• Instruction set designed for high level language (C) and multi-task operations

Adoption of system stack pointer

Enhanced pointer indirect instructions

Barrel shift instructions

- Program patch function (for two address pointers)
- · Enhanced execution speed

4-byte instruction queue

• Enhanced interrupt function

8 levels, 34 factors

Automatic data transmission function independent of CPU operation

Extended intelligent I/O service function (EI2OS): Up to 16 channels

Embedded ROM size and types

Mask ROM: 128 kbytes/256 kbytes

Flash ROM: 256 kbytes

Embedded RAM size:6 kbytes/10 kbytes (mask ROM)

10 kbytes (flash memory)

10 kbytes (evaluation device)

• Low-power consumption (standby) mode

Sleep mode (mode in which CPU operating clock is stopped)

Stop mode (mode in which oscillation is stopped)

CPU intermittent operation mode

Hardware standby mode

Process

CMOS technology

• I/O port

General-purpose I/O ports (CMOS): 63 ports

General-purpose I/O ports (with pull-up resistors): 24 ports

General-purpose I/O ports (open-drain): 10 ports

Total: 97 ports

• Timer

Timebase timer/watchdog timer: 1 channel

8/16-bit PPG timer: 8-bit × 2 channels or 16-bit × 1 channel

• 8/16-bit up/down counter/timer: 1 channel (8-bit × 2 channels)

(Continued)

• 16-bit I/O timer

16-bit free run timer: 1 channel

Input capture (ICU): Generates an interrupt request by latching a 16-bit free run timer counter value upon

detection of an edge input to the pin.

Output compare (OCU): Generates an interrupt request and reverse the output level upon detection of a match

between the 16-bit free run timer counter value and the compare setting value.

• Extended I/O serial interface: 3 channels

• I²C interface (1 channel)

Serial I/O port for supporting Inter IC BUS

• UARTO (SCI), UART1 (SCI)

With full-duplex double buffer

Clock asynchronized or clock synchronized transmission can be selectively used.

• DTP/external interrupt circuit (8 channels)

A module for starting extended intelligent I/O service (EI²OS) and generating an external interrupt triggered by an external input.

• Delayed interrupt generation module

Generates an interrupt request for switching tasks.

• 8/10-bit A/D converter (8 channels)

8/10-bit resolution

Starting by an external trigger input.

Conversion time: 26.3 µs

• 8-bit D/A converter (based on the R-2R system)

8-bit resolution: 2 channels (independent)

Setup time: 12.5 μs
• Watch timer: 1 channel

• Chip select output (8 channels)

An active level can be set.

Clock output function

■ PRODUCT LINEUP

Part number		MB90573	MB90574C	MB90F574A	MB90V570A	
Item		WID30373	111111111111111111111111111111111111111	MD301 374A	MIDSOVSTOA	
Classification		Mask ROI	Mask ROM products Flash ROM products		Evaluation product	
ROM size		128 kbytes	256	kbytes	None	
RAM size		6 kbytes		10 kbytes		
CPU function	s		Instruction bit le Instruction lengt Data bit length: execution time: 62.5	instructions: 340 ngth: 8 bits, 16 bits h: 1 byte to 7 bytes 1 bit, 8 bits, 16 bits ns (at machine clock of	,	
Ports		Gen	eral-purpose I/O por al-purpose I/O ports	oorts (CMOS output): (ts (with pull-up resisto (N-ch open-drain outp al: 97	r): 24	
UARTO (SCI), UART1 (SCI)		Clock synchronized transmission (62.5 kbps to 1 Mbps) Clock asynchronized transmission (1202 bps to 9615 bps) Transmission can be performed by bi-directional serial transmission or by master/slave connection.				
8/10-bit A/D converter		Resolution: 8/10-bit Number of inputs: 8 One-shot conversion mode (converts selected channel only once) Scan conversion mode (converts two or more successive channels and can program up to 8 channels.) Continuous conversion mode (converts selected channel continuously) Stop conversion mode (converts selected channel and stop operation repeatedly)				
8/16-bit PPG timer		Number of channels: 1 (or 8-bit × 2 channels) PPG operation of 8-bit or 16-bit A pulse wave of given intervals and given duty ratios can be output. Pulse interval: 62.5 ns to 1 μs (at oscillation of 4 MHz, machine clock of 16 MHz)				
8/16-bit up/down counter/ timer		Number of channels: 1 (or 8-bit × 2 channels) Event input: 6 channels 8-bit up/down counter/timer used: 2 channels 8-bit re-load/compare function supported: 1 channel				
	16-bit free run timer	Number of channel: 1 Overflow interrupts				
16-bit I/O timer	Output compare (OCU)	Pin	gister			
	Input capture (ICU)	Rewriting a re		of channels: 2 pin input (rising, falling, or both edges)		

(Continued)

Part number	Part number							
Item	MB90573	MB90574C	MB90F574A	MB90V570A				
DTP/external interrupt circuit	Number of inputs: 8 Started by a rising edge, a falling edge, an "H" level input, or an "L" level input. External interrupt circuit or extended intelligent I/O service (EI ² OS) can be used.							
Delayed interrupt generation module	An interrupt gener		tching tasks used in i tems.	real time operating				
Extended I/O serial interface	Clock	Clock synchronized transmission (3125 bps to 1 Mbps) LSB first/MSB first						
I ² C interface		Serial I/O port for sup	pporting Inter IC BUS	3				
Timebase timer	18-bit counter Interrupt interval: 1.024 ms, 4.096 ms, 16.384 ms, 131.072 ms (at oscillation of 4 MHz)							
8-bit D/A converter	8-bit resolution Number of channels: 2 channels Based on the R-2R system							
Watchdog timer	Reset generation interval: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (at oscillation of 4 MHz, minimum value)							
Low-power consumption (standby) mode	Sleep/stop/CPU intermittent operation/watch timer/hardware standby							
Process		CM	1OS					
Power supply voltage for operation*		4.5 V t	o 5.5 V					

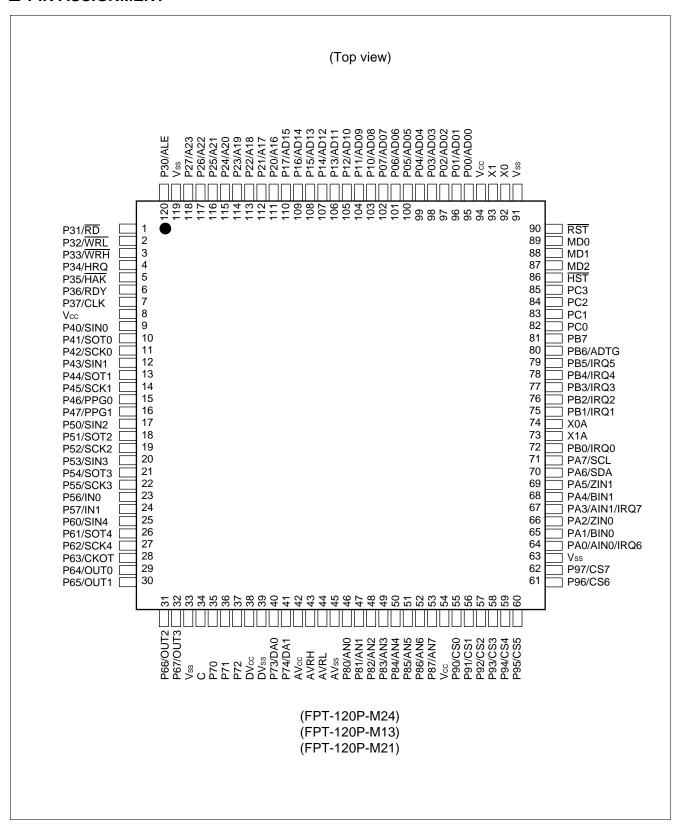
^{* :} Varies with conditions such as the operating frequency. (See section "■ ELECTRICAL CHARACTERISTICS.") Assurance for the MB90V570A is given only for operation with a tool at a power voltage of 4.5 V to 5.5 V, an operating temperature of 0 °C to +25 °C, and an operating frequency of 1 MHz to 16 MHz.

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB90573	MB90F574A	MB90574C
FPT-120P-M24	0	0	×
FPT-120P-M13	0	0	0
FPT-120P-M21	×	0	0

 $[\]bigcirc$: Available \times : Not available

Note: For more information about each package, see section "■ PACKAGE DIMENSIONS."


■ DIFFERENCES AMONG PRODUCTS

Memory Size

In evaluation with an evaluation product, note the difference between the evaluation product and the product actually used. The following items must be taken into consideration.

- The MB90V570A does not have an internal ROM, however, operations equivalent to chips with an internal ROM can be evaluated by using a dedicated development tool, enabling selection of ROM size by settings of the development tool.
- In the MB90V570A, images from FF4000H to FFFFFFH are mapped to bank 00, and FE0000H to FF3FFFH to mapped to bank FE and FF only. (This setting can be changed by configuring the development tool.)
- In the MB90573/574C/F574A, images from FF4000H to FFFFFFH are mapped to bank 00, and FF0000H to FF3FFFH to bank FF only.
- The products designated with /A or /C are different from those without /A or /C in that they are DTP/externally-interrupted types which return from standby mode at the ch.0 to ch.1 edge request.

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin no.			
LQFP *1 QFP *2	Pin name	Circuit type	Function
92,93	X0,X1	А	High speed oscillator pins
74,73	X0A,X1A	В	Low speed oscillator pins
89 to 87	MD0 to MD2	С	These are input pins used to designate the operating mode. They should be connected directly to Vcc or Vss.
90	RST	С	Reset input pin
86	HST	С	Hardware standby input pin
95 to 102	P00 to P07	D	In single chip mode, these are general purpose I/O pins. When set for input, they can be set by the pull-up resistance setting register (RDR0). When set for output, this setting will be invalid.
	AD00 toAD07		In external bus mode, these pins function as address low output/data low I/O pins.
103 to 110	P10 to P17	D	In single chip mode, these are general purpose I/O pins. When set for input, they can be set by the pull-up resistance setting register (RDR1). When set for output, the setting will be invalid.
	AD08 toAD15		In external bus mode, these pins function as address middle output/data high I/O pins.
	P20 to P27		In single chip mode this is a general-purpose I/O port.
111 to 118	A16 to A23	E	In external bus mode, these pins function as address high output pins.
	P30		In single chip mode this is a general-purpose I/O port.
120	ALE	E	In external bus mode, this pin functions as the address latch enable signal output pin.
	P31		In single chip mode this is a general-purpose I/O port.
1	RD	E	In external bus mode, this pin functions as the read strobe signal output pin.
	P32		In single chip mode this is a general-purpose I/O port.
2	WRL	E	In external bus mode, this pin functions as the data bus lower 8-bit write strobe signal output pin.
	P33		In single chip mode this is a general-purpose I/O port.
3	WRH	E	In external bus mode, this pin functions as the data bus upper 8-bit write strobe signal output pin.
	P34		In single chip mode this is a general-purpose I/O port.
4	HRQ	E	In external bus mode, this pin functions as the hold request signal input pin.
	P35		In single chip mode this is a general-purpose I/O port.
5	HAK	E	In external bus mode, this pin functions as the hold acknowledge signal output pin.
6	P36	Е	In single chip mode this is a general-purpose I/O port.
	RDY	<u> </u>	In external bus mode, this pin functions as the ready signal input pin.

^{*1:} FPT-120P-M24

^{*2:} FPT-120P-M13, FPT-120P-M21

Pin no.		Circuit	
LQFP *1 QFP *2	Pin name	type	Function
	P37		In single chip mode this is a general-purpose I/O port.
7 CLK		E	In external bus mode, this pin functions as the clock (CLK) signal output pin.
	P40		In single chip mode this is a general-purpose I/O port. It can be set to open drain by the ODR4 register.
9	SIN0	F	This is also the UART ch.0 serial data input pin. While UART ch.0 is in input operation, this input signal is in continuous use, and therefore the output function should only be used when needed. If shared by output from other functions, this pin should be output disabled during SIN operation.
10	P41	F	In single chip mode this is a general-purpose I/O port. It can be set to open drain by the ODR4 register.
10	SOT0	l	This is also the UART ch.0 serial data output pin. This function is valid when UART ch.0 is enabled for data output.
11	P42		In single chip mode this is a general-purpose I/O port. It can be set to open drain by the ODR4 register.
11	SCK0	F	This is also the UART ch.0 serial clock I/O pin. This function is valid when UART ch.0 is enabled for clock output.
	P43		In single chip mode this is a general-purpose I/O port. It can be set to open-drain by the ODR4 register.
12	SIN1	F	This is also the UART ch.1 serial data input pin. While UART ch.1 is in input operation, this input signal is in continuous use, and therefore the output function should only be used when needed. If shared by output from other functions, this pin should be output disabled during SIN operation.
13	P44	F	In single chip mode this is a general-purpose I/O port. It can be set to opendrain by the ODR4 register.
13	SOT1	l	This is also the UART ch.1 serial data output pin. This function is valid when UART ch.1 is enabled for data output.
14	P45	· F	In single chip mode this is a general-purpose I/O port. It can be set to open drain by the ODR4 register.
דו	SCK1	'	This is also the UART ch.1 serial clock I/O pin. This function is valid when UART ch.1 is enabled for clock output.
15,16	P46,P47	F	In single chip mode this is a general-purpose I/O port. It can be set to open drain by the ODR4 register.
10,10	PPG0,PPG1	'	These are also the PPG0, 1 output pins. This function is valid when PPG0, 1 output is enabled.
	P50		In single chip mode this is a general-purpose I/O port.
17	SIN2	E	This is also the I/O serial ch.0 data input pin. During serial data input, this input signal is in continuous use, and therefore the output function should only be used when needed.

*1: FPT-120P-M24

^{*2:} FPT-120P-M13, FPT-120P-M21

Pin no.		0: 1	
LQFP *1 QFP *2	Pin name	Circuit type	Function
	P51		In single chip mode this is a general-purpose I/O port.
18	SOT2	Е	This is also the I/O serial ch.0 data output pin. This function is valid when serial ch.0 is enabled for serial data output.
	P52		In single chip mode this is a general-purpose I/O port.
19	SCK2	E	This is also the I/O serial ch.0 clock I/O pin. This function is valid when serial ch.0 is enabled for serial data output.
	P53		In single chip mode this is a general-purpose I/O port.
20	SIN3	E	This is also the I/O serial ch.1 data input pin. During serial data input, this input signal is in continuous use, and therefore the output function should only be used when needed.
	P54		In single chip mode this is a general-purpose I/O port.
21	SOT3	Е	This is also the I/O serial ch.1 data output pin. This function is valid when serial ch.1 is enabled for serial data output.
	P55		In single chip mode this is a general-purpose I/O port.
22	SCK3	E	This is also the I/O serial ch.1 clock I/O pin. This function is valid when serial ch.1 is enabled for serial data output.
	P56,P57		In single chip mode this is a general-purpose I/O port.
23,24	INO,IN1	E	These are also the input capture ch.0/1 trigger input pins. During input capture signal input on ch.0/1 this function is in continuous use, and therefore the output function should only be used when needed.
05	P60	F	In single chip mode this is a general-purpose I/O port. When set for input it can be set by the pull-up resistance register (RDR6). When set for output this setting will be invalid.
25	SIN4	- F	This is also the I/O serial ch.2 data input pin. During serial data input this function is in continuous use, and therefore the output function should only be used when needed.
26	P61	F	In single chip mode this is a general-purpose I/O port. When set for input it can be set by the pull-up resistance register (RDR6). When set for output this setting will be invalid.
	SOT4		This is also the I/O serial ch.2 data output pin. This function is valid when serial ch.2 is enabled for serial data output.
27	P62	F	In single chip mode this is a general-purpose I/O port. When set for input it can be set by the pull-up resistance register (RDR6). When set for output this setting will be invalid.
	SCK4		This is also the I/O serial ch.2 serial clock I/O pin. This function is valid when serial ch.2 is enabled for serial data output.
28	P63	F	In single chip mode this is a general-purpose I/O port. When set for input it can be set by the pull-up resistance register (RDR6). When set for output this setting will be invalid.
	СКОТ	This is also the clock monitor output pin. This function is valid when clock monitor output is enabled.	

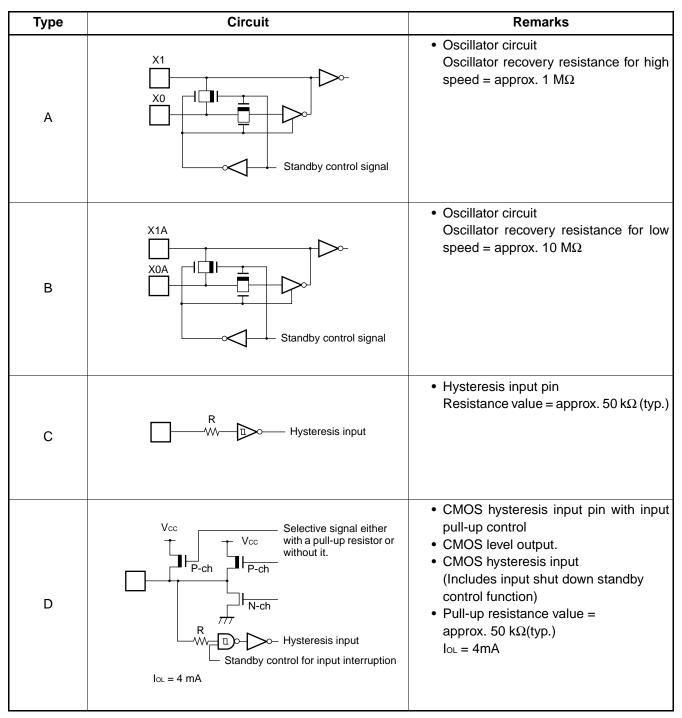
*1: FPT-120P-M24

*2: FPT-120P-M13, FPT-120P-M21

Pin no.		Cimanit	
LQFP *1 QFP *2	Pin name	Circuit type	Function
29 to 32	P64 to P67	F	In single chip mode these are general-purpose I/O ports. When set for input they can be set by the pull-up resistance register (RDR6). When set for output this setting will be invalid.
20 10 02	OUT0 to OUT3	,	These are also the output compare ch.0 to ch.3 event output pins. This function is valid when the respective channel(s) are enabled for output.
35 to 37	P70 to P72	Е	These are general purpose I/O ports.
40,41	P73,P74		These are general purpose I/O ports.
40,41	DA0,DA1	'	These are also the D/A converter ch.0,1 analog signal output pins.
	P80 to P87		These are general purpose I/O ports.
46 to 53	AN0 to AN7	K	These are also A/D converter analog input pins. This function is valid when analog input is enabled.
	P90 to P97		These are general purpose I/O ports.
55 to 62	CS0 to CS7	Е	These are also chip select signal output pins. This function is valid when chip select signal output is enabled.
34	С	G	This is the power supply stabilization capacitor pin. It should be connected externally to an 0.1 µF ceramic capacitor. Note that this is not required on the FLASH model (MB90F574A) and MB90574C.
	PA0		This is a general purpose I/O port.
64	AIN0	Е	This pin is also used as count clock A input for 8/16-bit up-down counter ch.0.
	IRQ6		This pin can also be used as interrupt request input ch. 6.
	PA1		This is a general purpose I/O port.
65	BIN0	E	This pin is also used as count clock B input for 8/16-bit up-down counter ch.0.
	PA2		This is a general purpose I/O port.
66	ZIN0	E	This pin is also used as count clock Z input for 8/16-bit up-down counter ch.0.
	PA3		This is a general purpose I/O port.
67	AIN1	Е	This pin is also used as count clock A input for 8/16-bit up-down counter ch.1.
	IRQ7		This pin can also be used as interrupt request input ch.7.
	PA4		This is a general purpose I/O port.
68	BIN1	E	This pin is also used as count clock B input for 8/16-bit up-down counter ch.1.
	PA5		This is a general purpose I/O port.
69	ZIN1	E	This pin is also used as count clock Z input for 8/16-bit up-down counter ch.1.

*1: FPT-120P-M24

*2: FPT-120P-M13, FPT-120P-M21


(Continued)

Pin no.		Cincuit		
LQFP *1 QFP *2	Pin name	Circuit type	Function	
	PA6		This is a general purpose I/O port.	
70	SDA	L	This pin is also used as the data I/O pin for the I ² C interface. This function is valid when the I ² C interface is enabled for operation. While the I ² C interface is operating, this port should be set to the input level (DDRA: bit6 = 0).	
	PA7		This is a general purpose I/O port.	
71	SCL	L	This pin is also used as the clock I/O pin for the I ² C interface. This function is valid when the I ² C interface is enabled for operation. While the I ² C interface is operating, this port should be set to the input level (DDRA: bit7 = 0).	
	PB0, PB1 to PB5		These are general-purpose I/O ports.	
72, 75 to 79	IRQ0, IRQ1 to IRQ5	Е	These pins are also the external interrupt input pins. IRQ0, 1 are enabled for both rising and falling edge detection, and therefore cannot be used for recovery from STOP status for MB90573. However, IRQ0, 1 can be used for recovery from STOP status for MB90V570A, MB90F574A and MB90574C.	
	PB6		This is a general purpose I/O port.	
80	ADTG	Е	This is also the A/D converter external trigger input pin. While the A/D converter is in input operation, this input signal is in continuous use, and therefore the output function should only be used when needed.	
81	PB7	Е	This is a general purpose I/O port.	
82 to 85	PC0 to PC3	Е	These are general purpose I/O ports.	
8,54,94	Vcc	Power supply	These are power supply (5V) input pins.	
33,63, 91,119	Vss	Power supply	These are power supply (0V) input pins.	
42	AVcc	Н	This is the analog macro (D/A, A/D etc.) Vcc power supply input pin.	
43	AVRH	J	This is the A/D converter Vref+ input pin. The input voltage should not exceed Vcc.	
44	AVRL	Н	This is the A/D converter Vref- input pin. The input voltage should not less than Vss.	
45	AVss	Н	This is the analog macro (D/A, A/D etc.) Vss power supply input pin.	
38	DVcc	Н	This is the D/A converter Vref input pin. The input voltage should not exceed Vcc.	
39	DVss	Н	This is the D/A converter GND power supply pin. It should be set to Vss equivalent potential.	

*1: FPT-120P-M24

*2 : FPT-120P-M13, FPT-120P-M21

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
E	N-ch N-ch Standby control for input interruption	 CMOS hysteresis input/output pin. CMOS level output CMOS hysteresis input (Includes input shut down standby control function) IoL = 4 mA
F	N-ch N-ch Standby control for input interruption	 CMOS hysteresis input/output pin. CMOS level output CMOS hysteresis input (Includes input shut down standby control function) IoL = 10 mA (Large current port)
G	Vcc P-ch N-ch	C pin output (capacitance connector pin).
Н	Vcc P-ch AVP	Analog power supply protector circuit.
I	P-ch N-ch N-ch Standby control for input interruption DAO loL = 4 mA	 CMOS hysteresis input/output Analog output/CMOS output dual-function pin (CMOS output is not available during analog output.) (Analog output priority: DAE = 1) Includes input shut down standby control function. IoL = 4mA

Type	Circuit	Remarks
J	P-ch ANE P-ch AVR N-ch ANE	A/D converter ref+ power supply input pin(AVRH), with power supply protector circuit.
K	P-ch N-ch N-ch N-ch Standby control for input interruption Analog input	 CMOS hysteresis input /analog input dual-function pin. CMOS output Includes input shut down function at input shut down standby.
L	N-ch N-ch N-ch N-ch N-ch Standby control for input interruption	 Hysteresis input N-ch open-drain output Includes input shut down standby control function. IoL= 4mA

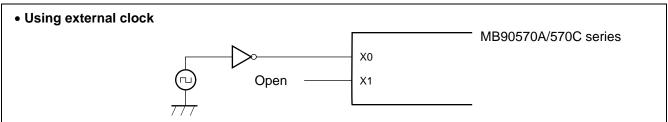
■ HANDLING DEVICES

1. Preventing Latchup

CMOS ICs may cause latchup in the following situations:

- When a voltage higher than Vcc or lower than Vss is applied to input or output pins.
- When a voltage exceeding the rating is applied between Vcc and Vss.
- When AVcc power is supplied prior to the Vcc voltage.

In turning on/turning off the analog power supply, make sure the analog power voltage (AVcc, AVRH, DVcc) and analog input voltages not exceed the digital voltage (Vcc).


