

SANYO Semiconductors DATA SHEET

Monolithic Linear IC For PAL TV/VCR Adjustment Free VIF/SIF Signal Processing IC

Overview

The LA75503V is an adjustment free VIF/SIF signal processing IC for PAL TV/VCR. It supports 38MHz, 38.9MHz, and 39.5MHz as the IF frequencies, as well as PAL sound multi-system (M/N, B/G, I, D/K), and contains an on-chip sound carrier trap and sound carrier BPF. To adjust the VCO circuit, AFT circuit, and sound filter, 4MHz external crystal or 4MHz external signal is needed.

Features

- Internal VCO adjustment free circuit eliminating need for VCO coil adjustments.
- Internal sound carrier BPF and sound carrier trap enable easy configuration of PAL sound multi-system at low cost.
- Considerably reduces the number of required peripheral parts.
- Use of digital AFT eliminates problem of AFT tolerance.
- Package: SSOP30 (275 mil)

Functions

- VIF amplifier
- VCO adjustment free PLL detection circuit
- Digital AFT circuit
- RF AGC
- Buzz canceller

- Equalizer amplifier
- Internal sound carrier BPF
- Internal sound carrier trap
- PLL-FM detector
- Reference oscillation circuit

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

Specifications

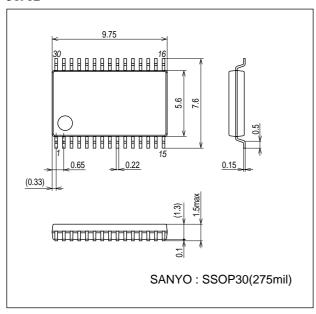
Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		7	V
Circuit voltage	V16		V _{CC}	V
	V18		V _{CC}	V
Circuit current	130		-1	mA
	117		+0.5	mA
	16		-10	mA
	14		-3	mA
Allowable power dissipation	Pd max	Ta ≤ 75°C *	550	mW
Operating temperature	Topr		-20 to 70	°C
Storage temperature	Tstg		-55 to +150	°C

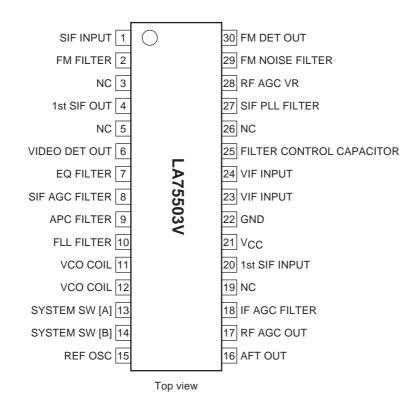
* Mounted on a printed circuit board: 65mm \times 72mm \times 1.6mm, paper phenol.

Operating Conditions at $Ta = 25^{\circ}C$

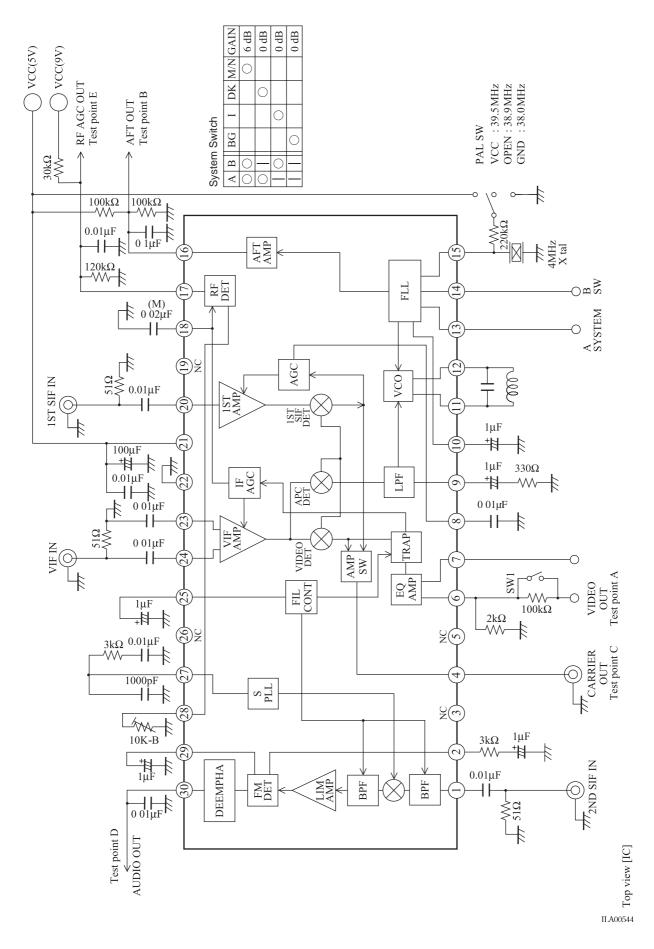
Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	VCC		5	V
Operating voltage range	V _{CC} op		4.5 to 5.5	V


