DATA SHEET

74LVC16373A; 74LVCH16373A 16-bit D-type transparent latch with 5 V tolerant inputs/outputs (3-state)

Product specification
Supersedes data of 1998 Mar 17

PHILIPS

16-bit D-type transparent latch with 5 V tolerant inputs/outputs (3-state)

74LVC16373A;

74LVCH16373A

FEATURES

- 5 V tolerant inputs/outputs for interfacing with 5 V logic
- Wide supply voltage range from 1.2 to 3.6 V
- Complies with JEDEC standard no. 8-1A
- CMOS low power consumption
- MULTIBYTE ${ }^{\text {TM }}$ flow-through standard pin-out architecture
- Low inductance multiple power and ground pins for minimum noise and ground bounce
- Direct interface with TTL levels
- All data inputs have bus hold (74LVCH16373A only)
- High-impedance when $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$.

DESCRIPTION

The 74LVC(H)16373A is a 16-bit D-type transparent latch featuring separate D-type inputs for each latch and 3-state outputs for bus oriented applications. One Latch Enable (LE) input and one Output Enable ($\overline{\mathrm{OE}}$) are provided for each octal. Inputs can be driven from either 3.3 or 5 V devices. In 3-state operation, outputs can handle 5 V . These features allow the use of these devices in a mixed 3.3 and 5 V environment.

The $74 \mathrm{LVC}(\mathrm{H}) 16373 \mathrm{~A}$ consists of 2 sections of eight D-type transparent latches with 3-state true outputs. When LE is HIGH, data at the Dn inputs enter the latches. In this condition the latches are transparent, i.e., a latch output will change each time its corresponding D-input changes.
When LE is LOW the latches store the information that was present at the D-inputs a set-up time preceding the HIGH-to-LOW transition of LE. When OE is LOW, the contents of the eight latches are available at the outputs. When $\overline{\text { OE }}$ is HIGH, the outputs go to the high impedance OFF-state. Operation of the $\overline{\mathrm{OE}}$ input does not affect the state of the latches.

The 74LVCH16373A bus hold data inputs eliminates the need for external pull up resistors to hold unused inputs.

QUICK REFERENCE DATA
GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
tPhL/tplh	propagation delay: Dn to Qn LE to Qn	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	$\begin{aligned} & 3.0 \\ & 3.4 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
C_{1}	input capacitance		5.0	pF
$\mathrm{C}_{\text {PD }}$	power dissipation per latch	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$; note 1	26	pF

Note

1. $C_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\left.\mu \mathrm{W}\right)$.
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$C_{L}=$ output load capacity in pF ;
$V_{C C}=$ supply voltage in Volts;
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of the outputs.

16-bit D-type transparent latch with 5 V tolerant inputs/outputs (3-state)

74LVC16373A;

ORDERING INFORMATION

TYPE NUMBER	TEMPERATURE RANGE	PACKAGE			
		PINS	PACKAGE	MATERIAL	CODE
74LVC16373ADL		48	TSSOP-48	plastic	SOT370-1
74LVC16373ADGG		48	TSSOP-48	plastic	SOT362-1
74LVCH16373ADL	-40 to $+85^{\circ} \mathrm{C}$	48	TSSOP-48	plastic	SOT370-1
74LVCH16373ADGG	-40 to $+85^{\circ} \mathrm{C}$	48	TSSOP-48	plastic	SOT362-1

PINNING

PIN	SYMBOL	DESCRIPTION
1	$1 \overline{O E}$	output enable input (active LOW)
$2,3,5,6,8$, $9,11,12$	1Q0 to 1Q7	data inputs/outputs
$4,10,15$, $21,28,34$, 39,45	GND	ground (0 V)
$7,18,31$, 42	VCC	supply voltage
$13,14,16$, $17,19,20$, 22,23	2 Q0 to 2Q7	data inputs/outputs
24	$2 \overline{\mathrm{OE}}$	output enable input (active LOW)
25	latch enable input (active HIGH)	
$36,35,33$, $32,30,29$, 27,26	2 D0 to 2D7	data inputs
$47,46,44$, $43,41,40$, 38,37	1D0 to 1D7	data inputs
48	1 LE	latch enable input (active HIGH)

Fig. 1 Pin configuration.