2. Treatment of unused pins

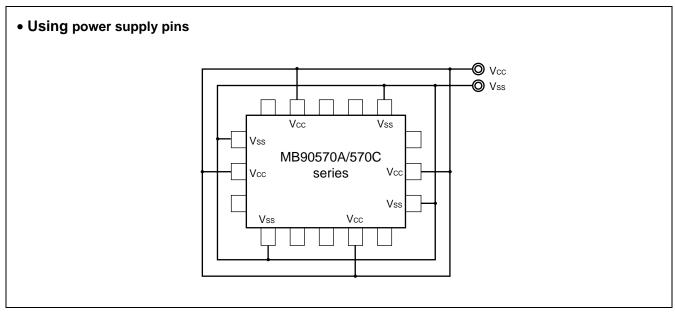
Leaving unused input pins open may result in misbehavior or latch up and possible permanent damage of the device. Therefor they must be tied to Vcc or Ground through resistors. In this case those resistors should be more than 2 k Ω .

Unused bidirectional pins should be set to the output state and can be left open, or the input state with the above described connection.

3. Notes on Using External Clock

In using the external clock, drive X0 pin only and leave X1 pin unconnected.

4. Unused Sub Clock Mode


If sub clock modes are not used, the oscillator should be connected to the X01A pin and X1A pin

5. Power Supply Pins (Vcc/Vss)

In products with multiple V_{CC} or V_{SS} pins, the pins of a same potential are internally connected in the device to avoid abnormal operations including latch-up. However, connect the pins external power and ground lines to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating.

Make sure to connect Vcc and Vss pins via lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1 μF between V_{CC} and V_{SS} pin near the device.

6. Crystal Oscillator Circuit

Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuit do not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board art work surrounding X0 and X1 pins with an grand area for stabilizing the operation.

Please ask the crystal maker to evaluate the oscillational characteristics of the crystal and this device.

7. Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply, D/A converter power supply (AVcc, AVRH, AVRL, DVcc, DVss) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

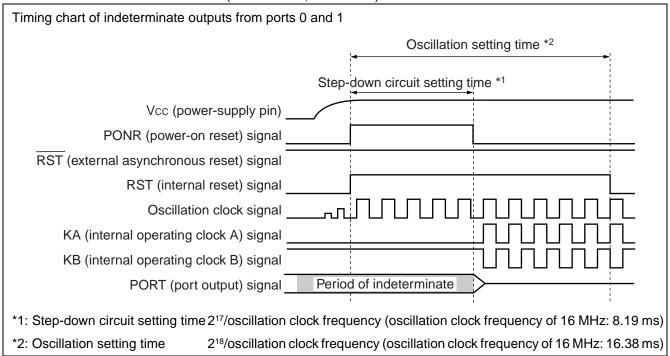
Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

8. Connection of Unused Pins of A/D Converter

Connect unused pins of A/D converter to AVcc = Vcc, AVss = AVRH = DVcc = Vss.

9. N.C. Pins

The N.C. (internally connected) pins must be opened for use.


10. Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at 50 or more μs (0.2 V to 2.7 V).

11. Indeterminate outputs from ports 0 and 1

The outputs from ports 0 and 1 become indeterminate during oscillation setting time of step-down circuit (during a power-on reset) after the power is turned on. (MB90573, MB90V570A)

The series without built-in step-down circuit have no oscillation setting time of step-down circuit, so outputs should not become indeterminate. (MB90F574A,MB90574C)

12. Initialization

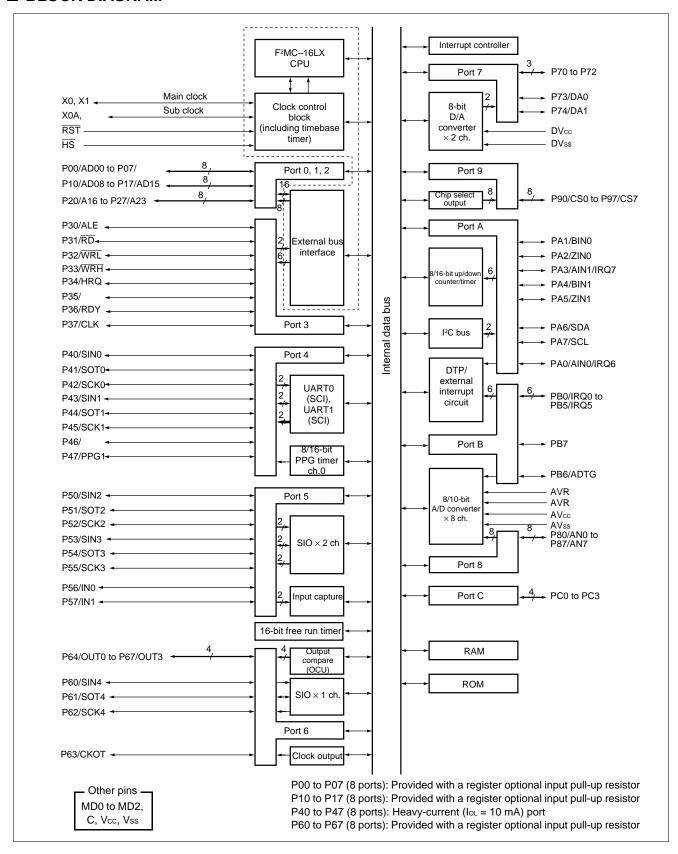
In the device, there are internal registers which are initialized only by a power-on reset. Turn on the power again to initialize these registers.

13. Return from standby state

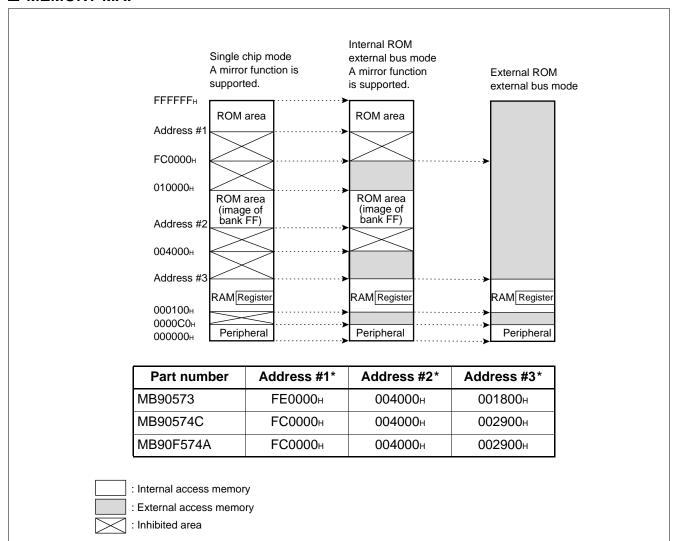
If the power-supply voltage goes below the standby RAM holding voltage in the standby state, the device may fail to return from the standby state. In this case, reset the device via the external reset pin to return to the normal state.

14. Precautions for Use of 'DIV A, Ri,' and 'DIVW A, Ri' Instructions

The signed multiplication-division instructions 'DIV A, Ri,' and 'DIVW A, RWi' should be used when the corresponding bank registers (DTB, ADB, USB, SSB) are set to value '00h.' If the corresponding bank registers (DTB, ADB, USB, SSB) are set to a value other than '00h,' then the remainder obtained after the execution of the instruction will not be placed in the instruction operand register.


15. Precautions for Use of REALOS

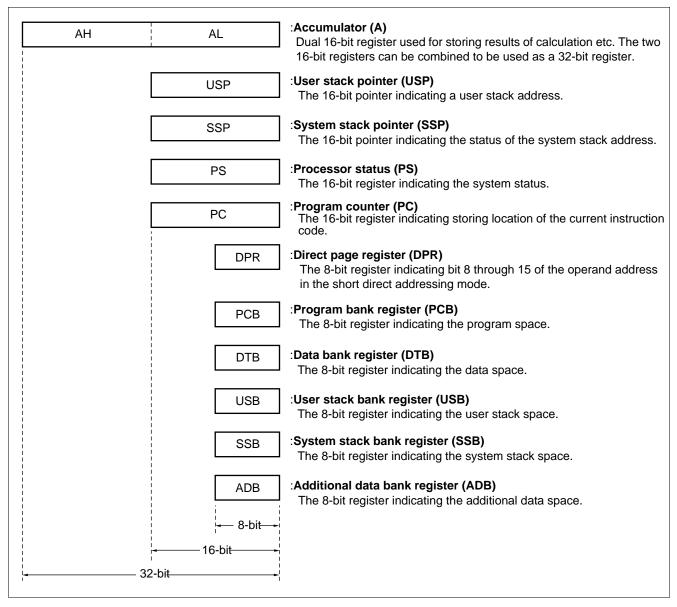
Extended intelligent I/O service (EI2OS) cannot be used, when REALOS is used.


16. Caution on PLL Clock Mode

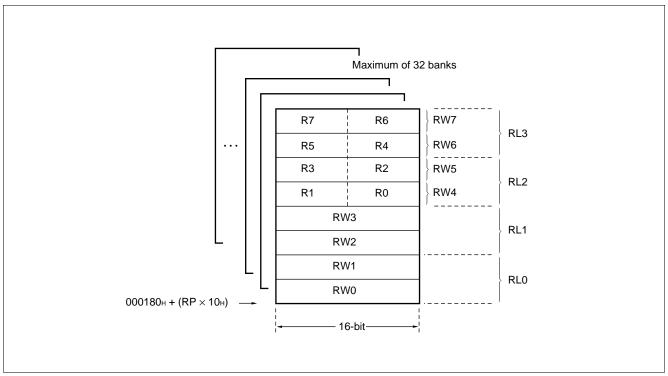
If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

■ BLOCK DIAGRAM

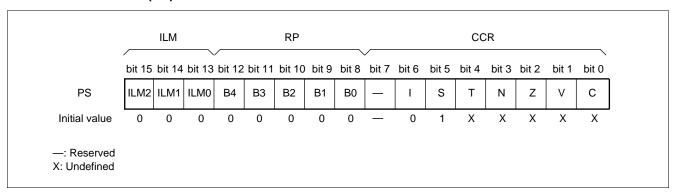
■ MEMORY MAP


Note: The ROM data of bank FF is reflected in the upper address of bank 00, realizing effective use of the C compiler small model. The lower 16-bit of bank FF and the lower 16-bit of bank 00 is assigned to the same address, enabling reference of the table on the ROM without stating "far".

*: Addresses #1, #2 and #3 are unique to the product type.


For example, if an attempt has been made to access $00C000_{
m H}$, the contents of the ROM at FFC000_H are accessed actually. Since the ROM area of the FF bank exceeds 48 kbytes, the whole area cannot be reflected in the image for the 00 bank. The ROM data at FF4000_H to FFFFFF_H looks, therefore, as if it were the image for $00400_{
m H}$ to $00FFFF_{
m H}$. Thus, it is recommended that the ROM data table be stored in the area of FF4000_H to FFFFFF_H.

■ F²MC-16LX CPU PROGRAMMING MODEL


Dedicated registers

• General-purpose registers

• Processor status (PS)

■ I/O MAP

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value				
000000н	PDR0	Port 0 data register	R/W	Port 0	XXXXXXX				
000001н	PDR1	Port 1 data register	R/W	Port 1	XXXXXXX				
000002н	PDR2	Port 2 data register	R/W	Port 2	XXXXXXX				
000003н	PDR3	Port 3 data register	R/W	Port 3	XXXXXXX				
000004н	PDR4	Port 4 data register	R/W	Port 4	XXXXXXXX				
000005н	PDR5	Port 5 data register	R/W	Port 5	XXXXXXXXB				
000006н	PDR6	Port 6 data register	R/W	Port 6	X X X X X X X XB				
000007н	PDR7	Port 7 data register	R/W	Port 7	XXXXXXXX				
000008н	PDR8	Port 8 data register	R/W	Port 8	XXXXXXXX				
000009н	PDR9	Port 9 data register	R/W	Port 9	XXXXXXXX				
00000Ан	PDRA	Port A data register	R/W	Port A	XXXXXXXX				
00000Вн	PDRB	Port B data register	R/W	Port B	XXXXXXXX				
00000Сн	PDRC	Port C data register	R/W	Port C	XXXXXXXX				
00000Dн to 00000Fн		(Disabled)							
000010н	DDR0	Port 0 direction register	R/W	Port 0	0 0 0 0 0 0 0 0 _B				
000011н	DDR1	Port 1 direction register	R/W	Port 1	$0\ 0\ 0\ 0\ 0\ 0\ 0$				
000012н	DDR2	Port 2 direction register	R/W	Port 2	$0\ 0\ 0\ 0\ 0\ 0\ 0$				
000013н	DDR3	Port 3 direction register	R/W	Port 3	0 0 0 0 0 0 0 0 _B				
000014н	DDR4	Port 4 direction register	R/W	Port 4	0 0 0 0 0 0 0 0 _B				
000015н	DDR5	Port 5 direction register	R/W	Port 5	0 0 0 0 0 0 0 0в				
000016н	DDR6	Port 6 direction register	R/W	Port 6	0 0 0 0 0 0 0 0в				
000017н	DDR7	Port 7 direction register	R/W	Port 7	 00000				
000018н	DDR8	Port 8 direction register	R/W	Port 8	0 0 0 0 0 0 0 0в				
000019н	DDR9	Port 9 direction register	R/W	Port 9	0 0 0 0 0 0 0 0в				
00001Ан	DDRA	Port A direction register	R/W	Port A	0 0 0 0 0 0 0 0в				
00001Вн	DDRB	Port B direction register	R/W	Port B	0 0 0 0 0 0 0 0в				
00001Сн	DDRC	Port C direction register	R/W	Port C	0 0 0 0 0 0 0 0в				
00001Дн	ODR4	Port 4 output pin register	R/W	Port 4	0 0 0 0 0 0 0 0в				
00001Ен	ADER	Analog input enable register	R/W	Port 8, 8/10-bit A/D converter	11111111в				
00001Fн		((Disabled)	1					
000020н	SMR0	Serial mode register 0	R/W	UART0	0 0 0 0 0 0 0 0в				
000021н	SCR0	Serial control register 0	R/W	(SCI)	0 0 0 0 0 1 0 0в				

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
000022н	SIDR0/ SODR0	Serial input data register 0/ serial output data register 0	R/W	UARTO	XXXXXXX
000023н	SSR0	Serial status register 0	R/W	(SCI)	0 0 0 0 1 – 0 Ов
000024н	SMR1	Serial mode register 1	R/W		0 0 0 0 0 0 0 0в
000025н	SCR1	Serial control register 1	R/W	LIADT4	0 0 0 0 0 1 0 Ов
000026н	SIDR1/ SODR1	Serial input data register 1/ serial output data register 1	R/W	UART1 (SCI)	XXXXXXX
000027н	SSR1	Serial status register 1	R/W		0 0 0 0 1 – 0 Ов
000028н	CDCR0	Communications prescaler control register 0	R/W	Communica- tions prescaler register 0	0 — — — 1 1 1 1в
000029н		(Disabl	ed)	<u> </u>	
00002Ан	CDCR1	Communications prescaler control register 1	R/W	Communica- tions prescaler register 0	0 — — — 1 1 1 1в
00002Вн to 00002Fн		(Disabl	ed)		
000030н	ENIR	DTP/interrupt enable register	R/W		0 0 0 0 0 0 0 0 _B
000031н	EIRR	DTP/interrupt factor register	R/W	DTP/external	XXXXXXXX
000032н	ELVR	Request level setting register	R/W	interrupt circuit	0 0 0 0 0 0 0 0 _B
000033н	LLVIX	Trequest level setting register	1000		0 0 0 0 0 0 0 0в
000034н		(Disabl	ed)		
000035н		(Disabi			
000036н	ADCS1	A/D control status register lower digits	R/W		0 0 0 0 0 0 0 0в
000037н	ADCS2	A/D control status register upper digits	R/W or W	8/10-bit A/D converter	0 0 0 0 0 0 0 0в
000038н	ADCR1	A/D data register lower digits	R		XXXXXXX
000039н	ADCR2	A/D data register upper digits	W		0 0 0 0 1 – X X _B
00003Ан	DADR0	D/A converter data register ch.0	R/W		XXXXXXXX
00003Вн	DADR1	D/A converter data register ch.1	R/W	8-bit D/A	XXXXXXX
00003Сн	DACR0	D/A control register 0	R/W	converter	 Ов
00003Dн	DACR1	D/A control register 1	R/W		 Ов
00003Ен	CLKR	Clock output enable register	R/W	Clock monitor function	O O O OB
00003Fн		(Disabl	ed)	-	
000040н	PRLL0	PPG0 reload register L ch.0	R/W	8/16-bit PPG	XXXXXXX
		PPG0 reload register H ch.0	R/W	timer 0	

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
000042н	PRLL1	PPG1 reload register L ch.1	R/W	8/16-bit PPG	XXXXXXXX
000043н	PRLH1	PPG1 reload register H ch.1	R/W	timer 1	XXXXXXXX
000044н	PPGC0	PPG0 operating mode control register ch.0	R/W	8/16-bit PPG timer 0	0 X 0 0 0 X X 1 _B
000045н	PPGC1	PPG1 operating mode control register ch.1	R/W	8/16-bit PPG timer 1	0 Х 0 0 0 0 0 1в
000046н	PPGOE	PPG0 and 1 output control registers ch.0 and ch.1	R/W	8/16-bit PPG timer 0, 1	0 0 0 0 0 0 X X _B
000047н		(Disable	ed)		
000048н	SMCSL0	Serial mode control lower status register 0	R/W	Faton do d.VO	O O O OB
000049н	SMCSH0	Serial mode control upper status register 0	R/W	Extended I/O serial interface 0	0 0 0 0 0 0 1 Ов
00004Ан	SDR0	Serial data register 0	R/W		XXXXXXXX
00004Вн		(Disable	ed)		
00004Сн	SMCSL1	Serial mode control lower status register 1	R/W		O O O OB
00004Дн	SMCSH1	Serial mode control upper status register 1	R/W	Extended I/O serial interface 1	0 0 0 0 0 0 1 0в
00004Ен	SDR1	Serial data register 1	R/W		XXXXXXXX
00004Fн		(Disable	ed)		
000050н	IDCDO	ICI I data va sistav ab O	Б		XXXXXXXX
000051н	IPCP0	ICU data register ch.0	R	16-bit I/O timer	XXXXXXXX
000052н	IDCD4	ICLI data register ob 1	D	(input capture	XXXXXXXX
000053н	IPCP1	ICU data register ch.1	R	(ICU) section)	XXXXXXXX
000054н	ICS01	ICU control status register	R/W		0 0 0 0 0 0 0 0в
000055н		(Disable	ed)		
000056н	TCDT	From the product of the product of	D/M	16-bit I/O timer	0 0 0 0 0 0 0 0в
000057н	ICDI	Free run timer data register	R/W	(16-bit free run	0 0 0 0 0 0 0 0в
000058н	TCCS	Free run timer control status register	R/W	timer section)	0 0 0 0 0 0 0 0в
000059н		(Disable	ed)	-	
00005Ан	OCCP0	OCI I company and diotom of O	DAM		XXXXXXXX
00005Вн	UCCPU	OCU compare register ch.0	R/W		XXXXXXXX
00005Сн	OCCD4	OCI compare register sh 1	D AA7	16-bit I/O timer	XXXXXXXX
00005Дн	OCCP1	OCU compare register ch.1	R/W	(output compare (OCU) section)	XXXXXXXX
00005Ен	OCCD2	OCI compare register ch 2	D AA7		XXXXXXXX
00005Fн	OCCP2	OCU compare register ch.2	R/W		XXXXXXXX

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
000060н	00000	OCI common vocietos el 2	DAM		XXXXXXXX
000061н	OCCP3	OCU compare register ch.3	R/W		XXXXXXXX
000062н	OCS0	OCU control status register ch.0	R/W	16-bit I/O timer	0 0 0 0 — — 0 Ов
000063н	OCS1	OCU control status register ch.1	R/W	(output compare (OCU) section)	 00000
000064н	OCS2	OCU control status register ch.2	R/W		0 0 0 0 — — 0 Ов
000065н	OCS3	OCU control status register ch.3	R/W	-	 00000
000066н		(Disab	alad)	-	
000067н		(Disab	olea)		
000068н	IBSR	I ² C bus status register	R		0 0 0 0 0 0 0 0в
000069н	IBCR	I ² C bus control register	R/W		0 0 0 0 0 0 0 0в
00006Ан	ICCR	I ² C bus clock control register	R/W	I ² C interface	0 X X X X X _B
00006Вн	IADR	I ² C bus address register	R/W	-	- X X X X X X X B
00006Сн	IDAR	I ² C bus data register	R/W	-	XXXXXXX
00006Dн		(Disab	-ll\	1	
00006Ен		(Disab	olea)		
00006Fн	ROMM	ROM mirroring function selection register	W	ROM mirroring function selection module	1 в
000070н	UDCR0	Up/down count register 0	R		0 0 0 0 0 0 0 0в
000071н	UDCR1	Up/down count register 1	R		0 0 0 0 0 0 0 0в
000072н	RCR0	Reload compare register 0	W	8/16-bit up/down counter/timer	0 0 0 0 0 0 0 0в
000073н	RCR1	Reload compare register 1	W	_ counter/timer	0 0 0 0 0 0 0 0в
000074н	CSR0	Counter status register 0	R/W	-	0 0 0 0 0 0 0 0в
000075н		(Reserved	d area)*3		
000076н	CCRL0	0	D 444		-0000000
000077н	CCRH0	Counter control register 0	R/W	8/16-bit up/down counter/timer	0 0 0 0 0 0 0 0в
000078н	CSR1	Counter status register 1	R/W	Counter/time	0 0 0 0 0 0 0 0в
000079н		(Reserved	d area)*3		
00007Ан	CCRL1		D 444	8/16-bit up/down	- 0 0 0 0 0 0 0 _B
00007Вн	CCRH1	Counter control register 1	R/W	counter/timer	- 0 0 0 0 0 0 0 _B
00007Сн	SMCSL2	Serial mode control lower status register 2	R/W		O O O Oв
00007Dн	SMCSH2	Serial mode control higher status register 2	R/W	Extended I/O serial interface 2	0 0 0 0 0 0 1 0в
00007Ен	SDR2	Serial data register 2	R/W		XXXXXXX
00007Fн		(Disak	oled)		
					(Continued

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
н080000	CSCR0	Chip selection control register 0	R/W		 0000
000081н	CSCR1	Chip selection control register 1	R/W		 0000
000082н	CSCR2	Chip selection control register 2	R/W		 0000
000083н	CSCR3	Chip selection control register 3	R/W	Chip select output	 0000
000084н	CSCR4	Chip selection control register 4	R/W	Joanpar	 0000
000085н	CSCR5	Chip selection control register 5	R/W		 0000
000086н	CSCR6	Chip selection control register 6	R/W		 0000
000087н to		(Disabl	ed)		
00008Вн					
00008Сн	RDR0	Port 0 input pull-up resistor setup register	R/W	Port 0	0 0 0 0 0 0 0 0в
00008Dн	RDR1	Port 1 input pull-up resistor setup register	R/W	Port 1	0 0 0 0 0 0 0 0в
00008Ен	RDR6	Port 6 input pull-up resistor setup register	R/W	Port 6	0 0 0 0 0 0 0 0в
00008Fн to 00009Dн		(Disabl	ed)		
00009Ен	PACSR	Program address detection control status register	R/W	Address match detection function	0 0 0 0 0 0 0 0 В
00009Fн	DIRR	Delayed interrupt factor generation/cancellation register	R/W	Delayed interrupt generation module	O _В
0000А0н	LPMCR	Low-power consumption mode control register	R/W	Low-power consumption	0 0 0 1 1 0 0 0в
0000А1н	CKSCR	Clock select register	R/W	(standby) mode	1 1 1 1 1 1 0 Ов
0000A2н to 0000A4н		(Disabl	ed)		
0000А5н	ARSR	Automatic ready function select register	W		0 0 1 1 — — 0 Ов
0000А6н	HACR	Upper address control register	W	External bus pin	0 0 0 0 0 0 0 0в
0000А7н	ECSR	Bus control signal select register	W		0 0 0 0 0 0 0 0в
0000А8н	WDTC	Watchdog timer control register	R/W	Watchdog timer	XXXXXXX
0000А9н	TBTC	Timebase timer control register	R/W	Timebase timer	1 — — О О 1 О Ов
0000ААн	WTC	Watch timer control register	R/W	Watch timer	1 Х О О О О О ОВ

(Continued Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
0000ABн to 0000ADн		(Disable	ed)		
0000АЕн	FMCS	Flash control register	R/W	Flash interface	0 0 0 X 0 X X 0 _B
0000АГн		(Disable	ed)		
0000В0н	ICR00	Interrupt control register 00	R/W		00000111в
0000В1н	ICR01	Interrupt control register 01	R/W	-	00000111в
0000В2н	ICR02	Interrupt control register 02	R/W	-	00000111в
0000В3н	ICR03	Interrupt control register 03	R/W	-	00000111в
0000В4н	ICR04	Interrupt control register 04	R/W	-	00000111в
0000В5н	ICR05	Interrupt control register 05	R/W	-	00000111в
0000В6н	ICR06	Interrupt control register 06	R/W	-	00000111В
0000В7н	ICR07	Interrupt control register 07	R/W	Interrupt	00000111в
0000В8н	ICR08	Interrupt control register 08	R/W	controller	00000111в
0000В9н	ICR09	Interrupt control register 09	R/W	-	00000111в
0000ВАн	ICR10	Interrupt control register 10	R/W	-	00000111в
0000ВВн	ICR11	Interrupt control register 11	R/W	-	00000111в
0000ВСн	ICR12	Interrupt control register 12	R/W	-	00000111в
0000ВДн	ICR13	Interrupt control register 13	R/W	-	00000111в
0000ВЕн	ICR14	Interrupt control register 14	R/W	-	00000111в
0000ВFн	ICR15	Interrupt control register 15	R/W		00000111в
0000C0н to 0000FFн		(External a	irea)*1		
000100н to 000###н		(RAM are	ea)*²		
000###н to 001FEFн		(Reserved	area)*³		
001FF0н		Program address detection register 0	R/W		XXXXXXXXB
001FF1н	PADR0	Program address detection register 1	R/W		XXXXXXXX
001FF2н		Program address detection register 2	R/W	Address match	XXXXXXXX
001FF3н		Program address detection register 3	R/W	detection function	XXXXXXXX
001FF4н	PADR1	Program address detection register 4	R/W		XXXXXXXX
001FF5н		Program address detection register 5	R/W]	XXXXXXXX
001FF6н to 001FFFн		(Reserved	area)		

Descriptions for read/write

R/W: Readable and writable

R : Read only W : Write only

Descriptions for initial value

The initial value of this bit is "0".The initial value of this bit is "1".