Electrical Characteristics at Ta = 25° C, V_{CC} = 5.0V, fp = 38.9MHz

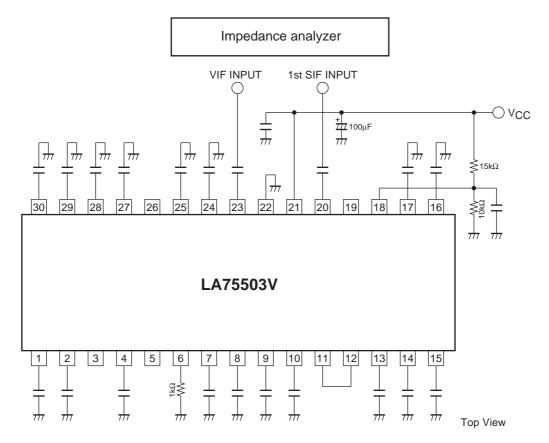
Parameter	Symbol	Conditions		Ratings		Unit
Falanetei	Symbol	Conditions	min	typ	max	Onit
VIF Block						
Circuit current	117			64.0	73.6	mA
Maximum RF AGC voltage	V14H	Collector load $30k\Omega$ VC2 = 9 V	8.5	9		V
Minimum RF AGC voltage	V14L			0.3	0.7	V
Input sensitivity	Vi		33	39	45	dBμV
AGC range	GR		58			dB
Maximum allowable input	Vi max		92	97		dBμV
No-signal video output voltage	V4		3.3	3.6	3.9	V
Synchronizing signal tip voltage	V4tip		1.0	1.3	1.6	V
Video output level	VO		1.7	2.0	2.3	Vp-p
Video signal-to-noise ratio	S/N	B/G	48	52		dB
C-S beating	IC-S	P/S = 10dB	26	32	38	dB
Differential gain	DG	$Vin = 80 dB\mu$		3	10	%
Differential phase	DP			2	10	deg
Black noise threshold voltage	VBTH			0.7		V
Black noise clamp voltage	V _{BCL}			1.8		V
VIF input resistance	Ri			2.5	3.0	kΩ
VIF input capacitance	Ci			3	6	pF
Maximum AFT voltage	V13H		4.3	4.7	5.0	V
Maximum AFT voltage	V13L		0	0.2	0.7	V
AFT tolerance 1	dfa1	f = 38.9MHz		±35	±70	kHz
AFT tolerance 2	dfa2	f = 38.0MHz		±35	±70	kHz
AFT tolerance 3	dfa3	f = 39.5MHz		±35	±70	kHz
AFT detection sensitivity	Sf	$R_L = 100 k\Omega // 100 k\Omega$	40	80	120	mV/kHz
AFT dead zone	fda			30	60	kHz
APC pull-in range (U)	fpu		1.5	2.0		MHz
APC pull-in range (L)	fpl		1.5	2.0		MHz
VCO maximum frequency range (U)	dfu		1.5	2.0		NHz
VCO maximum frequency range (L)	dfl		1.5	2.0		MHz
VCO control sensitivity	β		2.0	4.0	8.0	kHz/mV