16-bit D-type transparent latch with 5 V

Fig. 2 Logic diagram.

Fig. 3 Logic symbol.

Fig. 4 Logic symbol (IEEE/IEC).

Fig. 5 Bus hold circuit.

FUNCTION TABLE

Per section of eight bits; note 1

OPERATING MODES	INPUT			INTERNAL LATCHES	OUTPUTS Q0 TO Q7
	OE	LE	Dn		
Enable and read register (transparent mode)	L	H	L	L	L
	L	H	H	H	H
Latch and read register	L	L	I	L	L
	L	L	h	H	H
Latch register and disable outputs	H	L	1	L	Z
	H	L	h	H	Z

Note

1. $\mathrm{H}=\mathrm{HIGH}$ voltage level;
$\mathrm{h}=$ HIGH voltage level one set-up time prior to the HIGH-to-LOW LE transition;
L = LOW voltage level;
I = LOW voltage level one set-up time prior to the HIGH-to-LOW LE transition;
Z = high-impedance OFF-state.

16-bit D-type transparent latch with 5 V tolerant inputs/outputs (3-state)

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{CC}	supply voltage	for maximum speed performance	2.7	3.6	V
		for low voltage applications	1.2	3.6	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage		0	5.5	V
$\mathrm{~V}_{\mathrm{O}}$	output voltage	output HIGH or LOW state	0	$\mathrm{~V}_{\mathrm{CC}}$	V
		output 3-state	0	5.5	V
$\mathrm{~T}_{\mathrm{amb}}$	operating ambient temperature	in free-air	-40	+85	${ }^{\circ} \mathrm{C}$
		$\mathrm{V}_{\mathrm{CC}}=1.2$ to 2.7 V	0	20	$\mathrm{~ns} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{CC}}=2.7$ to 3.6 V	0	10	$\mathrm{~ns} / \mathrm{V}$

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V); note 1.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{CC}	supply voltage		-0.5	-	+6.5	V
$\mathrm{I}_{\text {IK }}$	input diode current	$\mathrm{V}_{1}<0$	-	-50	-	V
V_{1}	input voltage	note 2	-0.5	-	+6.5	V
l_{OK}	output diode current	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\text {CC }}$ or $\mathrm{V}_{\mathrm{O}}<0$	-	± 50	-	V
V_{O}	output voltage	output HIGH or LOW state; note 2	-0.5	-	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
		output 3-state; note 2	-0.5	-	+6.5	V
I_{0}	output source or sink current	$\mathrm{V}_{\mathrm{O}}=0$ to V_{CC}	-	± 50	-	mA
$\mathrm{I}_{\text {CC }}, \mathrm{I}_{\text {GND }}$	$\mathrm{V}_{\text {CC }}$ or GND current		-	± 100	-	mA
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	-	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	power dissipation per package SO SSOP and TSSOP	above $70^{\circ} \mathrm{C}$ derates linearly with $8 \mathrm{~mW} / \mathrm{K}$ above $60^{\circ} \mathrm{C}$ derates linearly with $8 \mathrm{~mW} / \mathrm{K}$	-	$\begin{array}{l\|l\|} 500 \\ 500 \end{array}$	-	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$

Notes

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "Recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

16-bit D-type transparent latch with 5 V tolerant inputs/outputs (3-state)

