

LS3550C MONOLITHIC DUAL PNP TRANSISTOR

Linear Systems Monolithic Dual PNP Transistor

The LS3550C is a monolithic pair of PNP transistors mounted in a single SOIC package. The monolithic dual chip design reduces parasitics and gives better performance while ensuring extremely tight matching.

The 8 Pin SOIC provides ease of manufacturing, and the symmetrical pinout prevents improper orientation.

(See Packaging Information).

LS3550C Features:

- Tight matching
- Low Output Capacitance

FEATURES						
EXCELLENT THERMAL TRACKING	≤ 15μV/°C					
TIGHT V _{BE} MATCHING	V _{BE1} – V _{BE2} ≤10mV					
ABSOLUTE MAXIMUM RATINGS ¹						
@ 25°C (unless otherwise noted)						
Maximum Temperatures						
Storage Temperature	-65°C to +150°C					
Operating Junction Temperature	-55°C to +150°C					
Maximum Power Dissipation						
Continuous Power Dissipation	TBD					
Maximum Currents						
Collector Current	10mA					
Maximum Voltages						
Collector to Collector Voltage	80V					

MATCHING CHARACTERISTICS @ 25°C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
V _{BE1} - V _{BE2}	Base Emitter Voltage Differential			10	mV	$I_C = -10 \text{mA}, V_{CE} = -5 \text{V}$
$\Delta (V_{BE1} - V_{BE2}) / \Delta T$	Base Emitter Voltage Differential			15	μV/°C	$I_C = -10 \text{mA}, V_{CE} = -5 \text{V}$
	Change with Temperature					$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$
I _{B1} - I _{B2}	Base Current Differential			10	nA	$I_C = -10\mu A$, $V_{CE} = -5V$
$ \Delta (I_{B1}-I_{B2}) /\Delta T$	Base Current Differential			1.0	nA/°C	$I_C = -10\mu A, V_{CE} = -5V$
	Change with Temperature					$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$
h _{FE1} /h _{FE2}	DC.Current Gain Differential			-15	%	$I_C = 10 \mu A, V_{CE} = 5 V$

ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

ELECTRICAL CH	ANACIENISTICS @ 25 C (uniess officiwise					
SYMBOL	CHARACTERISTICS CHARACTERIST CS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
BV _{CBO}	Collector to Base Voltage	-20			V	$I_{c} = 10 \mu A, I_{E} = 0$
BV _{CEO}	Collector to Emitter Voltage	-20	-) !	>	I _C = 10μΑ, I _B = 0
BV_{EBO}	Emitter-Base Breakdown Voltage	-6.2		1	>	$I_E = 10 \mu A$, $I_C = 0^2$
BV_{CCO}	Collector to Collector Voltage	-80			V	$I_{C} = 10 \mu A, I_{E} = 0$
		50				$I_{C} = -1 \text{mA}, V_{CE} = -5 \text{V}$
h _{FE}	DC Current Gain	40				I _C = -10mA, V _{CE} = -5V
		40				I _C = -100mA, V _{CE} = -5V
V _{CE} (SAT)	Collector Saturation Voltage			-1.2	V	I _C = -100mA, I _B = -10mA
I _{EBO}	Emitter Cutoff Current			-0.2	nA	$I_E = 0$, $V_{CB} = -3V$
I _{CBO}	Collector Cutoff Current			-0.2	nA	$I_E = 0$, $V_{CB} = -20V$
C _{OBO}	Output Capacitance			2	pF	$I_E = 0, V_{CB} = -10V$
C _{C1C2}	Collector to Collector Capacitance			2	pF	V _{CC} = 0V
I _{C1C2}	Collector to Collector Leakage Current			-1	nA	$V_{CC} = \pm 80V$
f_T	Current Gain Bandwidth			600	MHz	$I_{C} = -1 \text{mA}, V_{CE} = -5 \text{V}$
	Product(Current)					
NF	Narrow Band Noise Figure			3	dB	I_C = -100μA, V_{CE} = -5V, BW=200Hz, R_G = 10Ω, f = 1KHz
						f = 1KHz

Notes

- 1. Absolute Maximum ratings are limiting values above which serviceability may be impaired
- 2. The reverse base-to-emitter voltage must never exceed 6.2 volts; the reverse base-to-emitter current must never exceed 10µA.

Available Packages:

LS3550C in SOIC

LS3550C available as bare die

Please contact Micross for full package and die dimensions:

Email: chipcomponents@micross.com
Web: www.micross.com/distribution.aspx

C1 1 8 C2 B1 2 7 B2 E1 3 6 E2 N/C4 5 N/C

SOIC (Top View)