Parameter	Symbol	Conditions		Ratings		Unit
Falametei	Symbol	Conditions	min	typ	max	Offic
N trap1 (4.75MHz)	NT1	wrt 1MHz	-30	-35		dB
N trap2 (5.25MHz)	NT2	wrt 1MHz	-19	-24		dB
BG trap1 (5.75MHz)	BT1	wrt 1MHz	-27	-32		dB
BG trap2 (6.1MHz)	BT2	wrt 1MHz	-20	-25		dB
BG trap3 (5.85MHz)	BT3	wrt 1MHz	-27	-32		dB
l trap1 (6.25MHz)	IT1	wrt 1MHz	-25	-30		dB
l trap2 (6.8MHz)	IT2	wrt 1MHz	-15	-20		dB
DK trap1 (6.75MHz)	DT1	wrt 1MHz	-25	-30		dB
Group delay 1 NTSC (3.0MHz)	NGD1	wrt 1MHz	10	40	70	ns
Group delay 1-1 NTSC (3.5MHz)	NGD1-1	wrt 1MHz	70	120	170	ns
Group delay 2 BG (4MHz)	BGD2	wrt 1MHz	30	60	90	ns
Group delay 2-1 BG (4.4MHz)	BGD2-1	wrt 1MHz	100	150	200	ns
Group delay 3 I (4MHz)	IGD3	wrt 1MHz	0	30	60	ns
Group delay 3-1 I (4.4MHz)	IGD3-1	wrt 1MHz	30	60	90	ns
Group delay 4 DK (4MHz)	DGD4	wrt 1MHz	0	15	30	ns
Group delay 4-1 DK (4.4MHz)	DGD4-1	wrt 1MHz	0	30	60	ns
1st SIF Block				·		
Conversion gain	Vg	fp = 5.5MHz, Vi = 500μV	26	32	38	dB
SIF carrier output level	So	Vi = 10mV		100		mVrms
First SIF maximum input	Si max	so ±2dB		106		dBμV
First SIF input resistance	Ris			5.0	6.0	kΩ
First SIF input capacitance	Cis			3	6	pF
SIF Block		·	·			
Limiting sensitivity	Vi(lim)	fp = 5.5MHz, Δ F = ±30kHz at 400Hz	46	52	58	dBμV
FM detector output voltage	V _O (FM)		560	700	850	mVrms
AM rejection ratio	AMR	AM = 30% at 400Hz	50	60		dB
Total harmonic distortion	THD	fp = 5.5MHz, $\Delta F = \pm 30$ kHz		0.3	1.0	%
FM detector output S/N	S/N(FM)		55	60		dB
BPF 3dB bandwidth	BW			±100		kHz
PAL de-emphasis	Pdeem	fm = 3kHz		-3		dB
NTSC de-emphasis	Ndeem	fm = 2kHz		-3		dB
PAL/NT audio voltage gain difference	GD			6		dB
Others		•	· ·			
4MHz level (during external input)	X4MIN	Terminated	86			dBμ
SIF system SW threshold voltage	V10, V11			1.4		V
IF system SW threshold resistance	V12				270	kΩ
Split/inter SW	V16			0.5		V

Package Dimensions


unit : mm (typ) 3191B

Pin Assignment



Block Diagram and Test Circuit 1

Test circuit 2

Input Impedance Measuring Circuit (VIF, First SIF input impedance)

System Switching

• SIF system switch The SIF system is switched by setting pins A (pin 13) and B (pin 14) to GND or OPEN.

А	В	B/G	I	D/K	M/N	FM DET LEVEL	De-emphasis
GND	GND				0	6dB	75µs
GND	OPEN			0		0dB	50µs
OPEN	GND		0			0dB	50µs
OPEN	OPEN	0				0dB	50µs

Note: "O" indicates that the system is selected.

• IF system switch

38.9MHz is selected as the IF frequency by leaving pin 15 (crystal oscillation) open. 38MHz is selected by adding 220k Ω between pin 15 and GND. This device can also select 39.5MHz operation by adding a 220k Ω resistor between pin 15 and V_{CC}.