X: The initial value of this bit is undefined.

This bit is unused. The initial value is undefined.

- *1 : This area is the only external access area having an address of 0000FF_H or lower. An access operation to this area is handled as that to external I/O area.
- *2 : For details of the RAM area, see "■ MEMORY MAP".
- *3: The reserved area is disabled because it is used in the system.
- Notes: For bits that is initialized by an reset operation, the initial value set by the reset operation is listed as an initial value. Note that the values are different from reading results.

 For LPMCR/CKSCR/WDTC, there are cases where initialization is performed or not performed, depending on the types of the reset. However initial value for resets that initializes the value are listed.
 - The addresses following 0000FFH are reserved. No external bus access signal is generated.
 - Boundary #### between the RAM area and the reserved area varies with the product model.

\blacksquare INTERRUPT FACTORS, INTERRUPT VECTORS, INTERRUPT CONTROL REGISTER

Interrupt course	El ² OS	Interru	ot vector	Interrupt co	ntrol register	Driority
Interrupt source	support	Number	Address	ICR	Address	Priority
Reset	×	# 08	FFFFDCH	_	_	High
INT9 instruction	×	# 09	FFFFD8 _H	_	_	
Exception	×	# 10	FFFFD4 _H	_	_	1 1
8/10-bit A/D converter	0	# 11	FFFFD0 _H	ICR00	0000В0н	
Input capture 0 (ICU) include	0	# 12	FFFFCCH	ICKUU	ООООБОН	
DTP0 (external interrupt 0)	0	# 13	FFFFC8 _H	ICR01	0000В1н	
Input capture 1 (ICU) include	0	# 14	FFFFC4 _H	ICKUI	OOOOD TH	
Output compare 0 (OCU) match	0	# 15	FFFFC0 _H	ICR02	0000В2н	
Output compare 1 (OCU) match	0	# 16	FFFFBC _H	ICNUZ	UUUUDZH	
Output compare 2 (OCU) match	0	# 17	FFFFB8 _H	ICR03	0000ВЗн	
Output compare 3 (OCU) match	0	# 18	FFFFB4 _H	ICKUS	UUUUDSH	
Extended I/O serial interface 0	0	# 19	FFFFB0 _H	ICR04	0000В4н	
16-bit free run timer	×	# 20	FFFFACH	ICN04	0000Б4н	
Extended I/O serial interface 1	0	# 21	FFFFA8 _H	ICR05	0000В5н	
Watch timer	×	# 22	FFFFA4 _H	ICKUS	ООООБЭН	
Extended I/O serial interface 2	0	# 23	FFFFA0 _H	ICR06	0000В6н	
DTP1 (external interrupt 1)	0	# 24	FFFF9C _H	ICKUU	ООООБОН	
DTP2/DTP3 (external interrupt 2/ external interrupt 3)	0	# 25	FFFF98 _H	ICR07	0000В7н	
8/16-bit PPG timer 0 counter borrow	×	# 26	FFFF94 _H			
DTP4/DTP5 (external interrupt 4/ external interrupt 5)	0	# 27	FFFF90 _H	ICR08	0000В8н	
8/16-bit PPG timer 1 counter borrow	×	# 28	FFFF8C _H			
8/16-bit up/down counter/timer 0 borrow/overflow/inversion	0	# 29	FFFF88 _H	ICROO	0000В9н	
8/16-bit up/down counter/timer 0 compare match	0	# 30	FFFF84 _H	ICR09	ООООБЭН	
8/16-bit up/down counter/timer 1 borrow/overflow/inversion	0	# 31	FFFF80 _H	ICR10	0000ВАн	
8/16-bit up/down counter/timer 1 compare match	0	# 32	FFFF7C _H	IONIU	0000ВАн	
DTP6 (external interrupt 6)	0	# 33	FFFF78 _H	ICR11	0000ВВн	1 *
Timebase timer	×	# 34	FFFF74 _H	IONII	UUUUDDH	Low

Interrupt course	El ² OS	Interru	ot vector	Interrupt co	Priority	
Interrupt source	support	Number	Address	ICR	Address	Priority
DTP7 (external interrupt 7)	0	# 35	FFFF70 _H	ICR12	000000	High
I ² C interface	×	# 36	FFFF6C _H	ICKIZ	0000ВСн	†
UART1 (SCI) reception complete	0	# 37	FFFF68 _H			
UART1 (SCI) transmission complete	0	# 38	FFFF64 _H	ICR13	0000ВDн	
UART0 (SCI) reception complete	0	# 39	FFFF60 _H			
UART0 (SCI) transmission complete	0	# 40	FFFF5C _H	ICR14	0000ВЕн	
Flash memory	×	# 41	FFFF58 _H			
Delayed interrupt generation module	×	# 42	FFFF54 _H	ICR15	0000ВFн	▼ Low

- :Can be used
- × :Can not be used
- :Can be used. With El²OS stop function.

■ PERIPHERALS

1. I/O Port

(1) Input/output Port

Port 0 through 4, 6, 8, A and B are general-purpose I/O ports having a combined function as an external bus pin and a resource input. Port 0 to Port 3 have a general-purpose I/O ports function only in the single-chip mode.

• Operation as output port

The pin is configured as an output port by setting the corresponding bit of the DDR register to "1". Writing data to PDR register when the port is configured as output, the data is retained in the output latch in the PDR and directly output to the pin.

The value of the pin (the same value retained in the output latch of PDR) can be read out by reading the PDR register.

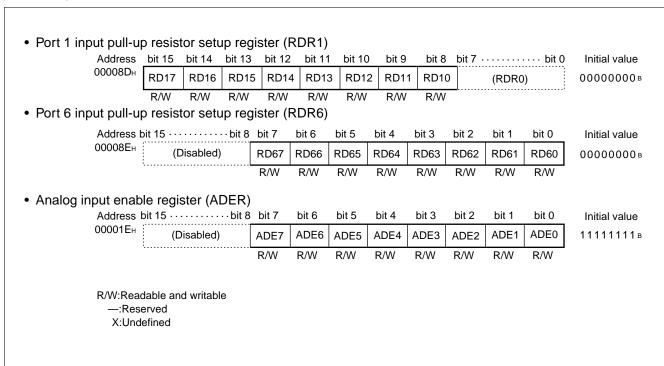
Note: When a read-modify-write instruction (e.g. bit set instruction) is performed to the port data register, the destination bit of the operation is set to the specified value, not affecting the bits configured by the DDR register for output, however, values of bits configured by the DDR register as inputs are changed because input values to the pins are written into the output latch. To avoid this situation, configure the pins by the DDR register as output after writing output data to the PDR register when configuring the bit used as input as outputs.

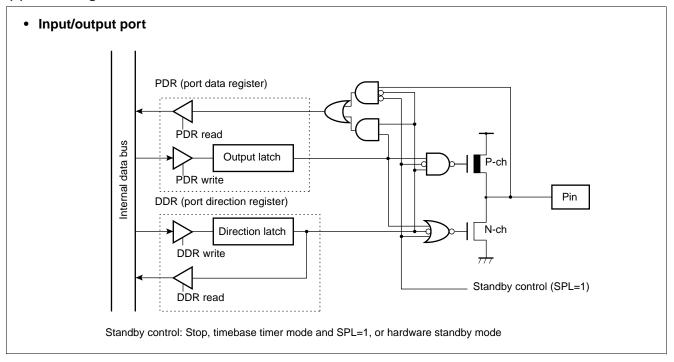
· Operation as input port

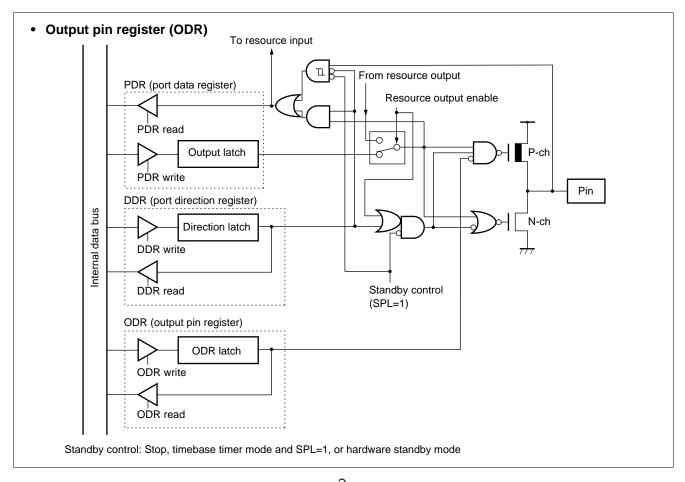
The pin is configured as an input by setting the corresponding bit of the DDR register to "0".

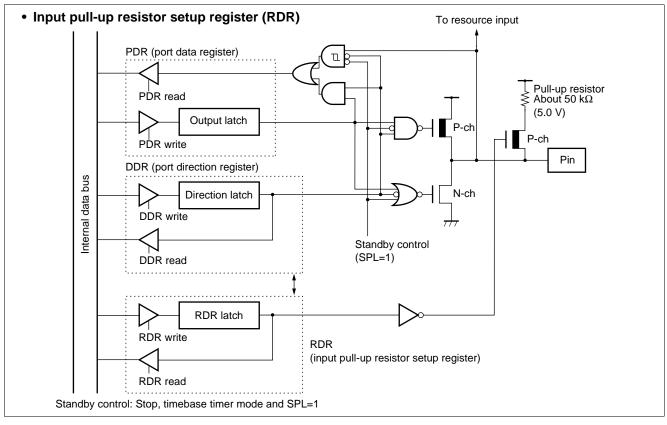
When the pin is configured as an input, the output buffer is turned-off and the pin is put into a high-impedance status.

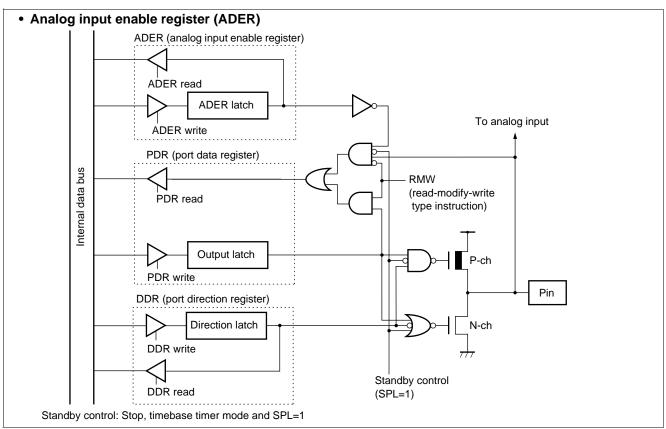
When a data is written into the PDR register, the data is retained in the output latch of the PDR, but pin outputs are unaffected.

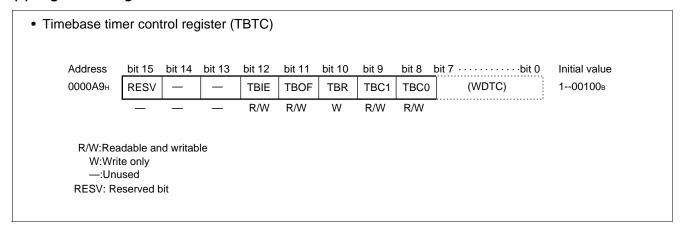

Reading the PDR register reads out the pin level ("0" or "1").


(2) Register Configuration


Address	bit 15 · · ·		··bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000000н		(PDR1)		P07	P06	P05	P04	P03	P02	P01	P00	XXXXXXX
Port 1 data regist	or (DDE	٠		R/W								
Port 1 data registor Address			bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7		· · · · bit 0	Initial value
000001н	P17	P16	P15	P14	P13	P12	P11	P10	7	(PDRC	:	XXXXXXX
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-			
Port 2 data registe	er (PDF	R2)										
Address	bit 15 · ·		··bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000002н		(PDR3)		P27	P26	P25	P24	P23	P22	P21	P20	XXXXXXXX
				R/W								
Port 3 data registe	er (PDF	R3)										
Address 000003 _H	bit 15	1	bit 13			bit 10	bit 9	bit 8	bit 7		· · · · bit 0	Initial value
000003н	P37	P36	P35	P34	P33	P32	P31	P30		(PDR2	2)	XXXXXXXX
Dout 4 data regist	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Port 4 data registe	`	,	hit 0	hit 7	hit G	hit E	hit 1	hit 2	hit 2	hit 1	hit O	laitial calca
Address 000004 _H	;·····		··· bit 8		bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
		(PDR5)		P47 R/W	P46 R/W	P45 R/W	P44 R/W	P43 R/W	P42 R/W	P41 R/W	P40 R/W	*****
Port 5 data registe	er (PDF	R5)		IX/VV	IX/VV	K/VV	K/VV	IX/VV	K/VV	IX/VV	IX/VV	
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7		· · · · bit 0	Initial value
000005н	P57	P56	P55	P54	P53	P52	P51	P50		(PDR4	1)	XXXXXXX
5 . 6	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Port 6 data registe	•	,										
Address 000006 _H	;		··bit 8	1	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
	l	(PDR7)		P67	P66 R/W	P65	P64 R/W	P63	P62	P61	P60	XXXXXXXX
				R/W	K/VV	R/W	K/VV	R/W	R/W	R/W	R/W	
Port 7 data regist	•	•	L'1 40	L1: 40	L. C. A.A.	b 11 40	h:1. 0	b.''. O	L 11 -		L'1 0	La SC a La calle de
Address 000007 _H	DIT 15	DIT 14	DIT 13	P74	P73	P72	P71	P70	DIT /		· · · · bit 0	Initial value
				R/W	R/W	R/W	R/W	R/W	_	(PDR6	?'	
Dest O leter resist	/DDF	20)		10,00	10,00	10,00	1000	1000				
Port 8 data registe	,	•										
Address 000008H	:		··bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
	i	(PDR9) 		P87	P86	P85	P84	P83	P82	P81	P80	XXXXXXX
				R/W								


00000		5 bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8			···· bit 0	Initial value
00000	^{)9н} Р97		P95	_	P93	P92	P91	P90		(PDR8	3)	XXXXXXXX
Dort A data roa	R/W		R/W	R/W	R/W	R/W	R/W	R/W				
Port A data reg		DKA) 	hit 0	hit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	laitial calca
00000		(PDRB)	o nico	PA7	1	PA5	PA4	PA3	PA2			Initial value
	i	(FDKB)		R/W	PA6 R/W	R/W	R/W	R/W	R/W	PA1 R/W	PA0 R/W	^^^^^
Port B data reg	jister (P	DRB)										
Addre	ess bit 15		··bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00000	Вн	(PDRA)		PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0	XXXXXXX
				R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port C data reg	,	,										
Addre 00000			··bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00000		(Disabled		_	_	_	_	PC3	PC2	PC1	PC0	XXXXXXXX
Port 0 direction	registe	r (DDR0)	_	_	_	_	R/W	R/W	R/W	R/W	
	•			bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00001	0н	(DDR1)		D07	D06	D05	D04	D03	D02	D01	D00	00000000
	*			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port 1 direction	registe	r (DDR1)									
Addre 00001	2	5 bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7		···· bit 0	Initial value
			_									
	D17		D15					D10		(DDR))	00000000
	R/W	/ R/W	R/W	D14 R/W	D13 R/W		D11 R/W	R/W		(DDR))	00000000
	R/W	/ R/W	R/W							(DDR	"	0000000
Port 2 direction	R/W registe	r (DDR2	R/W	R/W bit 7	R/W bit 6	R/W bit 5	R/W bit 4	R/W bit 3	bit 2	(DDR)	bit 0	Initial value
Port 2 direction	R/M registe ess bit 15	R/W r (DDR2	R/W) ··bit 8	R/W bit 7 D27	R/W bit 6 D26	R/W bit 5 D25	R/W bit 4 D24	R/W bit 3	D22	bit 1 D21	bit 0	Initial value
Port 2 direction	R/M registe ess bit 15	r (DDR2	R/W) ··bit 8	R/W bit 7	R/W bit 6	R/W bit 5	R/W bit 4	R/W bit 3		bit 1	bit 0	Initial value
Port 2 direction Addre 00001 Port 3 direction	R/M registe ess bit 15 2H registe	r (DDR3)	R/W) ··bit 8	R/W bit 7 D27 R/W	R/W bit 6 D26	R/W bit 5 D25	R/W bit 4 D24	R/W bit 3	D22	bit 1 D21	bit 0	Initial value
Port 2 direction Addre 00001 Port 3 direction Addre	R/M registe ess bit 15 2H registe ess bit 15	r (DDR3)	R/W)bit 8) bit 13	R/W bit 7 D27 R/W bit 12	R/W bit 6 D26 R/W bit 11	R/W bit 5 D25 R/W bit 10	R/W bit 4 D24 R/W bit 9	R/W bit 3 D23 R/W bit 8	D22 R/W	bit 1 D21 R/W	bit 0	Initial value
Port 2 direction Addre 00001 Port 3 direction	R/W registe ess bit 15 2H registe registe ss bit 11 3H D37	r (DDR3) r (DDR3) r (DDR3) bit 14 D36	R/W)bit 8 bit 13 D35	R/W bit 7 D27 R/W bit 12 D34	Bit 6 D26 R/W bit 11 D33	R/W bit 5 D25 R/W bit 10	R/W bit 4 D24 R/W bit 9 D31	Bit 3 D23 R/W bit 8 D30	D22 R/W	bit 1 D21 R/W	bit 0 D20 R/W	Initial value 00000000 Initial value
Port 2 direction Addre 00001 Port 3 direction Addre 00001	R/M R/M R/M Rregiste Rss bit 15 Pregiste Rss bit 1 R/M R/M	(DDR3) r (DDR3) r (DDR3) r (DDR3) bit 14 7 D36 / R/W	R/W)bit 8) bit 13 D35 R/W	R/W bit 7 D27 R/W bit 12	R/W bit 6 D26 R/W bit 11	R/W bit 5 D25 R/W bit 10	R/W bit 4 D24 R/W bit 9	R/W bit 3 D23 R/W bit 8	D22 R/W	bit 1 D21 R/W	bit 0 D20 R/W	Initial value
Port 2 direction Addre 00001 Port 3 direction Addre 00001	R/M R/M R/M Rregiste Rss bit 15 Pregiste Rss bit 1 R/M R/M	(DDR3) r (DDR3) r (DDR3) r (DDR3) bit 14 7 D36 / R/W	R/W)bit 8) bit 13 D35 R/W	R/W bit 7 D27 R/W bit 12 D34	Bit 6 D26 R/W bit 11 D33	R/W bit 5 D25 R/W bit 10	R/W bit 4 D24 R/W bit 9 D31	Bit 3 D23 R/W bit 8 D30	D22 R/W	bit 1 D21 R/W	bit 0 D20 R/W	Initial value
Port 2 direction Addre 00001 Port 3 direction Addre 00001 Port 4 direction Addre	R/M registe ass bit 15 2H registe ass bit 1 3H D37 R/M registe ass bit 15	r (DDR3) r (DDR3) r (DDR3) r (DDR3) r (DDR3) r (DDR3) r (DDR4	R/W)bit 8 bit 13 D35 R/W	R/W bit 7 D27 R/W bit 12 D34 R/W	Bit 6 D26 R/W bit 11 D33	R/W bit 5 D25 R/W bit 10	R/W bit 4 D24 R/W bit 9 D31	R/W bit 3 D23 R/W bit 8 D30 R/W	D22 R/W bit 7	bit 1 D21 R/W	bit 0 D20 R/W	Initial value 00000000 Initial value 00000000
Port 2 direction Addre 00001 Port 3 direction Addre 00001 Port 4 direction	R/M registe ass bit 15 2H registe ass bit 1 3H D37 R/M registe ass bit 15	r (DDR3) r (DDR3) r (DDR3) r (DDR3) r (DDR3) r (DDR4)	R/W)bit 8 bit 13 D35 R/W	R/W bit 7 D27 R/W bit 12 D34 R/W bit 7 D47	B/W bit 6 D26 R/W bit 11 D33 R/W bit 6 D46	R/W bit 5 D25 R/W bit 10 D32 R/W bit 5 D45	R/W bit 4 D24 R/W bit 9 D31 R/W bit 4 D44	B/W bit 3 D23 R/W bit 8 D30 R/W bit 3 D43	D22 R/W bit 7	bit 1 D21 R/W (DDR2	bit 0 D20 R/W bit 0 2) bit 0 D40	Initial value 00000000 Initial value
Port 2 direction Addre 00001 Port 3 direction Addre 00001 Port 4 direction Addre	R/M registe ass bit 15 2H registe ass bit 1 3H D37 R/M registe ass bit 15	r (DDR3) r (DDR3) r (DDR3) r (DDR3) r (DDR3) r (DDR3) r (DDR4	R/W)bit 8 bit 13 D35 R/W	R/W bit 7 D27 R/W bit 12 D34 R/W	R/W bit 6 D26 R/W bit 11 D33 R/W	R/W bit 5 D25 R/W bit 10 D32 R/W	R/W bit 4 D24 R/W bit 9 D31 R/W	R/W bit 3 D23 R/W bit 8 D30 R/W	D22 R/W bit 7	bit 1 D21 R/W (DDR2	bit 0 D20 R/W bit 0 2)	Initial value 00000000 Initial value 00000000


	Address		(DDR5) bit 14		bit 12	bit 11	bit 10	bit 9	bit 8	bit 7		···· bit 0	Initial value
(000015⊦	D57	D56	D55	D54	D53	D52	D51	D50		(DDR4	1)	00000000
	L	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	—			
Port 6 dire	ction reg	gister ((DDR6))									
	Address b	it 15 · ·		··bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
(000016н		(DDR7)		D67	D66	D65	D64	D63	D62	D61	D60	00000000
	-				R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port 7 dire	ction red	nister ((DDR7))									
	Address		. ,		bit 12	bit 11	bit 10	bit 9	bit 8	bit 7		···· bit 0	Initial value
(000017н	_	_	_	D74	D73	D72	D71	D70		(DDR6	6)	00000
	L	_	_	_	R/W	R/W	R/W	R/W	R/W	—			
Port 8 dire	ction reg	gister ((DDR8))									
	Address b	it 15 · ·		··bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
(000018н		(DDR9)		D87	D86	D85	D84	D83	D82	D81	D80	00000000
_					R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port 9 dire					F 1 4 6	L 11 4 1	h.'. 40	L 11 C	L 11 C	L		L 0	1490-1
	Address 000019 _H									bit /		· · · · bit 0	Initial value
	l	D97	D96	D95					D90		(DDR8	3)	00000000
Dort A diro	otion roa	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Port A dire	•		•	•	L '	L'1.0	b to E	L. St. A	L'1 0	L'1 0	6.26.4	b.'. 0	
	Address b		(DDRB)	··bit 8		bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
	į			L	DA7	DA6 R/W	DA5	DA4 R/W	DA3	DA2	DA1	DA0	00000000
David Dadina	_4:		/DDDD	`	R/W	K/VV	R/W	K/VV	R/W	R/W	R/W	R/W	
Port B dire		-	•		hit 7	hit G	hit E	hit 1	hit 2	hit O	hit 1	hit O	
(Address b					bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
·			(DDRA)	L	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	00000000
					R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port C dire	ction req	gister	(DDRC	;)									
	Address b	it 15 · · ·		· bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
C	0001Сн	((ODR4)						DC3	DC2	DC1	DC0	00000000
	•				_				R/W	R/W	R/W	R/W	
Port 4 outp	out pin re	egister	· (ODR	4)									
	Address b	it 15 · · ·		··bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
C	0001Dн	((DDRC)		OD47	OD46	OD45	OD44	OD43	OD42	OD41	OD40	00000000
	·.				R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port 0 inpu	t pull-up	resis	tor setu	ıp reg	ister (F	RDR0)							
1 OIL O IIIPO	-			F:+ 0	hit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
•	Address b	ıt 15 · · ·		DIT 8	DIL								
	Address b 10008CH		(RDR1)	··· DIT 8	RD07	RD06	RD05	RD04	RD03	RD02	RD01	RD00	00000000

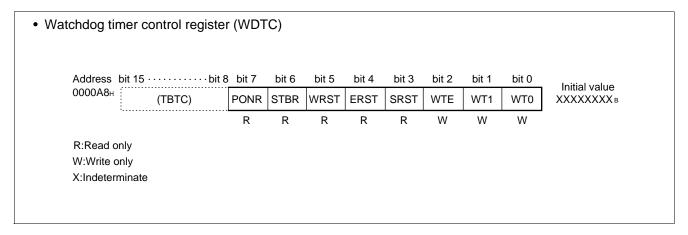


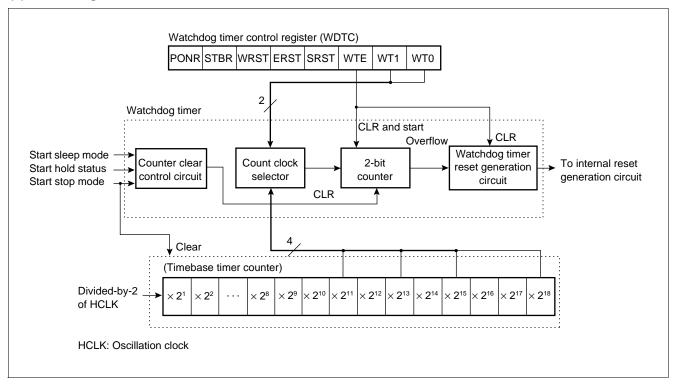

2. Timebase Timer

The timebase timer is a 18-bit free run counter (timebase counter) for counting up in synchronization to the internal count clock (divided-by-2 of oscillation) with an interval timer function for selecting an interval time from four types of 2¹²/HCLK, 2¹⁴/HCLK, 2¹⁶/HCLK, and 2¹⁹/HCLK.