• Split/inter carrier switch

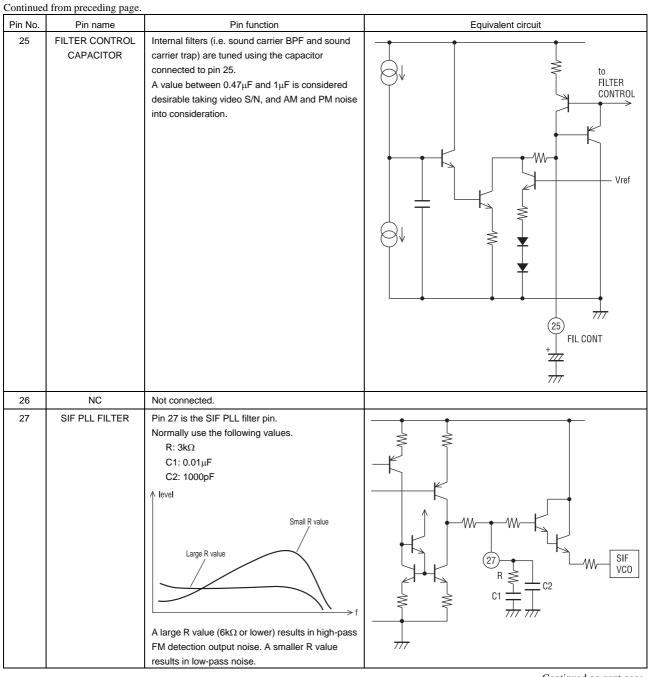
Inter carrier is selected by setting the first SIF input (pin 20) to GND.

Sound Trap

The trapping point of the sound trap is set approximately 250kHz above the SIF center frequency of each mode to improve the video S/N. Therefore, design using split specifications is preferable.

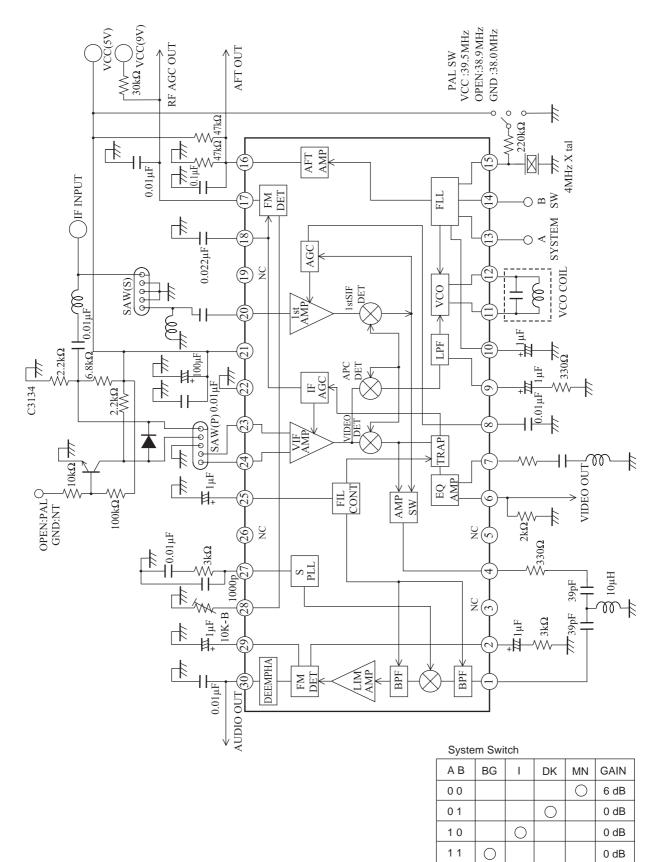
Pin Fu	unction		
Pin No.	Pin name	Pin function	Equivalent circuit
1	SIF INPUT	Inputs the SIF signal from the first SIF output. Set the input level to 90dBµV or lower because of the dynamic range of the internal filter.	4V BPF 777 777 777
2	FM FILTER	This is the FM feedback filter pin. It is composed of a C and R filters. 1μ F is normally used as the capacitance. If the capacitance is a low value, the audio output level is small at low frequencies. Moreover, the audio output level can be made smaller by increasing the resistance connected in series. Use a resistance of $3k\Omega$ or higher.	THE REPORT OF T
3	NC	Not connected.	
4	1st SIF OUT	This is the first SIF output. In case of inter carrier, the chroma carrier is bigger than split carrier applications, so that it is recommended to connect a filter externally. Filter example 4 330Ω $39pF$ $39pF$ $10\mu F$	200Ω W-4 1st SIF OUT SPLIT V 400μA
			SW