The timebase timer also has a function for supplying operating clocks for the timer output for the oscillation stabilization time or the watchdog timer etc.

(1) Register Configuration





3. Watchdog Timer

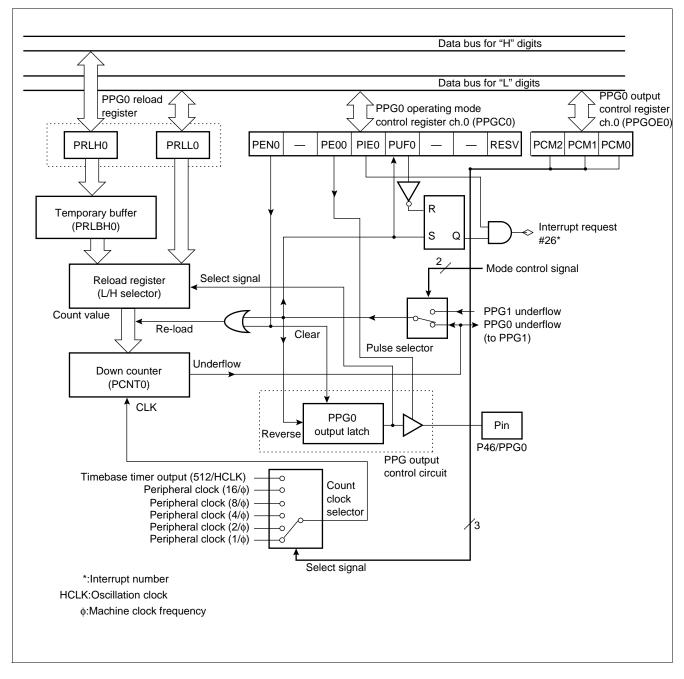
The watchdog timer is a 2-bit counter operating with an output of the timebase timer and resets the CPU when the counter is not cleared for a preset period of time.

(1) Register Configuration

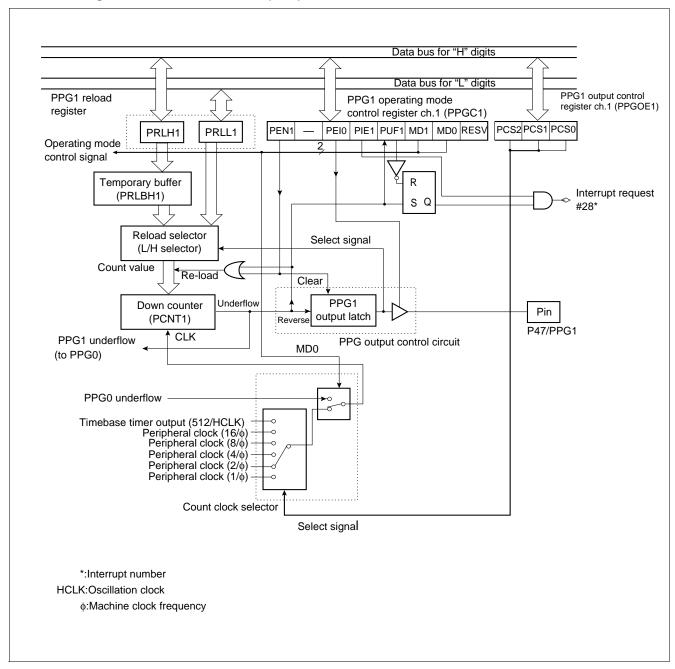
4. 8/16-bit PPG Timer

The 8/16-bit PPG timer is a 2-CH reload timer module for outputting pulse having given frequencies/duty ratios.

The two modules performs the following operation by combining functions.

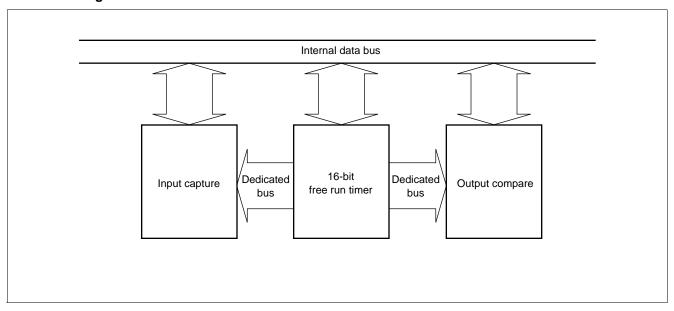

- 8-bit PPG output 2-CH independent operation mode
 This is a mode for operating independent 2-CH 8-bit PPG timer, in which PPG0 and PPG1 pins correspond to outputs from PPG0 and PPG1 respectively.
- 16-bit PPG timer output operation mode
 In this mode, PPG0 and PPG1 are combined to be operated as a 1-CH 8/16-bit PPG timer operating as a 16-bit timer. Because PPG0 and PPG1 outputs are reversed by an underflow from PPG1 outputting the same output pulses from PPG0 and PPG1 pins.
- 8 + 8-bit PPG timer output operation mode
 In this mode, PPG0 is operated as an 8-bit communications prescaler, in which an underflow output of PPG0
 is used as a clock source for PPG1. A toggle output of PPG0 and PPG output of PPG1 are output from PPG0
 and PPG1 respectively.
- PPG output operation
 A pulse wave with any period/duty ratio is output. The module can also be used as a D/A converter with an external add-on circuit.

(1) Register Configuration


	bit 15 · · ·		··bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000044н	((PPGC1)		PEN0	_	PE00	PIE0	PUF0	_	_	RESV	0X000XX1B
PPG1 operating n	node co	ontrol r	egiste	R/W er ch.1	— (PPG0	R/W C1)	R/W	R/W	_	_	_	
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7		···· bit 0	Initial value
000045н	PEN1	_	PEI0	PIE1	PUF	1 MD1	MD0	RES	V	(PPGC	0)	0X00001
PPG0, 1 output co	R/W ontrol re	R/W egister	R/W ch.0,	R/W ch.1(F	R/W PGOE		R/W	R/W				
Address	bit 15 · · ·		··bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000046н	([Disabled)	,	PCS2	PCS1	PCS0	PCM2	PCM1	PCM0	_		000000XX
DD00				R/W	R/W	R/W	R/W	R/W	R/W	_	_	
PPG0 reload regi		ch.0 (P bit 14	RLH(bit 13	,	bit 11	bit 10	bit 9	bit 8	bit 7		····bit 0	Initial value
000041н								(PRLL0)			XXXXXXXX	
	R/W	R/W	R/W	R/W	R/W	/ R/W	R/W	/ R/W	<u> </u>			
PPG1 reload regi	ster H	ch.1 (P	RLH1)								
Address	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7		···· bit 0	Initial value			
000043н									(PRLL1)		XXXXXXXX	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
PPG0 reload regi		,		•								
Address 000040⊦	bit 15 · ·	oit 15 · · · · · · bit 8		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
	(PRLH0)										XXXXXXXX	
PPG1 reload regi	otorlo	sh 1 /D	DII 1	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
•		•		•	h:4 C	L:4 F	h:4 4	b:4 0	h:4 O	h:t 4	h:+ 0	La SC a La carlo ca
000042 _F	bit 15 · · · · · · bit 8 (PRLH1)			DIL 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
			l	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
				17/ //	17/ / /	17/ 77	17/ / /	17/ / /	17/ 77	17/ / /	13/ VV	

(2) Block Diagram

• Block diagram of 8/16-bit PPG timer (ch.0)

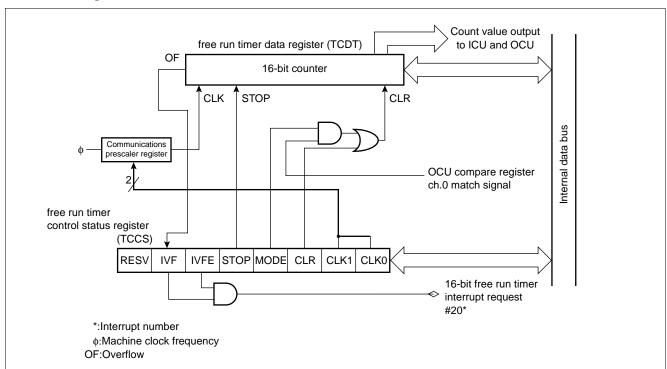

• Block diagram of 8/16-bit PPG timer (ch.1)

5. 16-bit I/O timer

The 16-bit I/O timer module consists of one 16-bit free run timer, two input capture circuits, and four output comparators. This module allows two independent waveforms to be output on the basis of the 16-bit free run timer. Input pulse width and external clock periods can, therefore, be measured.

• Block Diagram

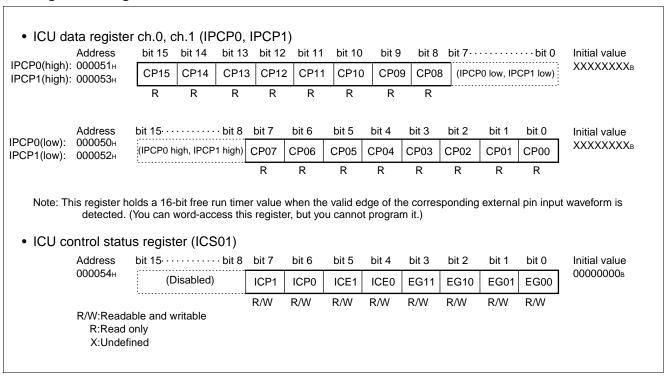
(1) 16-bit free run Timer


The 16-bit free run timer consists of a 16-bit up counter, a control register, and a communications prescaler register. The value output from the timer counter is used as basic timer (base timer) for input capture (ICU) and output compare (OCU).

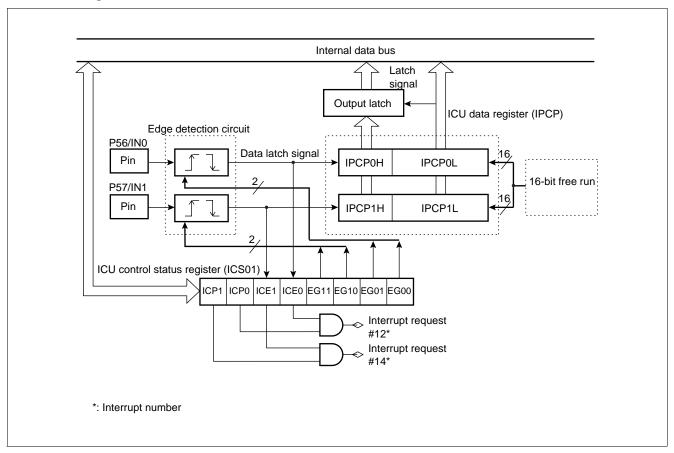
- A counter operation clock can be selected from four internal clocks (φ/4, φ/16, φ/32 and φ/64).
- An interrupt can be generated by overflow of counter value or compare match with OCU compare register 0. (Compare match requires mode setup.)
- The counter value can be initialized to "0000_H" by a reset, software clear or compare match with OCU compare register 0.

Register Configuration

Block Diagram


(2) Input Capture (ICU)

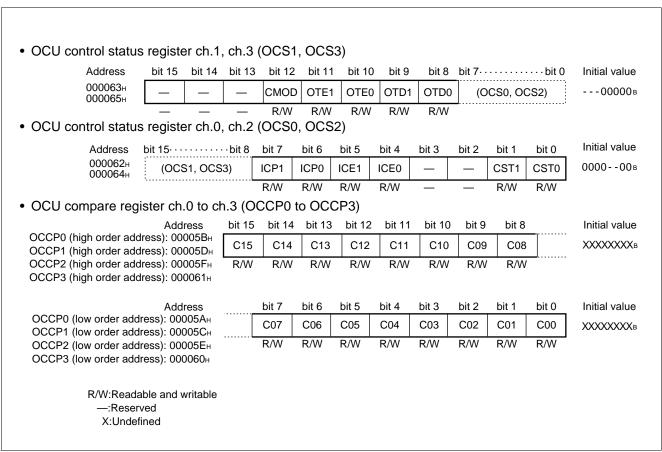
The input capture (ICU) generates an interrupt request to the CPU simultaneously with a storing operation of current counter value of the 16-bit free run timer to the ICU data register (IPCP) upon an input of a trigger edge to the external pin.


There are four sets (four channels) of the input capture external pins and ICU data registers, enabling measurements of maximum of four events.

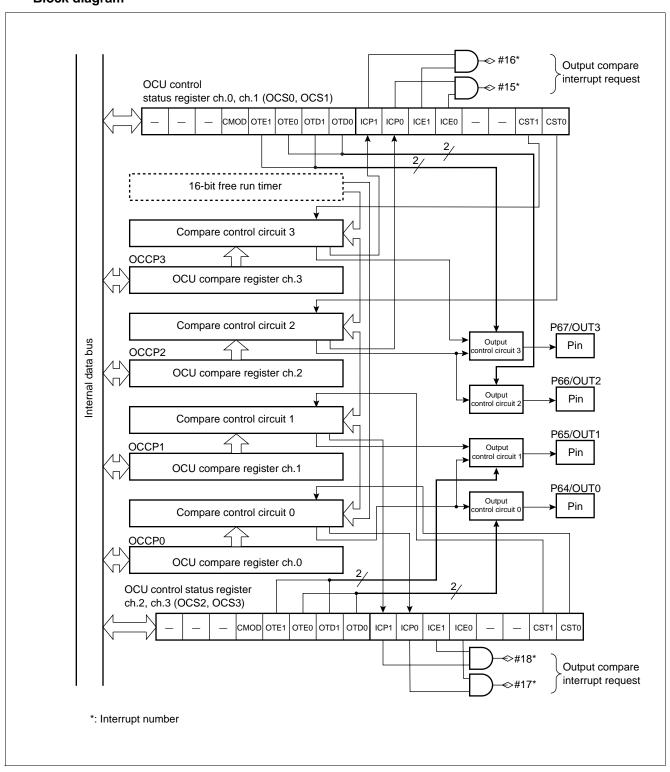
- The input capture has two sets of external input pins (IN0, IN1) and ICU registers (IPCP), enabling measurements of maximum of four events.
- A trigger edge direction can be selected from rising/falling/both edges.
- The input capture can be set to generate an interrupt request at the storage timing of the counter value of the 16-bit free run timer to the ICU data register (IPCP).
- The input compare conforms to the extended intelligent I/O service (El²OS).
- The input capture (ICU) function is suited for measurements of intervals (frequencies) and pulse widths.

Register Configuration

• Block Diagram

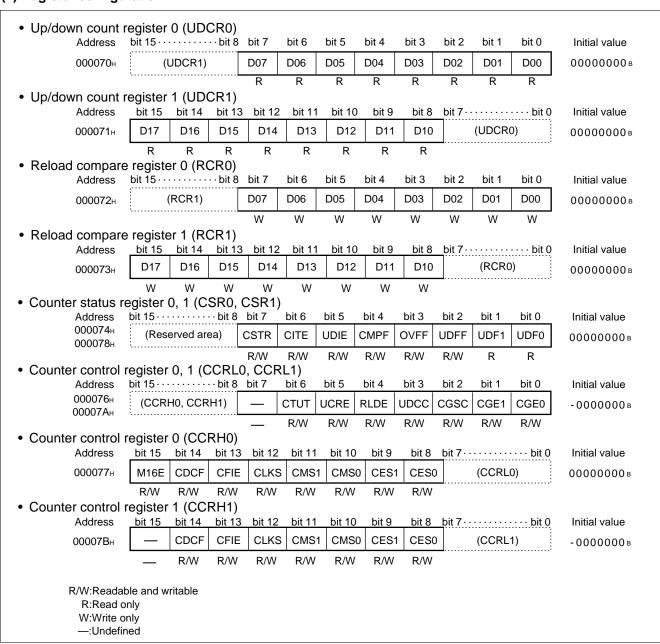

(3) Output Compare (OCU)

The output compare (OCU) is two sets of compare units consisting of four-channel OCU compare registers, a comparator and a control register.

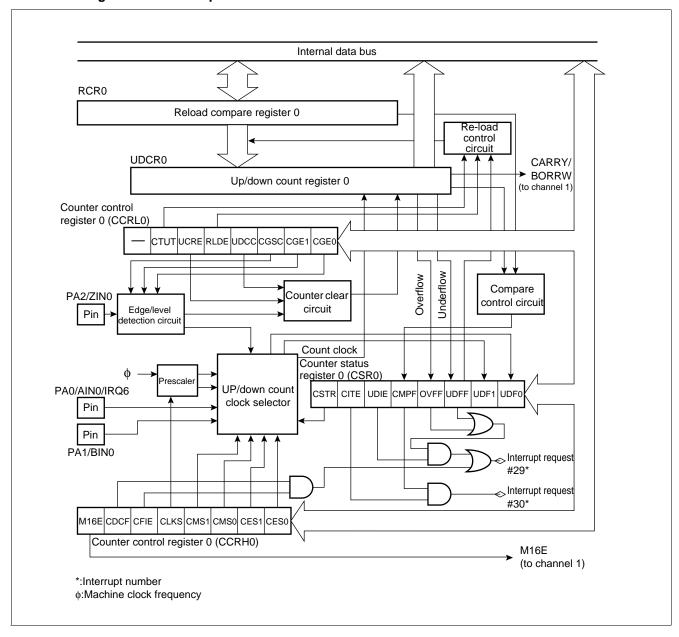

An interrupt request can be generated for each channel upon a match detection by performing time-division comparison between the OCU compare data register setting value and the counter value of the 16-bit free run timer.

The OUT pin can be used as a waveform output pin for reversing output upon a match detection or a general-purpose output port for directly outputting the setting value of the CMOD bit.

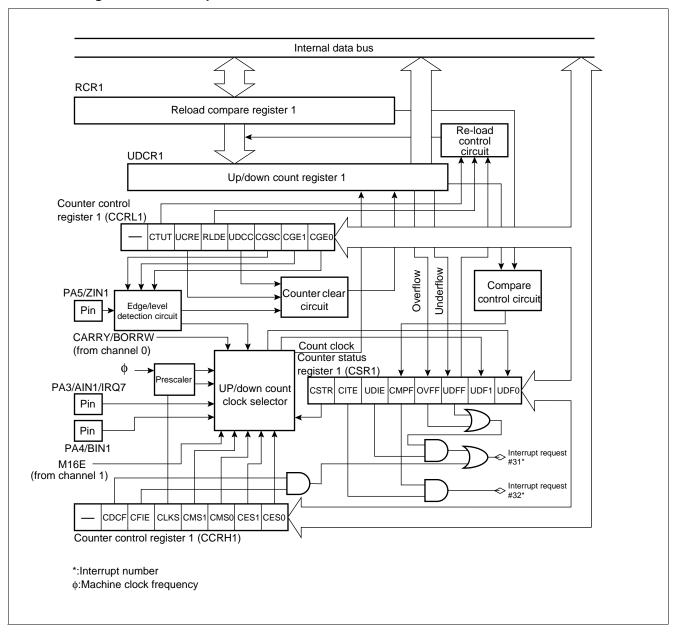
• Register Configuration


• Block diagram

6. 8/16-bit up/down counter/timer


The 8/16-bit up/down counter/timer consists of six event input pins, two 8-bit up/down counters, two 8-bit reload compare registers, and their controllers.

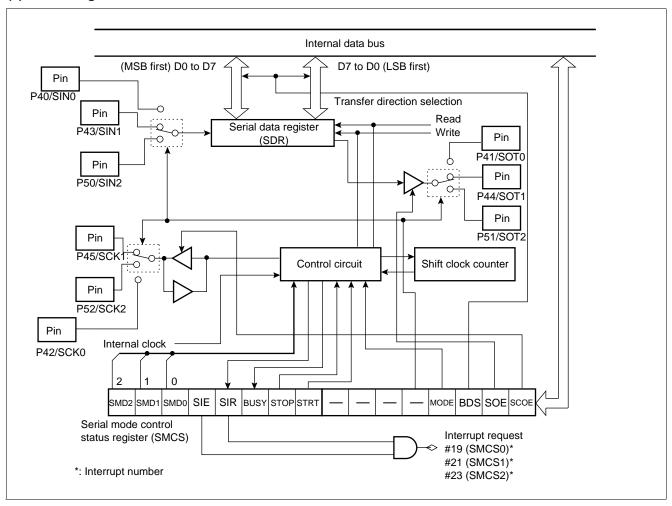
(1) Register configuration



(2) Block Diagram

Block diagram of 8/16-bit up/down counter/timer 0

• Block diagram of 8/16-bit up/down counter/timer 1


7. Extended I/O serial interface

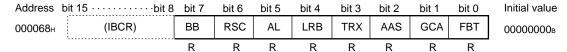
The extended I/O serial interface transfers data using a clock synchronization system having an 8-bit x 1 channel configuration.

For data transfer, you can select LSB first/MSB first.

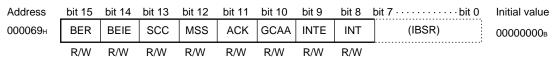
(1) Register Configuration

Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7··		· · · · bit 0	Initial value
SMCSH0: 000049h SMCSH1: 00004Dh	SMD2	SMD1	SMD0	SIE	SIR	BUS	/ STO	STRT		(SMCS	L)	0000010в
SMCSH2: 00007DH	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W				
Serial mode con	trol low	er statı	us reg	ister 0	to 2 (S	MCSL	.0 to S	MCSL2	<u>:</u>)			
Address	bit 15···		··bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
MCSL0: 000048н MCSL1: 00004Сн	(8	(SMCSH)		_	_	_	_	MODE	BDS	SOE	SCOE	0000в
MCSL2: 00007CH						_		R/W	R/W	R/W	R/W	
Serial data regis	ter 0 to				bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
SDR0: 00004A _H SDR1: 00004E _H	(Disabled)			D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXXB
DR2: 00007EH				R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
R/W:Readable and	writable											
R:Read only												

8. I2C Interface

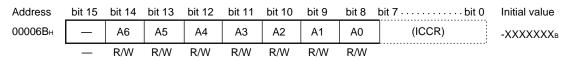

The I²C interface is a serial I/O port supporting Inter IC BUS operating as master/slave devices on I²C bus.

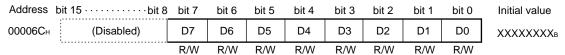
The MB90570A/570C series contains one channel of an I²C interface, having the following features.


- Master/slave transmission/reception
- Arbitration function
- Clock synchronization function
- Slave address/general call address detection function
- Transmission direction detection function
- Repeated generation function start condition and detection function
- · Bus error detection function

(1) Register Configuration

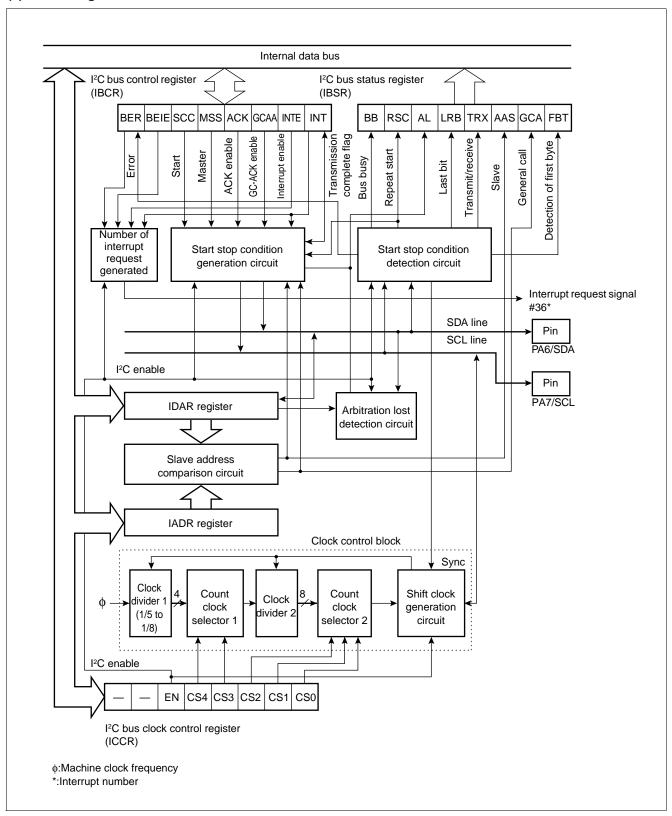
• I²C bus status register (IBSR)


• I2C bus control register (IBCR)


• I2C bus clock control register (ICCR)

Address	bit 15 · · · · · · bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00006Ан	(IADR)	_	_	EN	CS4	CS3	CS2	CS1	CS0	0XXXXXB
				R/W	R/W	R/W	R/W	R/W	R/W	

• I2C bus address register (IADR)


• I²C bus data register (IDAR)

R/W: Readable and writable

R: Read only
—: Reserved

X: Indeterminate

9. UARTO (SCI), UART1 (SCI)

UART0 (SCI) and UART1 (SCI) are general-purpose serial data communication interfaces for performing synchronous or asynchronous communication (start-stop synchronization system).

- Data buffer: Full-duplex double buffer
- Transfer mode: Clock synchronized (with start and stop bit)

Clock asynchronized (start-stop synchronization system)

• Baud rate: Embedded dedicated baud rate generator

External clock input possible

Internal clock (a clock supplied from 8-bit PPG timer ch1 or 16-bit PPG timer can be used.)

Asynchronization 9615 bps/31250 bps/4808 bps/2404 bps/1202 bps

Internal machine clock
For 6 MHz, 8 MHz, 10 MHz

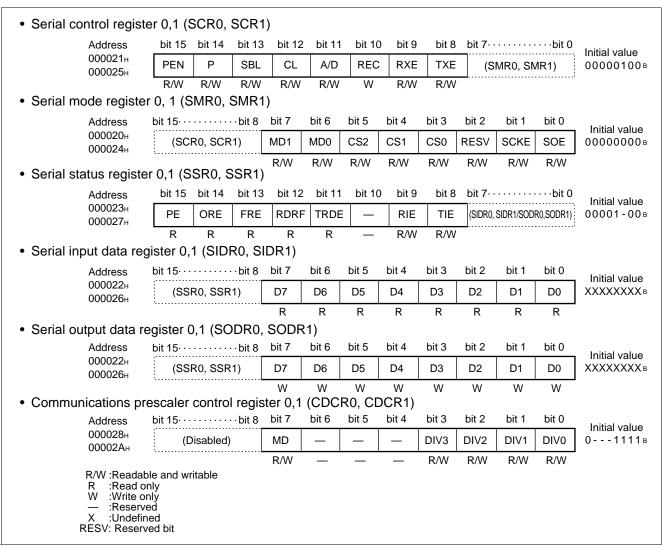
CLK synchronization 1 Mbps/500 kbps/250 kbps/125 kbps/62.5 kbps

Asynchronization 2 MHz, 2 MH

Data length: 7 bit to 9 bit selective (without a parity bit)
 6 bit to 8 bit selective (with a parity bit)

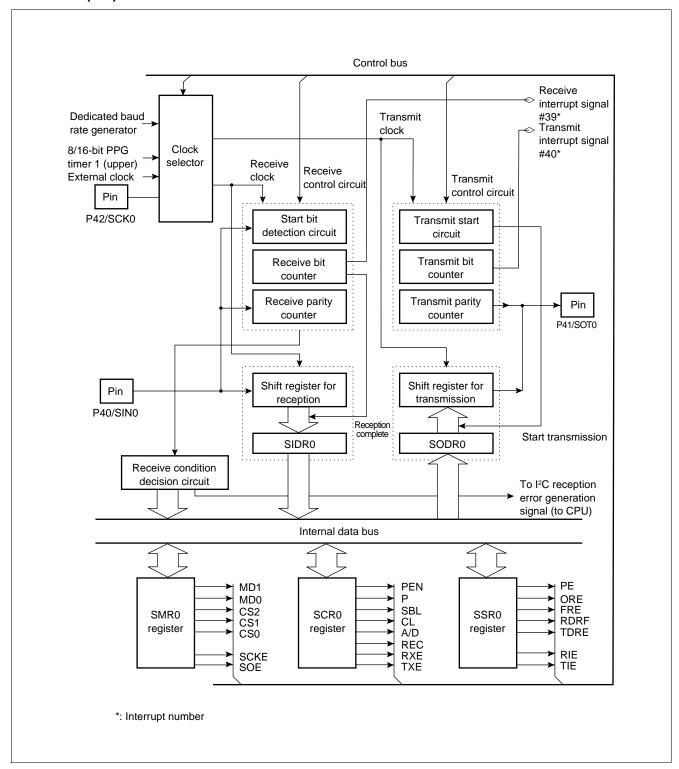
- Signal format: NRZ (Non Return to Zero) system
- · Reception error detection:Framing error

Overrun error

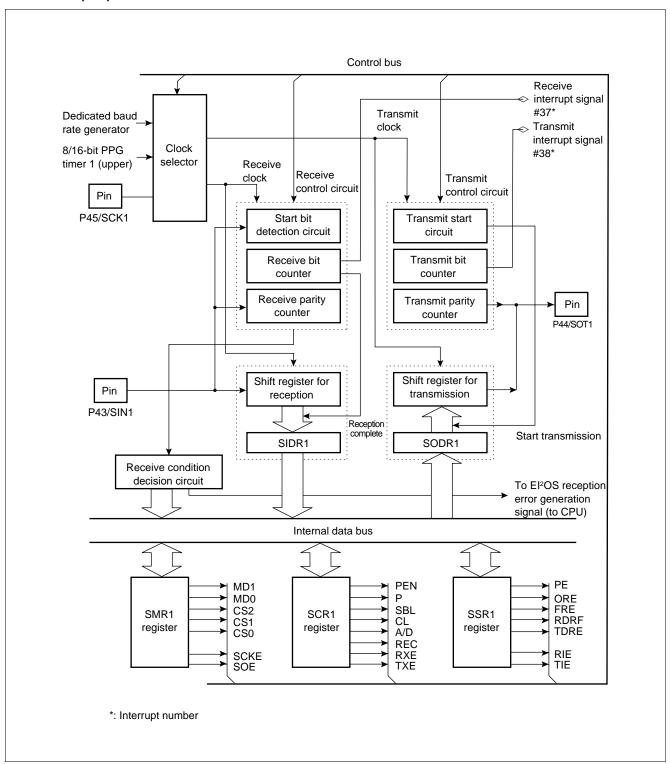

Parity error (multi-processor mode is supported, enabling setup of any baud rate by an external clock.)

• Interrupt request: Receive interrupt (receive complete, receive error detection)

Transmit interrupt (transmission complete)


Transmit/receive conforms to extended intelligent I/O service (EI2OS)

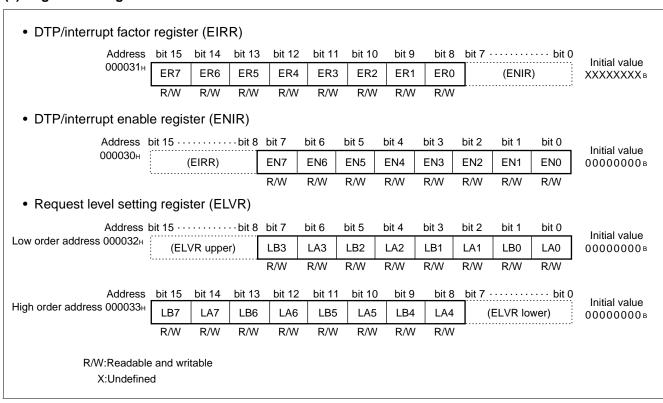
(1) Register Configuration

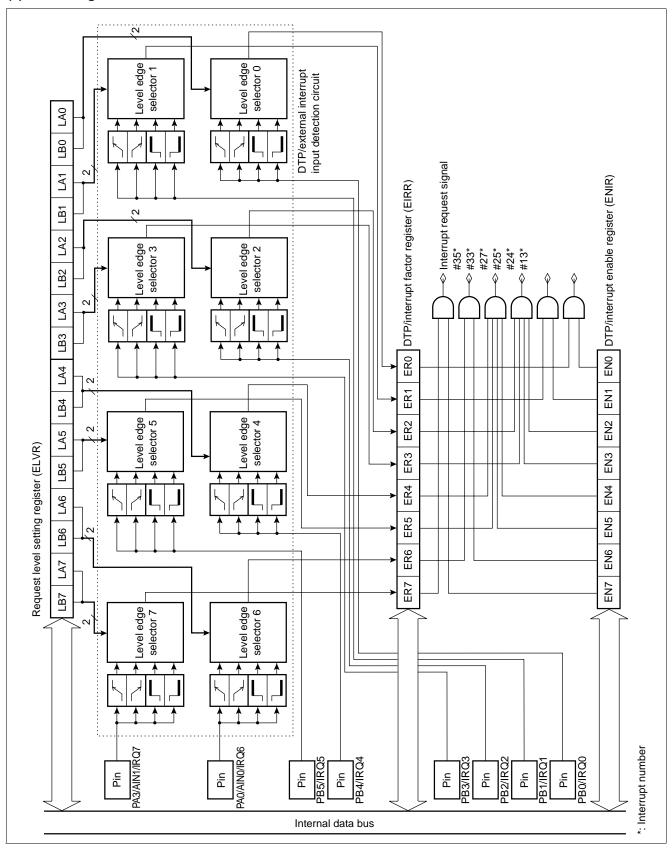


(2) Block Diagram

• UARTO (SCI)

• UART1 (SCI)

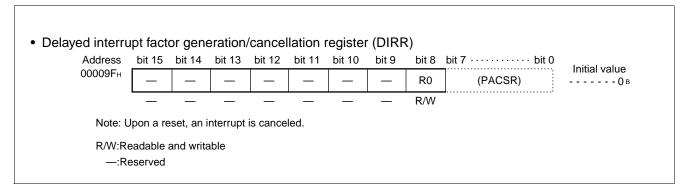

10. DTP/External Interrupt Circuit


DTP (Data Transfer Peripheral), which is located between the peripheral circuit outside the device and the F²MC-16LX CPU, receives an interrupt request or DMA request generated by the external peripheral circuit* for transmission to the F²MC-16LX CPU. DTP is used to activate the intelligent I/O service or interrupt processing. As request levels for IRQ2 to IRQ7, two types of "H" and "L" can be selected for the intelligent I/O service. Rising and falling edges as well as "H" and "L" can be selected for an external interrupt request. For IRQ0 and IRQ1, a request by a level cannot be entered, but both edges can be entered.

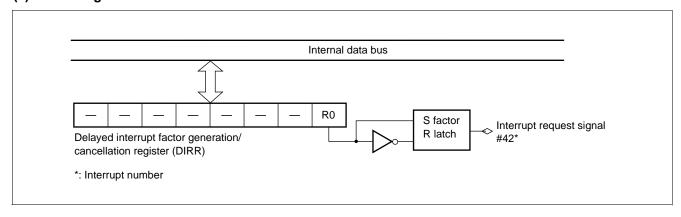
*: The external peripheral circuit is connected outside the MB90570A/570C series device.

Note: IRQ0 and IRQ1 cannot be used for the intelligent I/O service and return from an interrupt.

(1) Register Configuration



11. Delayed Interrupt Generation Module


The delayed interrupt generation module generates interrupts for switching tasks for development on a real-time operating system (REALOS series). The module can be used to generate softwarewise generates hardware interrupt requests to the CPU and cancel the interrupts.

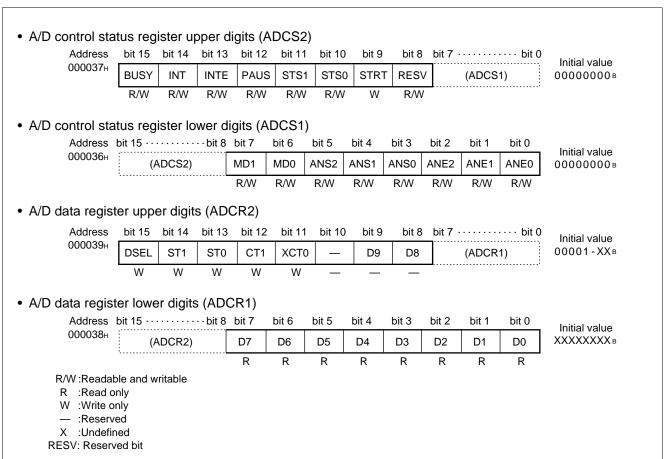
This module does not conform to the extended intelligent I/O service (EI2OS).

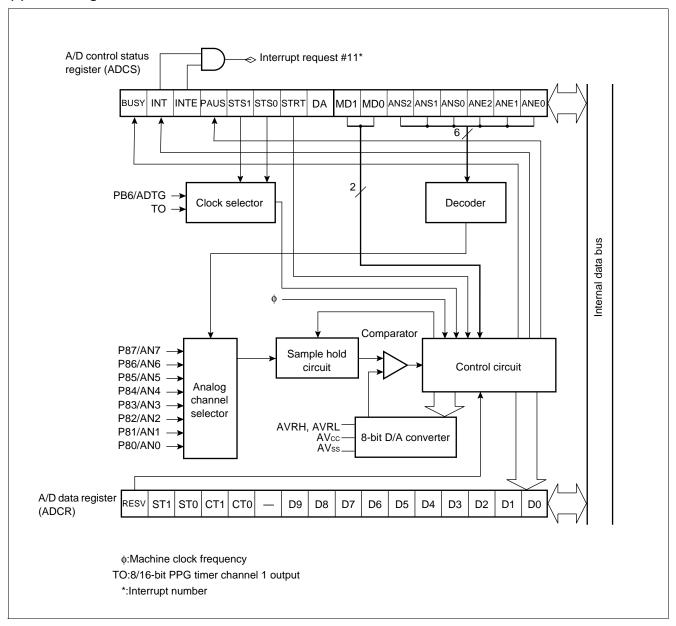
(1) Register Configuration

The DIRR is the register used to control delay interrupt request generation/cancellation. Programming this register with "1" generates a delay interrupt request. Programming this register with "0" cancels a delay interrupt request. Upon a reset, an interrupt is canceled. The reserved bit area can be programmed with either "0" or "1". For future extension, however, it is recommended that bit set and clear instructions be used to access this register.

12. 8/10-bit A/D Converter

The 8/10-bit A/D converter has a function of converting analog voltage input to the analog input pins (input voltage) to digital values (A/D conversion) and has the following features.

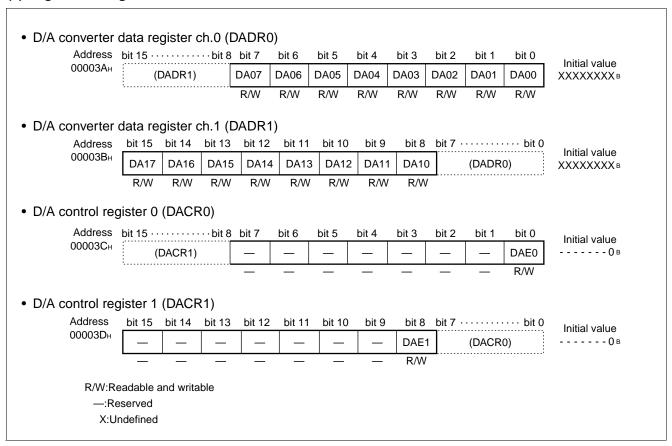

- Minimum conversion time: 26.3 μs (at machine clock of 16 MHz, including sampling time)
- Minimum sampling time: 4 μs/256 μs (at machine clock of 16 MHz)
- Compare time: 176/352 machine cycles per channel (176 machine cycles are used for a machine clock below 8 MHz.)
- Conversion method: RC successive approximation method with a sample and hold circuit.
- 8-bit or 10-bit resolution
- Analog input pins: Selectable from eight channels by software Single conversion mode: Selects and converts one channel.

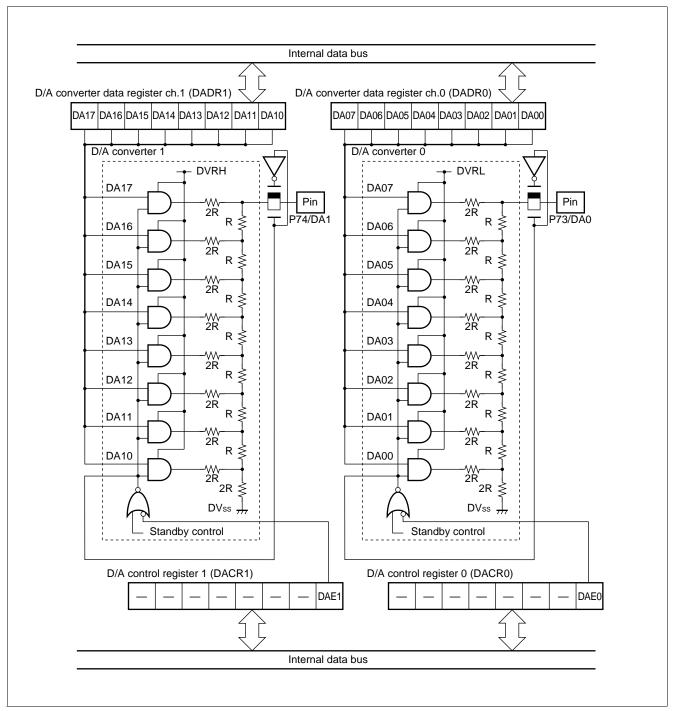

Scan conversion mode: Converts two or more successive channels. Up to eight channels can be programmed. Continuous conversion mode: Repeatedly converts specified channels.

Stop conversion mode: Stops conversion after completing a conversion for one channel and wait for the next activation (conversion can be started synchronously.)

- Interrupt requests can be generated and the extended intelligent I/O service (EI²OS) can be started after the end of A/D conversion. Furthermore, A/D conversion result data can be transferred to the memory, enabling efficient continuous processing.
- When interrupts are enabled, there is no loss of data even in continuous operations because the conversion data protection function is in effect.
- Starting factors for conversion: Selected from software activation, and external trigger (falling edge).

(1) Register Configuration

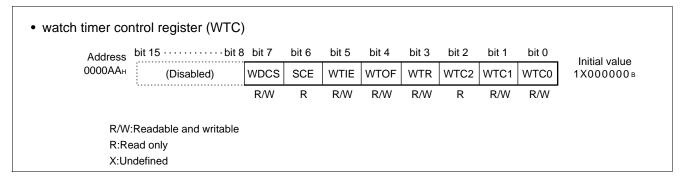


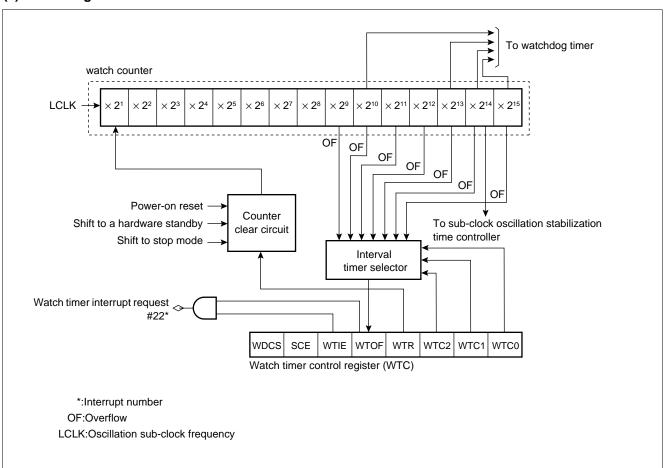


13. 8-bit D/A Converter

The 8-bit D/A converter, which is based on the R-2R system, supports 8-bit resolution mode. It contains two channels each of which can be controlled in terms of output by the D/A control register.

(1) Register Configuration

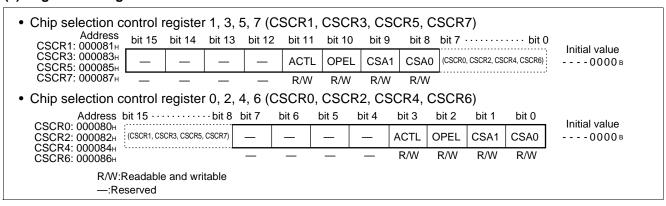


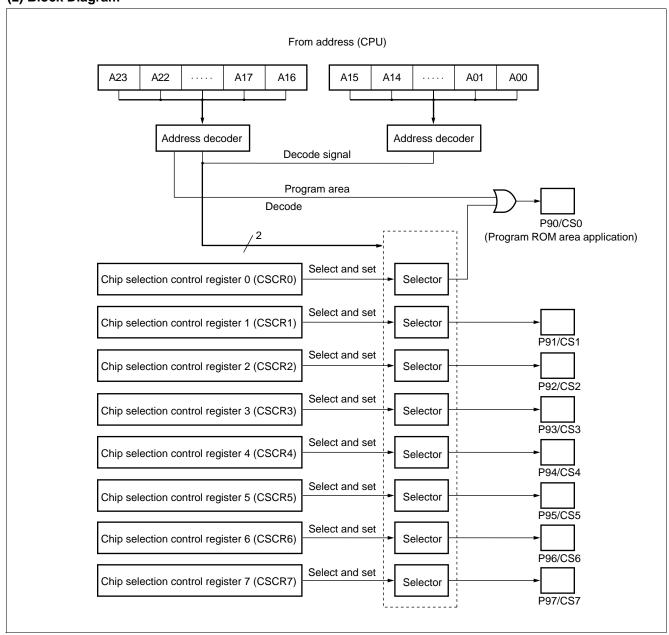


14. Watch Timer

The watch timer control register (WTC) controls operation of the watch timer, and time for an interval interrupt.