	I from preceding page.	Γ	
Pin No.	Pin name	Pin function	Equivalent circuit
6 7	VIDEO-OUT EQ-OUT	Pin 6 is the video output pin. The EQ amplifier can be thought of as shown below. R R Therefore, the peak gain of the EQ amplifier is determined by Av = 1 + R/Z. However, note that the LA75503V being an IC with V _{CC} = 5V, setting too large an amplitude causes distortion in the Vcc side. Use so that the white level is 4V or less.	2kΩ 1kΩ VIDEO OUT 2kΩ 1kΩ VIDEO OUT 6 7 EQ OUT 400μA 7 7 7 100μA
8	SIF AGC FILTER	Pin 8 is the SIF AGC filter pin. Use this pin with a capacitance between 0.01μ F and 0.1μ F.	AGC DET 78kQ 7777 7777 7777 7777 7777 8 77777 77777 7777 7777
9 10	APC FILTER FLL FILTER	Pin 9 is the PLL detector APC filter pin. Normally the following are used: R = 330Ω C1 = 0.47μ F to 1μ F C2 = $100p$ F C1 = 1μ F is effective for the over-modulation characteristics. When the PLL is locked, the signal passes via the path marked A in the figure, and when PLL is unlocked and in weak signal, the signal passes via the path marked B in the figure. The PLL loop gain can thus be switched in this manner. Pin 10 is a VCO automatic control FLL filter pin. Since it operates always on a small current, using a larger capacitance results in a slower response. Normally, a capacitance between 0.47μ F and 1 μ F is used. Moreover, the control range for this pin is between about 3V to 4.7V. Since this range is determined when adjusting the VCO tank circuit, set the design center of L and C of VCO so that the voltage of pin 10 is 3.6 V.	A Tiko 1ko W W W W W W W W W W W W W


Continued	from preceding page.		
Pin No.	Pin name	Pin function	Equivalent circuit
11 12	VCO COIL	This is the VCO tank circuit for the PLL detector. Use a tuning capacitance of 24pF. Use L and C specifications that are accurate to $\pm 2\%$. Also, design the L and C values so that the voltage of pin 10 is 3.6V when PLL is locked while using the IF center frequency.	
13 14	SYSTEM SW [A] SYSTEM SW [B]	This is the system switch pin. The transistor turns ON when the pin voltage from the circuit becomes approx. 1.4V.	$40k\Omega$ $40k\Omega$ 13 14 14 $30k\Omega$ $30k\Omega$ $30k\Omega$ $30k\Omega$ $30k\Omega$
15	REF OSC	This pin can be used both as the crystal resonator pin and IF switch. The 38MHz mode is selected by inserting $220k\Omega$ between pin 15 and GND, the 38.9MHz mode by leaving the pin open, and the 39.5MHz mode by inserting $220k\Omega$ between pin 15 and V _{CC} . 4MHz input is possible from this pin. In the case of 4MHz external input, input 86dB μ	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$