(1) Register Configuration





15. Chip Select Output

This module generates a chip select signal for facilitating a memory and I/O unit, and is provided with eight chip select output pins. When access to an address is detected with a hardware-set area set for each pin register, a select signal is output from the pin.

(1) Register Configuration

(3) Decode Address Spaces

Pin	CS	SA	Doodo ango	Number of	Pomorko
name	1	0	Decode space	area bytes	Remarks
	0	0	F00000н to FFFFFн	1 Mbyte	
CS0	0	1	F80000н to FFFFFн	512 kbyte	Becomes active when the program ROM
030	1	0	FE0000h to FFFFFh	128 kbyte	area or the program vector is fetched.
	1	1	_	Disabled	
	0	0	E00000н to EFFFFFн	1 Mbyte	
CS1	0	1	F00000н to F7FFFн	512 kbyte	Adapted to the data ROM and RAM areas, and external circuit connection applica-
CST	1 0		FC0000h to FDFFFFh	128 kbyte	tions.
	1	1	68FF80н to 68FFFFн	128 byte	
	0	0	003000н to 003FFFн	4 kbyte	
CS2	0	1	FA0000h to FBFFFFh	128 kbyte	Adapted to the data ROM and RAM areas,
032	1	0	68FF80н to 68FFFFн	128 byte	and external circuit connection applications.
	1	1	68FF00н to 68FF7Fн	128 byte	
	0	0	F80000н to F9FFFFн	128 kbyte	
CS3	0	1	68FF00н to 68FF7Fн	128 byte	Adapted to the data ROM and RAM areas, and external circuit connection applica-
033	1	0	68FE80н to 68FEFFн	128 byte	tions.
	1	1	_	Disabled	
	0	0	002800н to 002FFFн	2 kbyte	
CS4	0	1	68FE80н to 68FEFFн	128 byte	Adapted to the data ROM and RAM areas, and external circuit connection applica-
004	1	0	_	Disabled	tions.
	1	1	_	Disabled	
	0	0	68FF80н to 68FFFFн	128 byte	
CS5	0	1	_	Disabled	Adapted to the data ROM and RAM areas, and external circuit connection applica-
000	1	0	_	Disabled	tions.
	1	1	_	Disabled	
	0	0	68FF00н to 68FF7Fн	128 byte	
CSE	0 1		_	Disabled	Adapted to the data ROM and RAM areas, and external circuit connection applica-
030	CS6 1	0	_	Disabled	tions.
	1 1		_	Disabled	
CS7		_	_	Disabled	Disabled

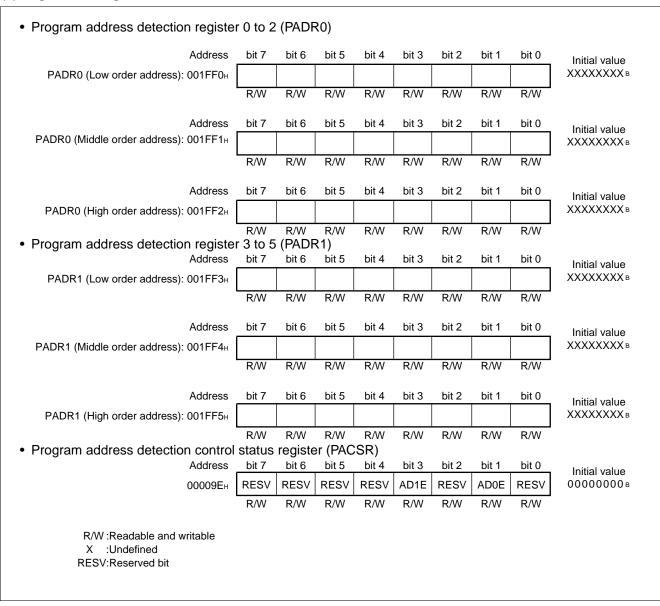
16. Communications Prescaler Register

This register controls machine clock division.

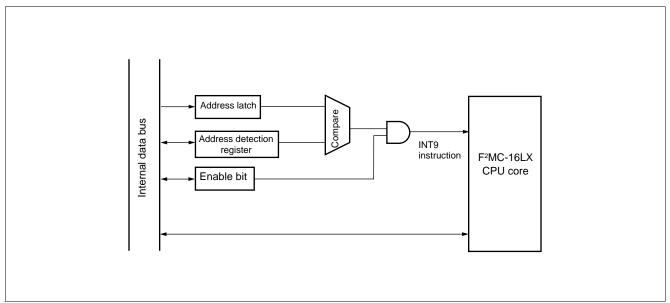
Output from the communications prescaler register is used for UART0 (SCI), UART1 (SCI), and extended I/O serial interface.

The communications prescaler register is so designed that a constant baud rate may be acquired for various machine clocks.

(1) Register Configuration

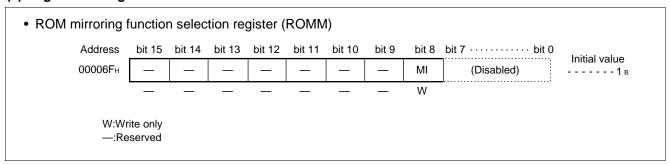

• Communications prescaler control register 0,1 (CDCR0, CDCR1) Address bit 15 · · · · · · bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 Initial value 000028н (Disabled) MD DIV3 DIV2 DIV1 DIV0 0---1111в 00002Ан R/W R/W R/W R/W R/W R/W:Readable and writable -: Reserved

17. Address Match Detection Function

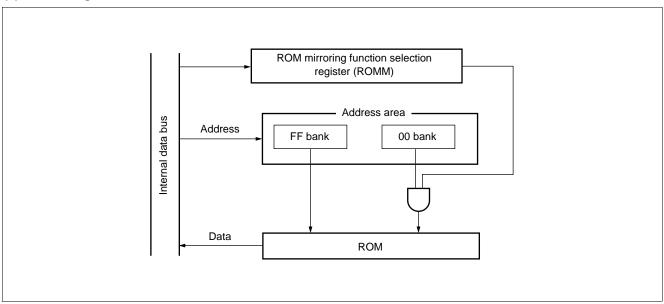

When the address is equal to a value set in the address detection register, the instruction code loaded into the CPU is replaced forcibly with the INT9 instruction code (01H). As a result, when the CPU executes a set instruction, the INT9 instruction is executed. Processing by the INT#9 interrupt routine allows the program patching function to be implemented.

Two address detection registers are supported. An interrupt enable bit is prepared for each register. If the value set in the address detection register matches an address and if the interrupt enable bit is set at "1", the instruction code loaded into the CPU is replaced forcibly with the INT9 instruction code.

(1) Register Configuration


(2) Block Diagram

18. ROM Mirroring Function Selection Module


The ROM mirroring function selection module can select what the FF bank allocated the ROM sees through the 00 bank according to register settings.

(1) Register Configuration

Note: Do not access this register during operation at addresses 004000H to 00FFFFH.

(2) Block Diagram

19. Low-power Consumption (Standby) Mode

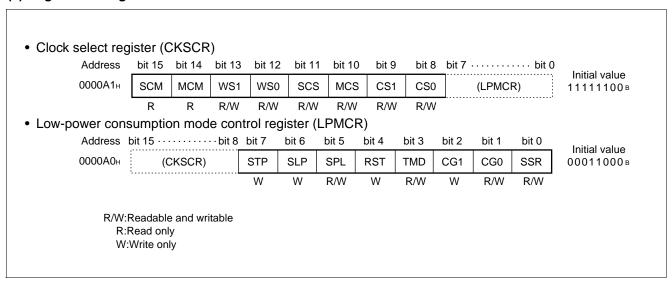
The F²MC-16LX has the following CPU operating mode configured by selection of an operating clock and clock operation control.

Clock mode

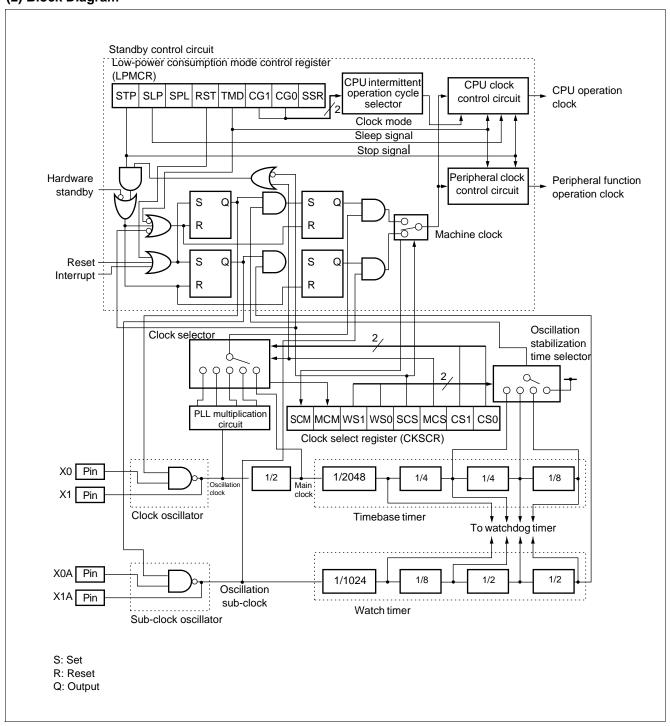
PLL clock mode: A mode in which the CPU and peripheral equipment are driven by PLL-multiplied oscillation clock (HCLK).

Main clock mode: A mode in which the CPU and peripheral equipment are driven by divided-by-2 of the oscil lation clock (HCLK).

The PLL multiplication circuits stops in the main clock mode.


• CPU intermittent operation mode

The CPU intermittent operation mode is a mode for reducing power consumption by operating the CPU intermittently while external bus and peripheral functions are operated at a high-speed.


• Hardware standby mode

The hardware standby mode is a mode for reducing power consumption by stopping clock supply to the CPU by the low-power consumption control circuit, stopping clock supplies to the CPU and peripheral functions (timebase timer mode), and stopping oscillation clock (stop mode, hardware standby mode). Of these modes, modes other than the PLL clock mode are power consumption modes.

(1) Register Configuration

(2) Block Diagram

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(AVss = Vss = 0.0 V)

Dorometer	Symbol	Va	lue	Unit	Remarks
Parameter	Symbol	Min	Max	Unit	Remarks
	Vcc	Vss-0.3	Vss + 6.0	V	
	AVcc	Vss-0.3	Vss + 6.0	V	*1
Power supply voltage	AVRH, AVRL	Vss - 0.3	Vss + 6.0	V	*1
	DVRH	Vss-0.3	Vss + 6.0	V	*1
Input voltage	Vı	Vss-0.3	Vss + 6.0	V	*2
Output voltage	Vo	Vss-0.3	Vss + 6.0	V	*2
"L" level maximum output current	loL		15	mA	*3
"L" level average output current	lolav		4	mA	*4
"L" level total maximum output current	ΣΙοι		100	mA	
"L" level total average output current	Σ lolav		50	mA	*5
"H" level maximum output current	Іон		-15	mA	*3
"H" level average output current	І онаv		-4	mA	*4
"H" level total maximum output current	ΣІон		-100	mA	
"H" level total average output current	Σ lohav	_	-50	mA	*5
	_	_	300	mW	MB90573, MB90V570A
Power consumption	Po		500	mW	MB90574C
			800	mW	MB90F574A
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	– 55	+150	°C	

^{*1 :} Care must be taken that AVcc, AVRH, AVRL, and DVRH do not exceed Vcc. Also, care must be taken that AVRH and AVRL do not exceed AVcc, and AVRL does not exceed AVRH.

Note : Average output current = operating \times operating efficiency

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

^{*2:} V_I and V_O shall never exceed V_{CC} + 0.3 V.

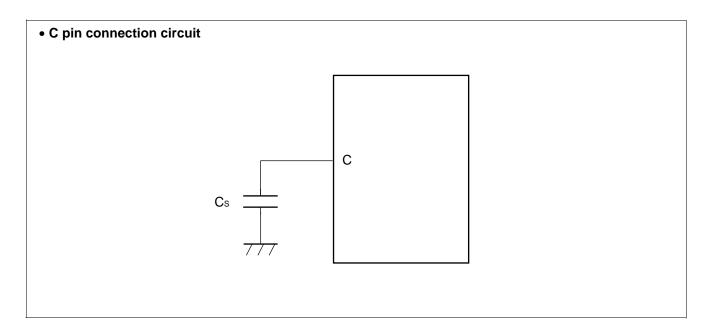
^{*3 :} The maximum output current is a peak value for a corresponding pin.

^{*4 :} Average output current is an average current value observed for a 100 ms period for a corresponding pin.

^{*5 :} Total average current is an average current value observed for a 100 ms period for all corresponding pins.

2. Recommended Operating Conditions

(AVss = Vss = 0.0 V)


Devementes	Cumbal	Value		l lni4	Demontre
Parameter	Symbol	Min	Max	Unit	Remarks
	Vcc	3.0	5.5	V	Normal operation (MB90574C)
Power supply voltage	Vcc	4.5	5.5	V	Normal operation (MB90F574A)
Tower supply voltage	Vcc	3.0	5.5	V	Retains status at the time of operation stop
Smoothing capacitor	Cs	0.1	1.0	μF	*
Operating temperature	TA	-40	+85	°C	

^{*:} Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The smoothing capacitor to be connected to the Vcc pin must have a capacitance value higher than Cs.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

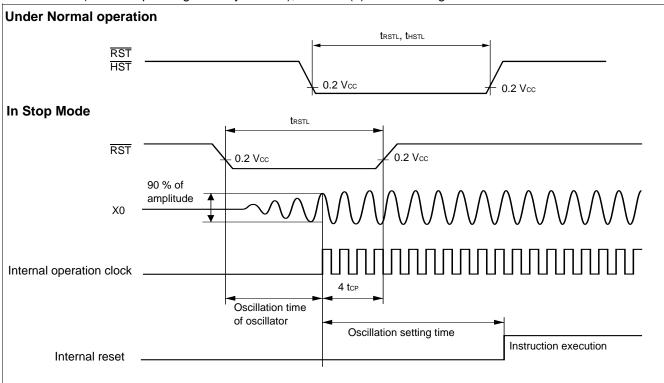
3. DC Characteristics

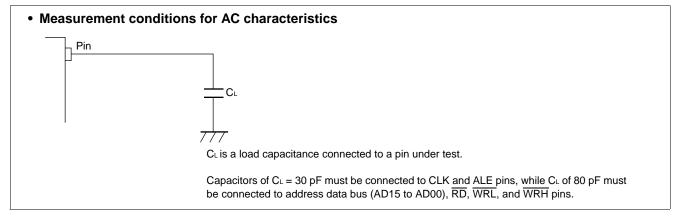
(AVcc = Vcc = $5.0 \text{ V} \pm 10\%$, AVss = Vss = 0.0 V, T_A = -40° C to $+85^{\circ}$ C)

			(AVcc = Vcc = 5.0	1 = 1070,7	Value	0.0 1,		
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
"H" level input voltage	Vihs	CMOS hysteresis input pin	Vcc = 3.0 V to 5.5 V	0.8 Vcc	_	Vcc + 0.3	V	
	V _{IHM}	MD pin input	(MB90573/574C)	Vcc - 0.3		Vcc + 0.3	V	
"L" level input voltage	VILS	CMOS hysteresis input pin	Vcc = 4.5 V to 5.5 V (MB90F574A)	Vss - 0.3	_	0.2 Vcc	V	
	VILM	MD pin input		Vss - 0.3	_	Vss + 0.3	V	
"H" level output voltage	Vон	Other than PA6 and PA7	$V_{CC} = 4.5 \text{ V}$ $I_{OH} = -2.0 \text{ mA}$	Vcc - 0.5	_	_	V	
"L" level output voltage	Vol	All output pins	Vcc = 4.5 V loL = 2.0 mA	_	_	0.4	V	
Open-drain output leakage current	leak	PA6, PA7	_	_	0.1	5	μΑ	
Input leakage current	lıL	Other than PA6 and PA7	Vcc = 5.5 V Vss < Vı < Vcc	- 5	_	5	μΑ	
Pull-up resistance	Rup	P00 to P07, P10 to P17, P60 to P67, RST, MD0, MD1	_	15	30	100	kΩ	
Pull-down resistance	RDOWN	MD0 to MD2	_	15	30	100	kΩ	
	Icc	Vcc	Internal operation	_	30	40	mA	MB90573
	Icc	Vcc	at 16 MHz Vcc at 5.0 V	_	85	130	mA	MB90F574A
	Icc	Vcc	Normal operation	_	50	80	mA	MB90574C
	Icc	Vcc	Internal operation	_	35	45	mA	MB90573
Power supply	Icc	Vcc	at 16 MHz Vcc at 5.0 V	_	90	140	mA	MB90F574A
current	Icc	Vcc	A/D converter operation	_	55	85	mA	MB90574C
	Icc	Vcc	Internal operation	_	40	50	mA	MB90573
	Icc	Vcc	at 16 MHz Vcc at 5.0 V	_	95	145	mA	MB90F574A
	Icc	Vcc	D/A converter operation	_	65	85	mA	MB90574C

(Continued)

 $(AVcc = Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$


Parameter	Symbol	Pin name	Condition		Value		Unit	Remarks	
Parameter	Symbol	rin name	Condition	Min	Тур	Max	Unit	Remarks	
	Icc	Vcc	When data written in flash mode programming of erasing	_	95	140	mA	MB90F574A	
	Iccs	Vcc	Internal operation	_	7	12	mA	MB90573	
	Iccs	Vcc	at 16 MHz Vcc = 5.0 V	_	25	30	mA	MB90F574A	
	Iccs	Vcc	In sleep mode	_	15	20	mA	MB90574C	
	Iccl	Vcc	Internal operation	_	0.1	1.0	mA	MB90573	
	Iccl	Vcc	at 8 kHz Vcc = 5.0 V	_	4	7	mA	MB90F574A	
Power supply	Iccl	Vcc	T _A = +25°C Subsystem operation	_	0.03	1	mA	MB90574C	
current	Iccls	Vcc	Internal operation	_	30	50	μΑ	MB90573	
	Iccls	Vcc	at 8 kHz Vcc = 5.0 V	_	0.1	1	mA	MB90F574A	
	Iccls	Vcc	T _A = +25°C In subsleep mode	_	10	50	μΑ	MB90574C	
	Ісст	Vcc	Internal operation	_	15	30	μΑ	MB90573	
	Ісст	Vcc	at 8 kHz Vcc = 5.0 V	_	30	50	μΑ	MB90F574A	
	Ісст	Vcc	T _A = +25°C In clock mode	_	1.0	30	μΑ	MB90574C	
	Іссн	Vcc	T _A = +25°C	_	5	20	μΑ	MB90573	
	Іссн	Vcc	In stop mode	_	0.1	10	μΑ	MB90F574A MB90574C	
Input capacitance	Cin	Other than AVcc, AVss, Vcc, Vss	_	_	10	80	pF		

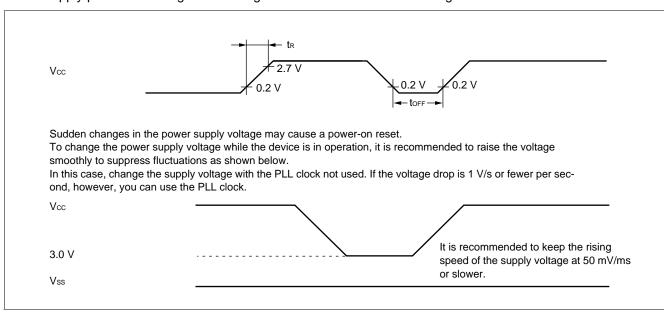

4. AC Characteristics

(1) Reset, Hardware Standby Input Timing (AVcc = Vcc = $5.0 \text{ V} \pm 10\%$, AVss = Vss = 0.0 V , TA = -40°C to $+85^{\circ}\text{C}$)											
Parameter	Symbol	Pin	Condition	Value		Unit	Remarks				
Parameter	Syllibol	name	Condition	Min	Max		Remarks				
Reset input time	t rstl	RST		4 tcp	_	ns	Under normal operation				
ixeset input time	troit	KOT	_	Oscillation time of oscillator * + 4 tcp	_	ms	In stop mode				
Hardware standby input time	t HSTL	HST		4 tcp	_	ns					

^{*:} Oscillation time of oscillator is time that the amplitude reached the 90 %. In the crystal oscillator, the oscillation time is between several ms to tens ms. In ceramic oscillator, the oscillation time is between hundreds of μs to several ms. In the external clock, the oscillation time is 0 ms.

Note: For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."

(2) Specification for Power-on Reset

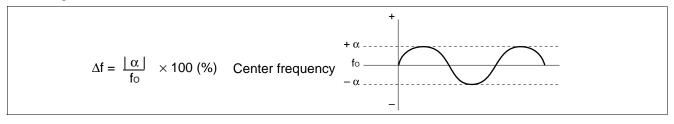

 $(AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condi-	Value		Unit	Remarks	
Farameter	Symbol	riii iiaiiie	tion	Min	Max	Oilit	iveillai ks	
Power supply rising time	t R	Vcc		0.05	30	ms	*	
Power supply cut-off time	t off	Vcc	_	4	_	ms	Due to repeated operations	

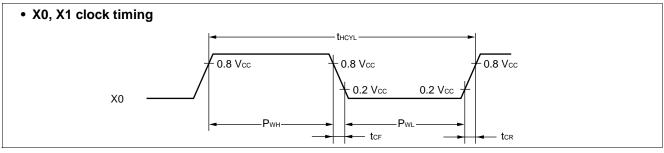
^{*:} Vcc must be kept lower than 0.2 V before power-on.

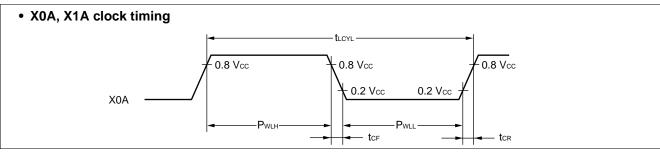
Note: • The above ratings are values for causing a power-on reset.

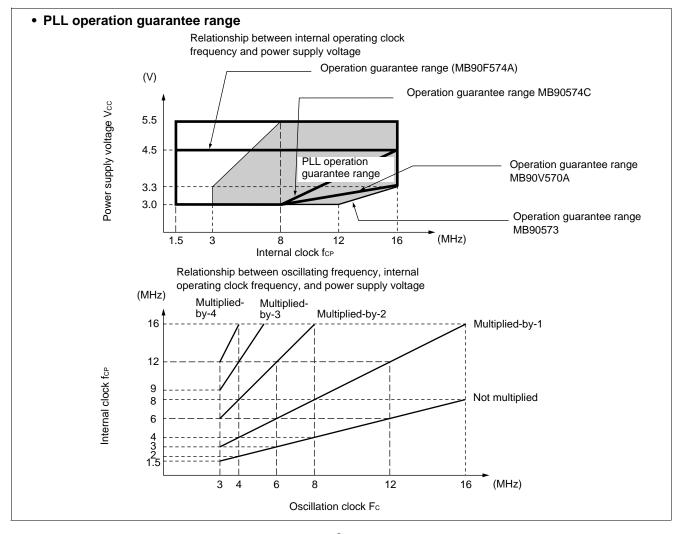
• There are internal registers which can be initialized only by a power-on reset. Apply power according to this rating to ensure initialization of the registers.

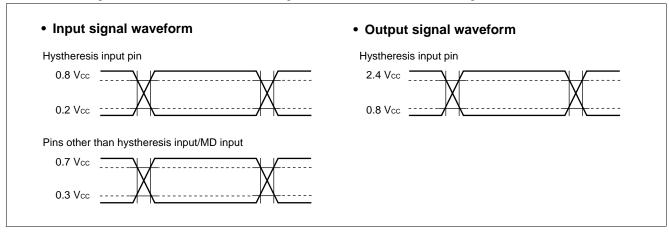


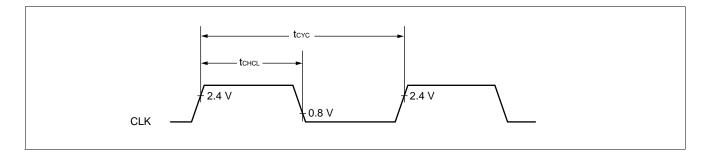
(3) Clock Timings


 $(AVcc = Vcc = 5.0 \text{ V} \pm 10\%, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$


Parameter	Symbol	Pin name	Condi-	,	Value		Unit	Remarks		
Parameter	Syllibol	riii iiaiiie	tion	Min	Тур	Max	Oilit	Remarks		
Clock frequency	Fc	X0, X1		3	_	16	MHz			
Clock frequency	FcL	X0A, X1A		_	32.768	_	kHz			
Clock cycle time	t HCYL	X0, X1		62.5	_	333	ns			
Clock cycle time	t LCYL	X0A, X1A		_	30.5	_	μs			
Input clock pulse width	Pwh, Pwl	Х0		10	_	_	ns	Recommend duty ratio of 30% to 70%		
	Pwlh, Pwll	X0A		_	15.2	_	μs			
Input clock rising/falling time	tcr, tcf	X0, X0A	_	_	_	5	ns	External clock operation		
Internal operating clock fre-	fср	_		1.5	_	16	MHz	Main clock op- eration		
quency	fLCP	_		_	8.192	_	kHz	Subclock operation		
Internal operating clock cycle	t cp	_			62.5		_	333	ns	External clock operation
time	tLCP	_		_	122.1		μs	Subclock operation		
Frequency fluctuation rate locked	Δf	_		_	_	5	%	*		


^{*:} The frequency fluctuation rate is the maximum deviation rate of the preset center frequency when the multiplied PLL signal is locked.

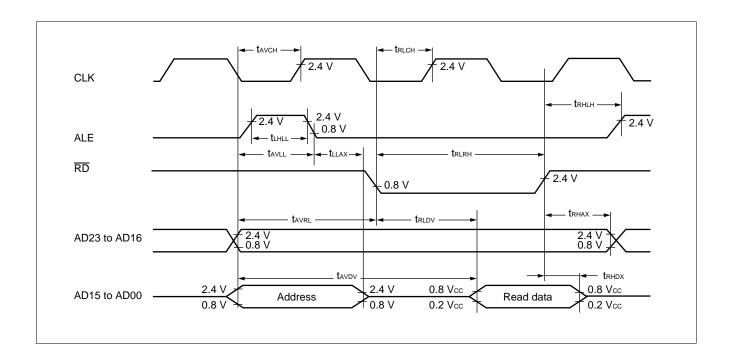

The PLL frequency deviation changes periodically from the preset frequency "(about $CLK \times (1CYC \text{ to } 50 \text{ CYC})$ ", thus minimizing the chance of worst values to be repeated (errors are minimal and negligible for pulses with long intervals).


The AC ratings are measured for the following measurement reference voltages.

(4) Clock Output Timing

 $(AVcc = Vcc = 5.0 \text{ V} \pm 10\%, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Va	Unit	Remarks	
Faranietei	Symbol	Fill Hallie	Condition	Min	Max	Oilit	iveillai ks
Cycle time	t cyc	CLK		62.5	_	ns	
$CLK \uparrow \to CLK \downarrow$	tchcl	CLK		20	_	ns	

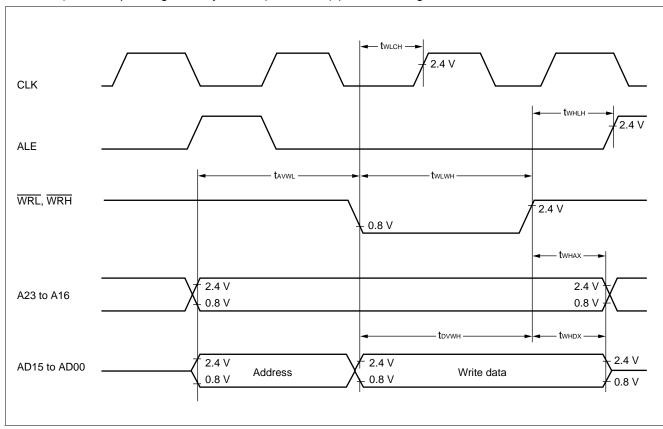


(5) Bus Read Timing

 $(AVcc = Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin name	Condition	1	lue		Remarks
Farameter	Symbol	i iii iiaiiie	Condition	Min	Max	Offic	iverilai ks
ALE pulse width	t LHLL	ALE		1 tcp*/2 - 20	_	ns	
Effective address → ALE ↓ time	t avll	ALE, A23 to A16, AD15 to AD00		1 tcp*/2 - 20	_	ns	
	tllax	ALE, AD15 to AD00		1 tcp*/2 – 15		ns	
$\frac{\text{Effective address} \rightarrow}{\text{RD}} \downarrow \text{time}$	t avrl	RD, A23 to A16, AD15 to AD00		1 tcp* - 15	_	ns	
Effective address → valid data input	tavdv	A23 to A16, AD15 to AD00		_	5 tcp*/2 - 60	ns	
RD pulse width	t rlrh	RD		$3 \text{ tcp}^*/2 - 20$	_	ns	
$\overline{RD} \downarrow \to valid \; data \; input$	trldv	RD, AD15 to AD00	_	_	3 tcp*/2 - 60	ns	
$\overline{\text{RD}} \uparrow \rightarrow \text{data hold time}$	t RHDX	RD, AD15 to AD00		0	_	ns	
$\overline{RD} \uparrow \to ALE \uparrow time$	t RHLH	ALE, RD		1 tcp*/2 - 15	_	ns	
$\overline{\text{RD}} \uparrow \rightarrow \text{address}$ effective time	t RHAX	ALE, A23 to A16		1 tcp*/2 - 10	_	ns	
Effective address → CLK ↑ time	tavch	CLK, A23 to A16, AD15 to AD00		1 tcp*/2 - 20	_	ns	
$\overline{RD} \downarrow \to CLK \uparrow time$	t RLCH	CLK, RD		1 tcp*/2 - 20	_	ns	
$ALE \downarrow \to \overline{RD} \downarrow time$	t alrl	ALE, RD		1 tcp*/2 - 15	_	ns	

^{*:} For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."

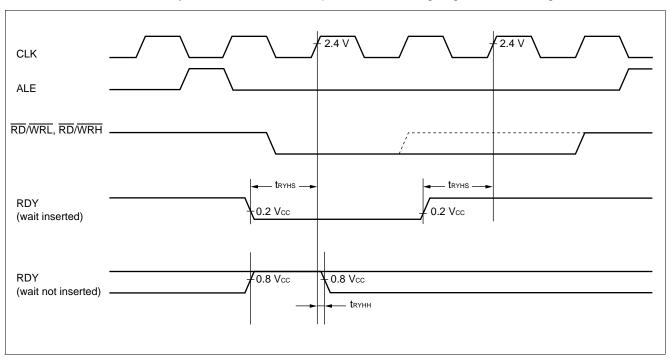


(6) Bus Write Timing

 $(AVcc = Vcc = 5.0 \text{ V} \pm 10\%, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Val	ue	Unit	Remarks
Parameter	Syllibol	riii iiaiiie	Condition	Min	Max	Oilit	Remarks
$\frac{\text{Effective address} \rightarrow}{\text{WR}} \downarrow \text{time}$	tavwl	WRL, WRH, A23 to A16, AD15 to AD00		1 tcp – 15	_	ns	
WR pulse width	twlwh	WRL, WRH		3 tcp*/2 - 20	_	ns	
Write data $\rightarrow \overline{WR} \uparrow$ time	t dvwh	WRL, WRH, AD15 to AD00		3 tcp*/2 - 20	_	ns	
$\overline{ m WR} \uparrow ightarrow$ data hold time	twhox	WRL, WRH, AD15 to AD00	_	20	_	ns	
$\overline{ m WR} \uparrow \rightarrow { m address}$ effective time	twhax	WRL, WRH, A23 to A16		1 tcp*/2 - 10	_	ns	
$\overline{WR} \uparrow \to ALE \uparrow time$	twhlh	ALE, WRL		1 tcp*/2 - 15	_	ns	
$\overline{WR} \downarrow \to CLK \uparrow time$	twlch	CLK, WRH		1 tcp*/2 - 20	_	ns	

^{*:} For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."

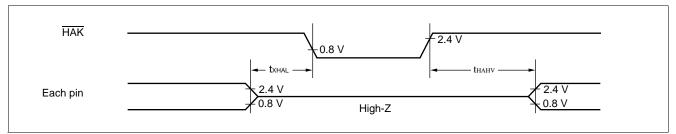


(7) Ready Input Timing

 $(AVcc = Vcc = 5.0 \text{ V} \pm 10\%, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol Pin name		Condition	Va	lue	Linit	Remarks
Parameter	Syllibol	riii iiaiiie	Condition	Min	Max	Oilit	Remarks
RDY setup time	t RYHS	RDY		45	_	ns	
RDY hold time	t RYHH	RDY	<u> </u>	0	_	ns	

Note: Use the automatic ready function when the setup time for the rising edge of the RDY signal is not sufficient.


(8) Hold Timing

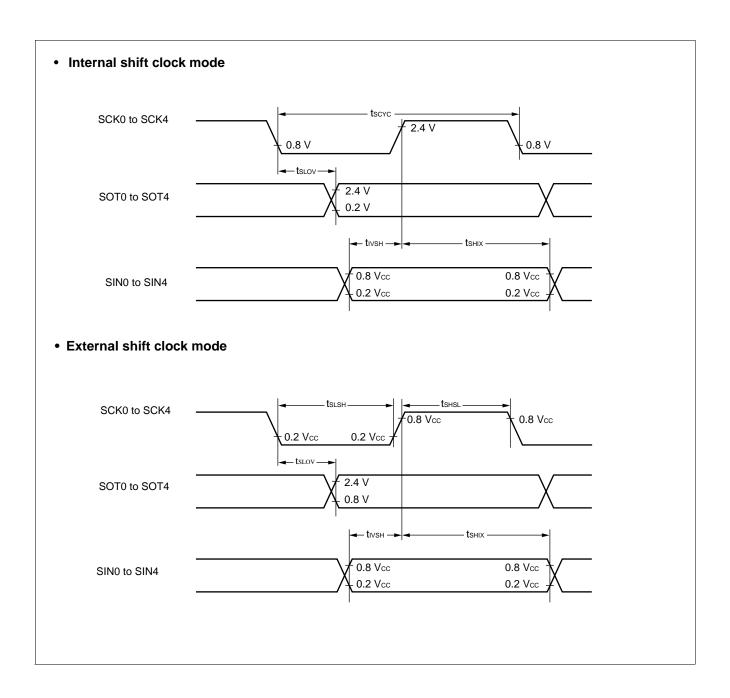
 $(AVcc = Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin name	Pin name Condition		lue	l Init	Remarks
Farameter	Syllibol	Fili Hallie	Condition	Min	Max	Oilit	Remarks
$\frac{\text{Pins in floating status} \rightarrow}{\text{HAK}} \downarrow \text{time}$	txhal	HAK	_	30	1 tcp*	ns	
$\overline{HAK} \uparrow \to pin \ valid \ time$	t hahv	HAK		1 tcp*	2 tcp*	ns	

^{*:} For top (internal operating clock cycle time), refer to "(3) Clock Timings."

Note: More than 1 machine cycle is needed before HAK changes after HRQ pin is fetched.

(9) UARTO (SCI), UART1 (SCI) Timing

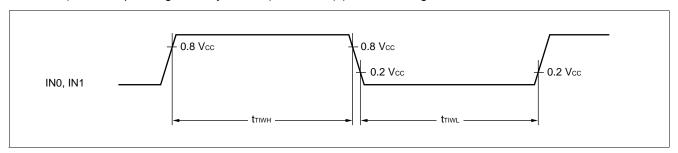

 $(AVcc = Vcc = 5.0 \text{ V} \pm 10\%, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol Pin name		Condition	Val	lue	Unit	Remarks
Parameter	Syllibol	Fill Hallie	Condition	Min	Max	Oilit	Remarks
Serial clock cycle time	t scyc	SCK0 to SCK4		8 tcp*	_	ns	
$\begin{array}{c} SCK \downarrow \to SOT \ delay \\ time \end{array}$	tsLov	SCK0 to SCK4, SOT0 to SOT4	Internal shift clock mode	- 80	80	ns	
Valid SIN → SCK ↑	t ıvsh	SCK0 to SCK4, SIN0 to SIN4	C _L = 80 pF + 1 TTL for an	100	_	ns	
$\begin{array}{c} SCK \! \uparrow \to \! valid SIN hold \\ time \end{array}$	t shix	SCK0 to SCK4, SIN0 to SIN4	output pin	60	_	ns	
Serial clock "H" pulse width	t shsl	SCK0 to SCK4		4 tcp*	_	ns	
Serial clock "L" pulse width	t slsh	SCK0 to SCK4	External shift	4 tcp*	_	ns	
$\begin{array}{c} SCK \downarrow \to SOT \ delay \\ time \end{array}$	tsLov	SCK0 to SCK4, SOT0 to SOT4	clock mode C∟ = 80 pF + 1 TTL for an	_	150	ns	
Valid SIN → SCK ↑	tıvsн	SCK0 to SCK4, SIN0 to SIN4	output pin	60	_	ns	
$\begin{array}{c} SCK \! \uparrow \to valid SIN hold \\ time \end{array}$	t sнıx	SCK0 to SCK4, SIN0 to SIN4		60	_	ns	

^{*:} For top (internal operating clock cycle time), refer to "(3) Clock Timings."

Notes: • These are AC ratings in the CLK synchronous mode.

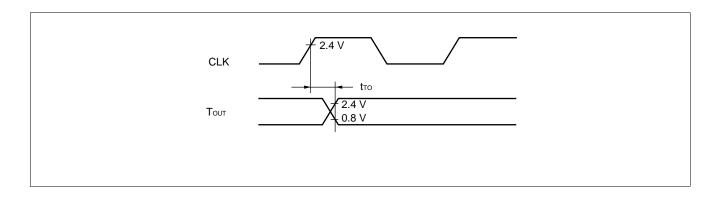
• C_L is the load capacitance value connected to pins while testing.



(10) Timer Input Timing

 $(AVcc = Vcc = 5.0 \text{ V} \pm 10\%, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

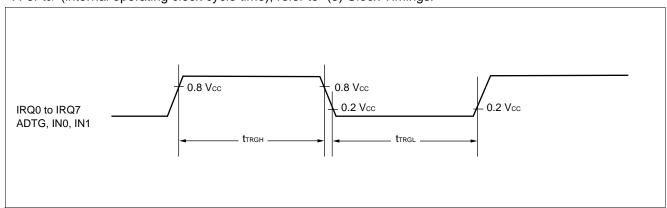
Parameter	Symbol Pin name Condition		Va	ue	Hnit	Remarks	
raiailletei	Syllibol	Fili liallie	Condition	Min	Max	Oilit	iveillai ka
Input pulse width	t тіwн, t тіwL	INO, IN1	_	4 tcp*	_	ns	


^{*:} For top (internal operating clock cycle time), refer to "(3) Clock Timings."

(11) Timer Output Timing

 $(AVcc = Vcc = 5.0 \text{ V} \pm 10\%, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Farameter	Symbol	i iii iiaiiie	Condition	Min	Max	Oint	iveillai ks
CLK $^{\uparrow}$ → T _{OUT} transition time	tто	OUT0 to OUT3, PPG0, PPG1	_	30	_	ns	

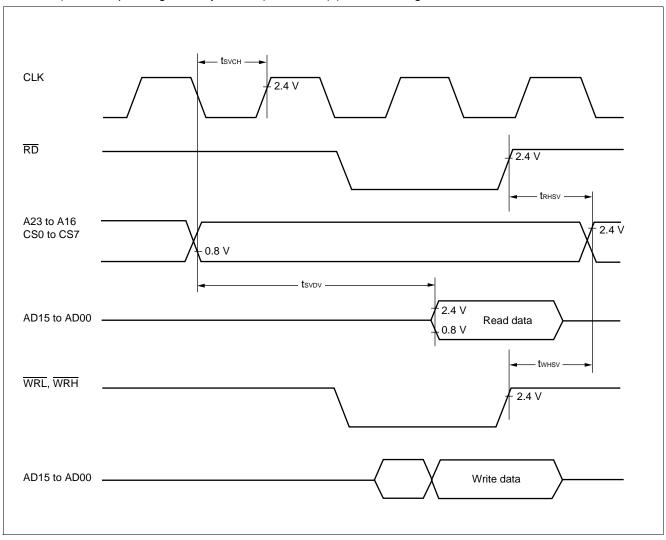


(12) Trigger Input Timing

 $(AVcc = Vcc = 5.0 \text{ V} \pm 10\%, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
Parameter	Syllibol	Fili liallie	Condition	Min	Max	Oilit	Remarks
Input pulse width	trege	IRQ0 to IRQ7, ADTG, IN0, IN1	_	5 tcp*		ns	Under normal operation
	t TRGL	IRQ0 to IRQ5		1	_	μs	In stop mode

*: For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."

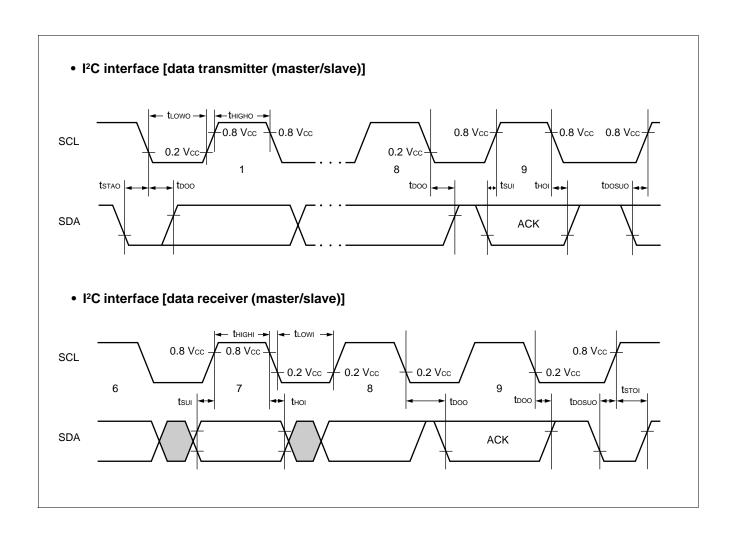


(13) Chip Select Output Timing

 $(AVcc = Vcc = 5.0 \text{ V} \pm 10\%, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Va	lue	Hnit	Remarks
Parameter	Syllibol	Fill liallie	Condition	Min	Max	Oilit	Remarks
Valid chip select output → Valid data input time	tsvov	CS0 to CS7, AD15 to AD00		_	5 tcp*/2 - 60	ns	
$\overline{\text{RD}} \uparrow \rightarrow \text{chip select}$ output effective time	t RHSV	RD, CS0 to CS7		1 tcp*/2 - 10	_	ns	
$\overline{ m WR} \uparrow ightarrow$ chip select output effective time	t wnsv	CS0 to CS7, WRL, WRH	_	1 tcp*/2 - 10	_	ns	
Valid chip select output → CLK ↑ time	t svcH	CLK, CS0 to CS7		1 tcp*/2 - 20	_	ns	

^{*:} For top (internal operating clock cycle time), refer to "(3) Clock Timings."

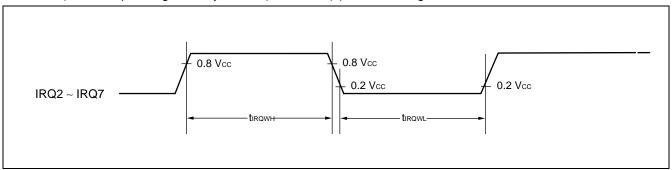

(14) I²C Timing

 $(AVcc = Vcc = 2.7 \text{ V to } 5.5 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks	
raiametei	Symbol	1 III IIaiiie	Condition	Min	Max	Oilit	Remarks	
Internal clock cycle time	t CP	_		62.5	666	ns	All products	
Start condition output	t stao			tcp×m×n/2-20	tcp×m×n/2+20	ns		
Stop condition output	tsтоо	SDA,SCL		tcp(m×n/ 2+4)-20	tcp(m×n/ 2+4)+20	ns	Only as master	
Start condition detection	t stai	,		3tcp+40	_	ns	Only as slave	
Stop condition detection	t sтоі			3tcp+40	_	ns	Offig as slave	
SCL output "L" width	tLOWO		_	tcp×m×n/2-20	tcp×m×n/2+20	ns		
SCL output "H" width	t HIGHO	SCL		tcp(m×n/ 2+4)-20	tcp(m×n/ 2+4)+20	ns	Only as master	
SDA output delay time	t DOO			2tcp-20	2tcp+20	ns		
Setup after SDA output interrupt period	toosuo	SDA,SCL		4tcp-20	_	ns		
SCL input "L" width	t LOWI	SCL		3tcp+40	_	ns		
SCL input "H" width	t HIGHI	SCL		tcp+40	_	ns		
SDA input setup time	t suı	SDV SCI		40	_	ns		
SDA input hold time	t HOI	SDA,SCL		0	_	ns		

Notes: • "m" and "n" in the above table represent the values of shift clock frequency setting bits (CS4-CS0) in the clock control register "ICCR". For details, refer to the register description in the hardware manual.

- toosuo represents the minimum value when the interrupt period is equal to or greater than the SCL "L" width.
- The SDA and SCL output values indicate that rise time is 0 ns.
- For top (internal operating clock cycle time), refer to "(3) Clock Timings."



(15) Pulse Width on External Interrupt Pin at Return from STOP Mode

(AVcc = Vcc = 2.7 V to 5.5 V, AVss = Vss = 0.0 V, TA = -40 °C to +85 °C)

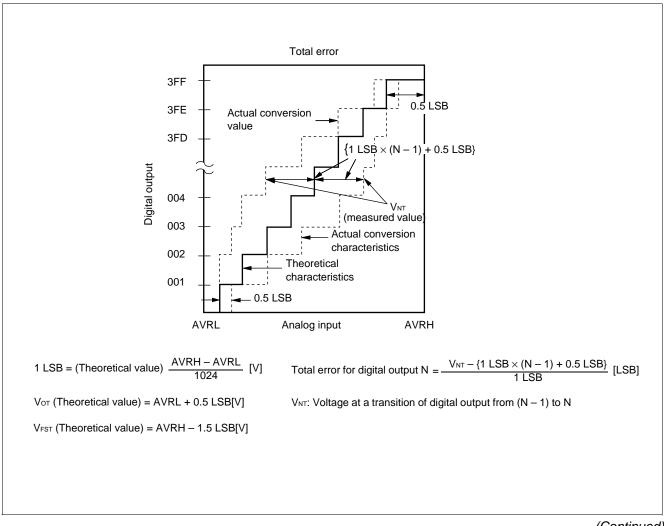
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks	
Farameter	Symbol	r III IIaiiie	Condition	Min	Max	Oilit	Remarks	
Input pulse width	tirqwh tirqwl	IRQ2 to IRQ7		6tcp*	_	ns		

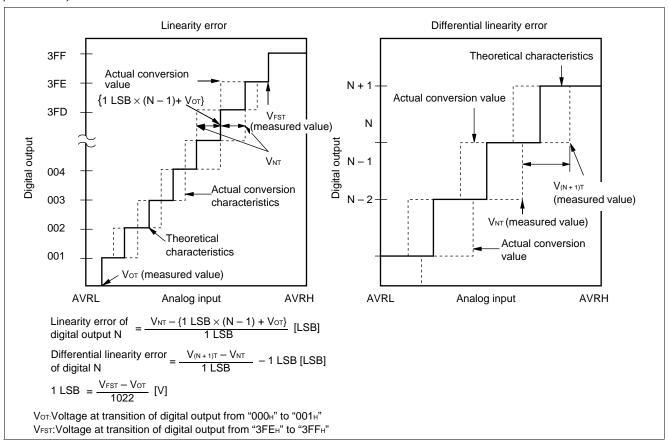
*: For top (internal operating clock cycle time), refer to "(3) Clock Timings."