LA75503V

	I from preceding page.		
Pin No.	Pin name	Pin function	Equivalent circuit
16	AFT OUT	Pin 16 is the AFT output pin. Use external resistors of $47k\Omega$ and a filter capacitance 0.1μ F. The AFT circuit generates the AFT voltage by comparing the signal obtained by dividing the 4MHz reference frequency with the signal obtained by dividing VCO. Since it uses a digital phase comparator, a dead zone exists in the AFT center.	P/C $47k\Omega$ $47k\Omega$ $47k\Omega$ $47k\Omega$ 0.1μ F 777 777 777 777
17	RF AGC OUT	Pin 17 is the RF AGC output. RF AGC max is determined by R1 and R2. RF AGC min is determined by R3 and R4. Capacitor C1 prevents oscillation and capacitor C2 is the RF AGC filter. Normally $30k\Omega$ is used for R1, but if the tuner's F/E transistor is GaAS, the gate's impedance is lower, so use approx. $10k\Omega$.	FROM RF AGC Comparator 100Ω R3 to TUNER C1 R2 TTT TTT TTT TTT TTT
18	IF AGC FILTER	Pin 18 is the IF AGC filter pin. Normally, 0.01μ F to 0.02μ F polyester film capacitor is used. Determine the impedance based on H-SAG and AGC speed.	IkΩ IkΩ <


LA75503V

$\begin{array}{ c c c c c c }\hline & & & & & & & & & & & & & & & & & & &$		from preceding page.	1	
21 V _{CC} Connect the decoupling capacitor as close as possible. 22 GND 23 VIF INPUT 24 VIF INPUT	Pin No.	Pin name	Pin function	Equivalent circuit
21 V _{CC} Connect the decoupling capacitor as close as possible. 22 GND 23 VIF INPUT Pins 23 and 24 are VIF input pins. To reduce the loss of signal through a saw filter, input resistors are set to 2kQ. VIF amplifier has three capacitive coupling amplifiers, direct connection from a saw filter is available.	20	1st SIF INPUT	inter/split switch pins. In the case of inter carrier, connect pin 20 to GND. When a sound saw filter is added, the matching loss can be decreased by inserting L to neutralize the IC input capacitance and saw filter output	
21 V _{CC} Connect the decoupling capacitor as close as possible. 22 GND 23 VIF INPUT 24 Pins 23 and 24 are VIF input pins. To reduce the loss of signal through a saw filter, input resistors are set to 2kΩ. VIF amplifier has three capacitive coupling amplifiers, direct connection from a saw filter is available. 			SAW SAW Ci	
22 GND 23 VIF INPUT 24 Pins 23 and 24 are VIF input pins. 70 reduce the loss of signal through a saw filter, input resistors are set to 2kΩ. VIF amplifier has three capacitive coupling amplifiers, direct connection from a saw filter is available.				W to INT / SPLIT
23 VIF INPUT Pins 23 and 24 are VIF input pins. 24 To reduce the loss of signal through a saw filter, input resistors are set to 2kΩ. VIF amplifier has three capacitive coupling amplifiers, direct connection from a saw filter is available.	21	VCC		
24 To reduce the loss of signal through a saw filter, input resistors are set to $2k\Omega$. VIF amplifier has three capacitive coupling amplifiers, direct connection from a saw filter is available. L MP	22	GND		
		VIF INPUT	To reduce the loss of signal through a saw filter, input resistors are set to $2k\Omega$. VIF amplifier has three capacitive coupling amplifiers, direct connection from a saw filter is available.	$2nd \\ AMP \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $

Continued	I from preceding page.		
Pin No.	Pin name	Pin function	Equivalent circuit
28	RF AGC VR	Pin 28 is the RF AGC VR pin. When this pin is connected to GND, no signal is appeared on pin 6 and pin 30.	The second seco
29	FM FILTER	Pin 29 is the FM filter pin. Use a capacitance between 0.01μF and 1μF.	FM FILTER 3.6V 777 5kΩ 1μF 29 FM DET W FM MUTE SW FM
30	FM DET OUT	Pin 30 is the FM output pin. The built-in differential amplifier determines and switches the de-emphasis resistance value. PAL: $5k\Omega \times 0.01 \mu F$ NT: $7.5k\Omega \times 0.01 \mu F$	2.0kΩ 0.01μF 777 777 777 $777De emphasis SW$

Application Circuit Example

1: OPEN 0: GND

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of November, 2007. Specifications and information herein are subject to change without notice.