5. A/D Converter Electrical Characteristics

 $(AVcc = Vcc = 2.7 \text{ V to } 5.5 \text{ V}, AVss = Vss = 0.0 \text{ V}, 2.7 \text{ V} \le AVRH - AVRL, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Symbol	Pin name	Condition		Value		Unit
Parameter	Syllibol	Fili lialile	Condition	Min	Тур	Max	Offic
Resolution	_	_		_	8/10	_	bit
Total error	_	_		_	_	±5.0	LSB
Non-linear error	_	_		_	_	±2.5	LSB
Differential linearity error	_	_	_	_	_	±1.9	LSB
Zero transition voltage	Vот	AN0 to AN7		AVRL -3.5 LSB	AVRL -0.5 LSB	AVRL +4.5 LSB	V
Full-scale transition voltage	V _{FST}	AN0 to AN7		AVRH -6.5 LSB	AVRH -1.5 LSB	AVRH +1.5 LSB	V
A/D conversion time	_	_	Vcc = 5.0 V ±10% at machine clock of 16 MHz	416tcp	_	_	μs
Sampling period	_	_	$Vcc = 5.0 V \pm 10\%$ at machine clock of 6 MHz	64tcp	_	_	μs
Analog port input current	lain	AN0 to AN7		_	_	10	μΑ
Analog input voltage	Vain	AN0 to AN7		AVRL	_	AVRH	V
Reference	_	AVRH	_	AVRL +3.0	_	AVcc	V
voltage	_	AVRL		0	_	AVRH -3.0	V
	la	AVcc		_	5		mΑ
Power supply current	Іан	AVcc	CPU stopped and 8/10-bit A/D converter not in operation (Vcc = AVcc = AVRH = 5.0 V)	_	_	5	μΑ
Reference	I R	AVRH	_	_	400	_	μΑ
voltage supply current	Irh	AVRH	CPU stopped and 8/10-bit A/D converter not in operation (Vcc = AVcc = AVRH = 5.0 V)	_	_	5	μΑ
Offset between channels	_	AN0 to AN7	_	_	_	4	LSB

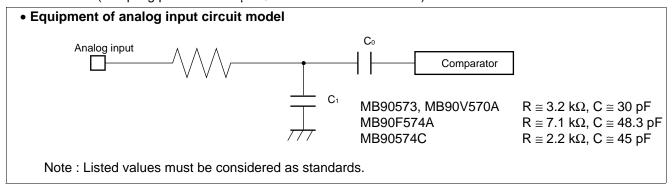

6. A/D Converter Glossary


Resolution: Analog changes that are identifiable with the A/D converter

Linearity error:The deviation of the straight line connecting the zero transition point ("00 0000 0000" ↔ "00 0000 0001") with the full-scale transition point ("11 1111 1110" \leftrightarrow "11 1111 1111") from actual conversion characteristics

Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error: The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error and linearity error.



7. Notes on Using A/D Converter

Select the output impedance value for the external circuit of analog input according to the following conditions. Output impedance values of the external circuit MB90V570A/573 are 5 k Ω or lower, MB90F574A/574C are 10 k Ω or lower are recommended.

When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.

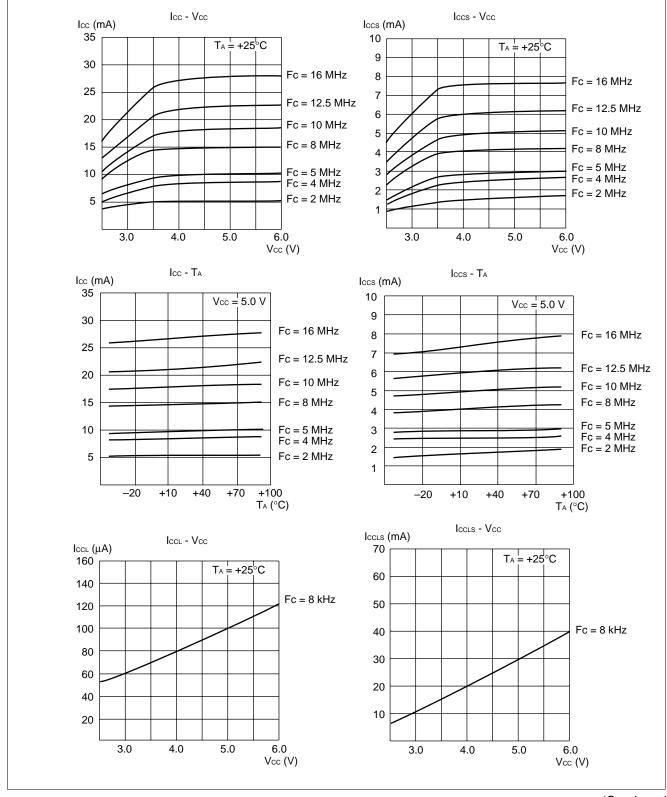
When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period = $4.00 \, \mu s$ @machine clock of 16 MHz).

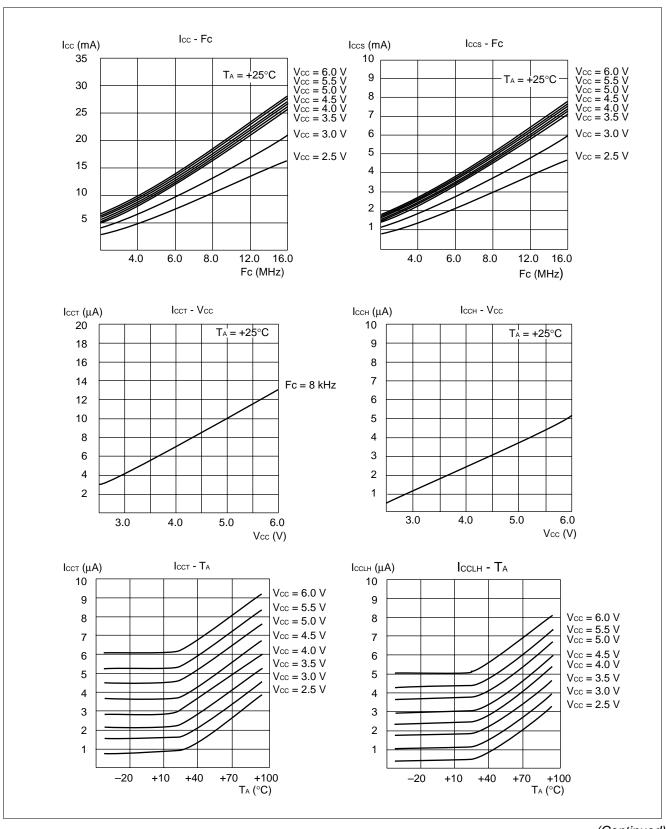
• Error

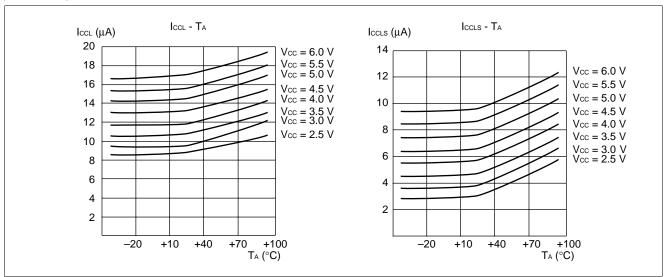
The smaller the | AVRH – AVRL |, the greater the error would become relatively.

8. D/A Converter Electrical Characteristics

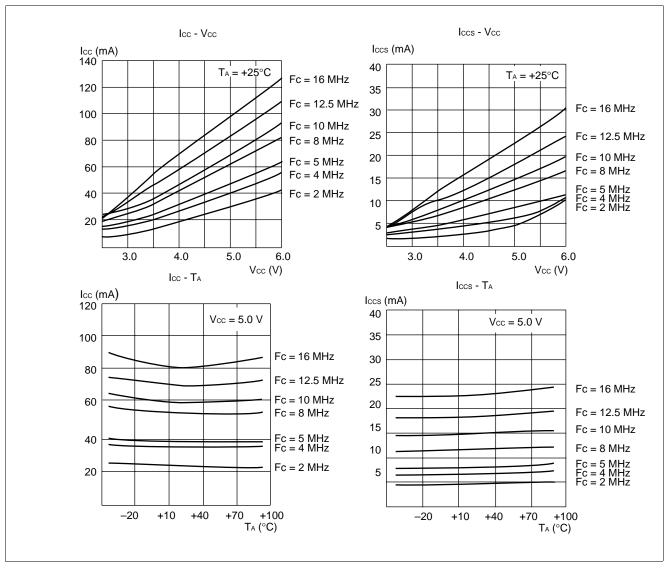
 $(AVcc = Vcc = DVcc = 5.0 V \pm 10\%, AVss = Vss = DVss = 0.0 V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

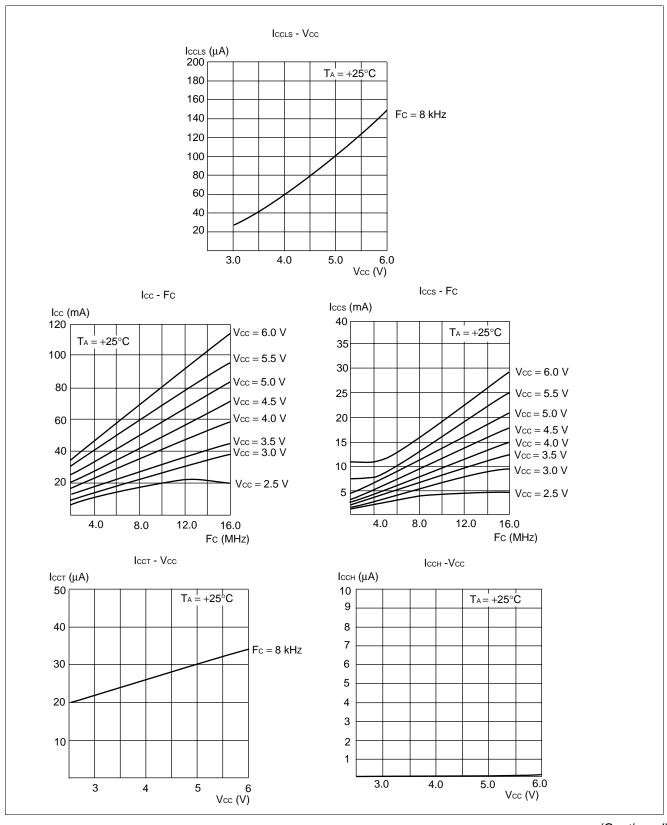

Parameter	Symbol	Pin name		Value		Unit	Remarks
Parameter	Symbol	Fili lialile	Min	Тур	Max	Offic	Remarks
Resolution	_	_	_	8	_	bit	
Differential linearity error	_	_	_	_	±0.9	LSB	
Absolute accuracy	_	_	_	_	±1.2	%	
Linearity error	_	_	_	_	±1.5	LSB	
Conversion time	_	_	_	10	20	μs	Load capacitance: 20 pF
Analog reference voltage	_	DVcc	Vss + 3.0	_	AVcc	V	
Reference voltage supply current	Idvr	DVcc	_	120	300	μА	Conversion under no load
Supply current	Idvrs	DVcc	_	_	10	μΑ	In sleep mode
Analog output impedance	_	_	_	20	_	kΩ	

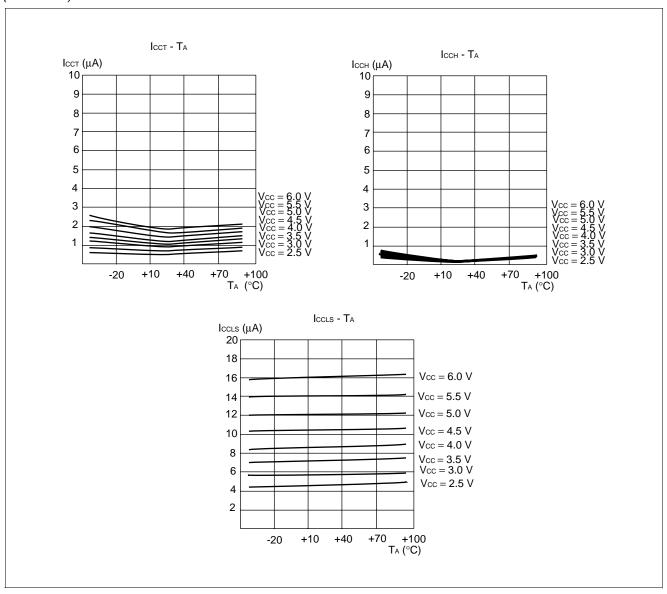

9. Flash Memory Program/Erase Characteristics

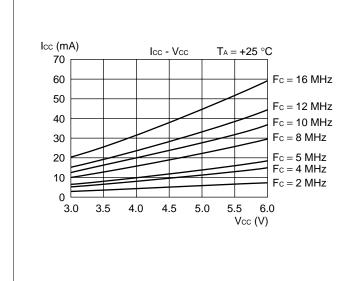

Parameter	Condition		Value		Unit	Remarks
Parameter	Condition	Min	Тур	Max	Ullit	Remarks
Sector erase time		_	1.5	30	S	Except for the write time before internal erase operation
Chip erase time	$T_A = + 25^{\circ}C$ Vcc = 5.0 V	_	13.5	_	S	Except for the write time before internal erase operation
Word (16bit width) programming time		_	32	1,000	μs	Except for the over head time of the system
Program/Erase time	_	10,000	_	_	cycle	
Data hold time	_	100,000	_	_	h	

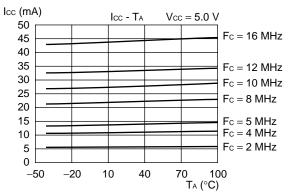
■ EXAMPLE CHARACTERISTICS

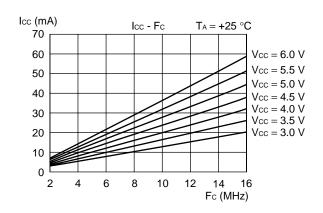

(1) Power Supply Current (MB90573)

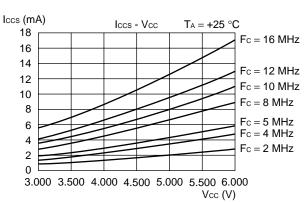


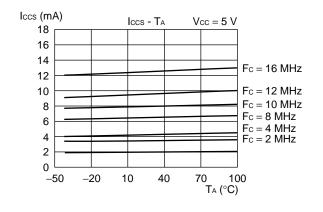


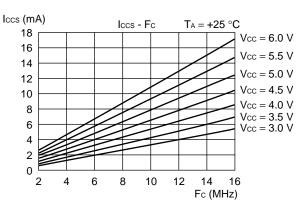

(2) Power Supply Current (MB90F574A)

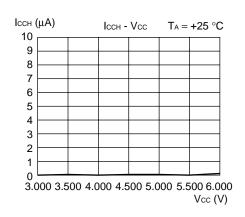


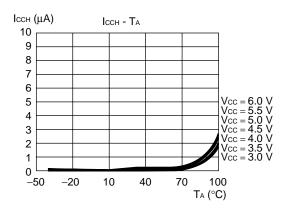


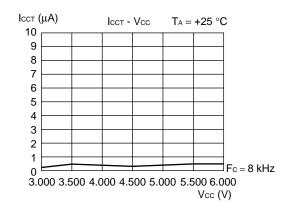


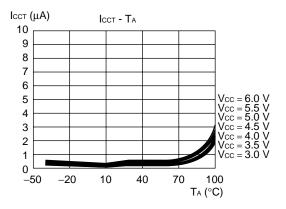

(3) Power Supply Current (MB90574C)

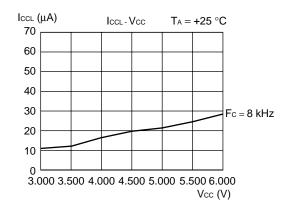


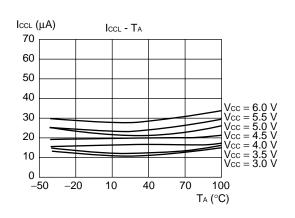


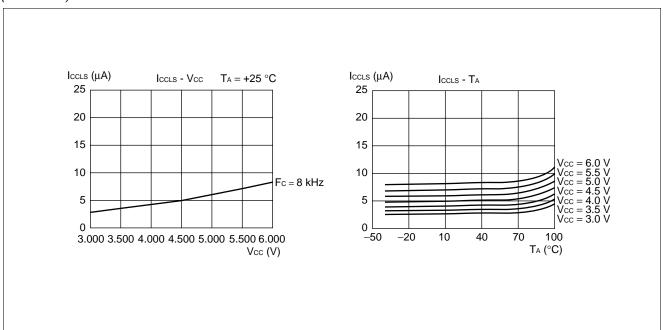


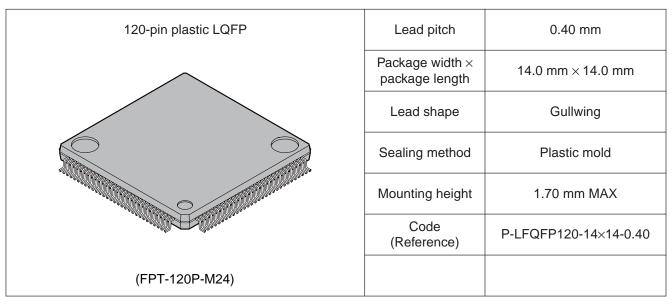


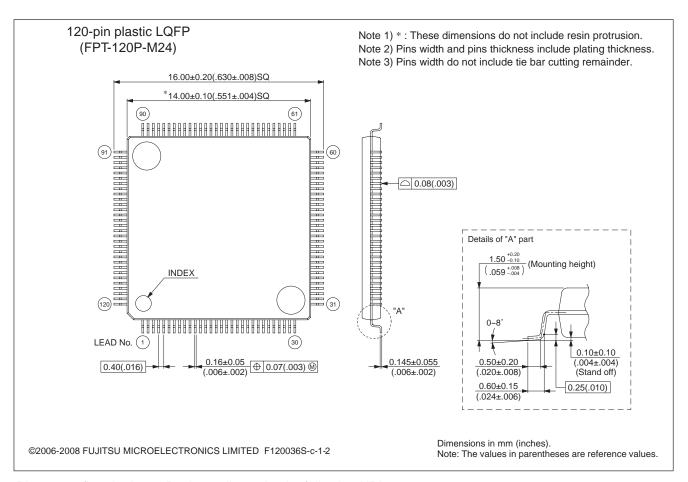




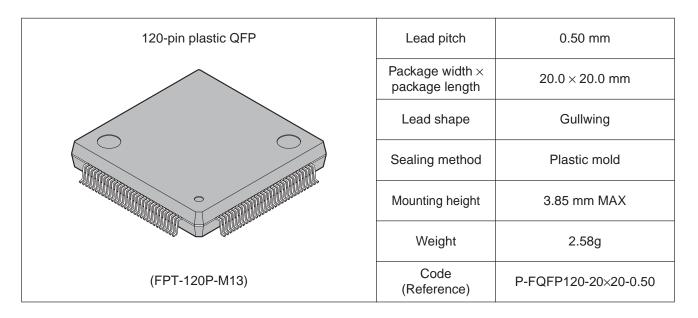


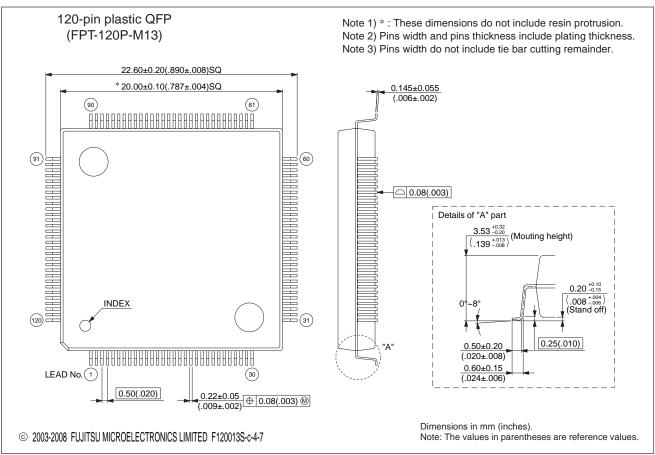


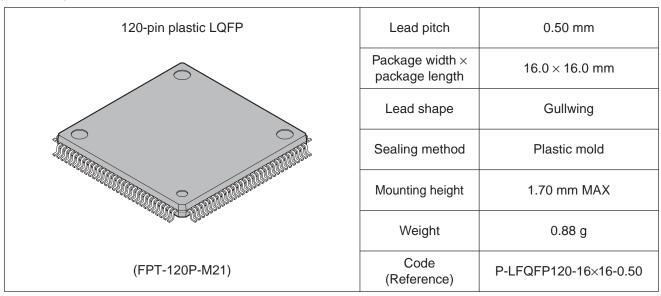


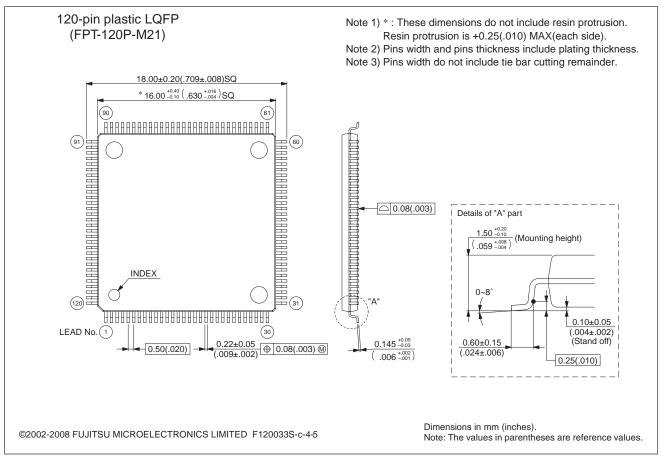


■ ORDERING INFORMATION


Part number	Package	Remarks
MB90F574APMC1 MB90573PMC1	120-pin Plastic LQFP (FPT-120P-M24)	
MB90F574APFV MB90574CPFV MB90573PFV	120-pin Plastic QFP (FPT-120P-M13)	
MB90574CPMT MB90F574APMT	120-pin Plastic LQFP (FPT-120P-M21)	


■ PACKAGE DIMENSIONS


Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/



Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

(Continued)

Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

■ MAIN CHANGES IN THIS EDITION

Page	Section	Change Results
_	_	Series name is changed MB90570 series → MB90570A/570C series
_	_	Deleted the part number; MB90574, MB90F574, MB90V570
_	_	The package code is changed. (FPT-120P-M05 → FPT-120P-M24)
_	_	Peripheral Resource name is changed. Clock Timer → Watch Timer
38	■ PERIPHERALS 1. I/O port	Changed the pull-up resister value in "? Input pull-up resistor setup register (RDR)". 5.0 k $\Omega \to$ 50 k Ω
83	■ ELECTRICAL CHARACTERISTICS 3. DC Characteristics	Changed the value of lccs (Condition : Internal operation at 16 MHz $Vcc = 5.0 \text{ V}$ In sleep mode) When MB90F574A (Min : 5, Max : 10 \rightarrow Min : 25, Max : 30)
88	■ ELECTRICAL CHARACTERISTICS 4. AC Characteristics	Deleted the "(4) Recommended Resonator Manufacturers".
101	■ ELECTRICAL CHARACTERISTICS 5. Electrical Characteristics for the A/D Converter	Changed the value of "Zero transition voltage". (Added "AVRL") Changed the unit of "Zero transition voltage" and "Full-scale transition voltage". (mV \rightarrow V)
115	■ ORDERING INFORMATION	Changed the part namber; MB90573PFF → MB90573PMC1 MB90F574APFF → MB90F574APMC1
116	■ PACKAGE DIMENSIONS	Changed the figure of package. FPT-120P-M05 → FPT-120P-M24

The vertical lines marked in the left side of the page show the changes.

FUJITSU MICROELECTRONICS LIMITED

Shinjuku Dai-Ichi Seimei Bldg., 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0722, Japan

Tel: +81-3-5322-3347 Fax: +81-3-5322-3387

http://jp.fujitsu.com/fml/en/

For further information please contact:

North and South America

http://www.fma.fujitsu.com/

FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/microelectronics/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. 151 Lorong Chuan, #05-08 New Tech Park 556741 Singapore Tel: +65-6281-0770 Fax: +65-6281-0220 http://www.fmal.fujitsu.com/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD. Rm. 3102, Bund Center, No.222 Yan An Road (E), Shanghai 200002, China Tel: +86-21-6146-3688 Fax: +86-21-6335-1605

http://cn.fujitsu.com/fmc/

FUJITSU MICROELECTRONICS PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: +852-2377-0226 Fax: +852-2376-3269

http://cn.fujitsu.com/fmc/en/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited: Business & Media Promotion Dept.