DC CHARACTERISTICS

Over recommended operating conditions; voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	TEST CONDITIONS		Tamb (${ }^{\circ} \mathrm{C}$)			UNIT
		OTHER	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	-40 to +85			
				MIN.	TYP. ${ }^{(1)}$	MAX.	
V_{IH}	HIGH-level input voltage		1.2	V_{CC}	-	-	V
			2.7 to 3.6	2.0	-	-	V
VIL	LOW-level input voltage		1.2	-	-	GND	V
			2.7 to 3.6	-	-	0.8	V
V_{OH}	HIGH-level output voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{l}_{\mathrm{O}}=-12 \mathrm{~mA}$	2.7	$\mathrm{V}_{C C}-0.5$	-	-	V
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A}$	3.0	$V_{C C}-0.2$	V_{CC}	-	V
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or VIL; $\mathrm{I}_{\mathrm{O}}=-18 \mathrm{~mA}$	3.0	$\mathrm{V}_{C C}-0.6$	-	-	V
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA}$	3.0	$\mathrm{V}_{C C}-0.8$	-	-	V
$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA}$	2.7	-	-	0.40	V
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }} ; \mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}$	3.0	-	-	0.20	V
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }} ; \mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA}$	3.0	-	-	0.55	V
I_{LI}	input leakage current	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or GND; note 2	3.6	-	± 0.1	± 5	$\mu \mathrm{A}$
l_{OZ}	3-state output OFF-state current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} \text { or } \mathrm{GND} \end{aligned}$	3.6	-	0.1	± 5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {off }}$	power off leakage current	V_{i} or $V_{O}=5.5 \mathrm{~V}$	0	-	-	± 10	$\mu \mathrm{A}$
I_{CC}	quiescent supply current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{I}_{\mathrm{O}}=0$	3.6	-	0.1	20	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional quiescent supply current per input pin	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{O}}=0$	2.7 to 3.6	-	5	500	$\mu \mathrm{A}$
$\mathrm{I}_{\text {BHL }}$	bus hold LOW sustaining current	$\mathrm{V}_{1}=0.8 \mathrm{~V}$; notes 3 and 4	3.0	75	-	-	$\mu \mathrm{A}$
$\mathrm{I}_{\text {BHH }}$	bus hold HIGH sustaining current	V I $=2.0 \mathrm{~V}$; notes 3 and 4	3.0	-75	-	-	$\mu \mathrm{A}$
$\mathrm{I}_{\text {BhLO }}$	bus hold LOW overdrive current	notes 3 and 5	3.6	500	-	-	$\mu \mathrm{A}$
$\mathrm{I}_{\text {BHHO }}$	bus hold HIGH overdrive current	notes 3 and 5	3.6	-500	-	-	$\mu \mathrm{A}$

Notes

1. All typical values are measured at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
2. For bus hold parts, the bus hold circuit is switched off when $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}$ allowing 5.5 V on the input terminal.
3. Valid for data inputs of bus hold parts (LVCH16373A) only.
4. The specified sustaining current at the data input holds the input below the specified V_{1} level.
5. The specified overdrive current at the data input forces the data input to the opposite logic input state.

16-bit D-type transparent latch with 5 V

AC CHARACTERISTICS

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$.

SYMBOL	PARAMETER	WAVEFORMS	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$			UNIT
			-40 to +85			
			MIN.	TYP.	MAX.	
$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$						
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay Dn to Qn	see Figs 6 and 10	-	12	-	ns
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay LE to Qn	see Figs 7 and 10	-	14	-	ns
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	3-state output enable time OE to Qn	see Figs 9 and 10	-	18	-	ns
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	3-state output enable time $\overline{\text { OE }}$ to Qn	see Figs 9 and 10	-	11	-	ns
t_{w}	LE pulse width HIGH	see Fig. 7	-	-	-	ns
$\mathrm{t}_{\text {su }}$	set-up time Dn to LE	see Fig. 8	-	-	-	ns
th^{\prime}	hold time Dn to LE	see Fig. 8	-	-	-	ns
$\mathrm{V}_{\mathrm{Cc}}=2.7 \mathrm{~V}$						
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay Dn to Qn	see Figs 6 and 10	1.5	-	5.7	ns
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay LE to Qn	see Figs 7 and 10	1.5	-	5.8	ns
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	3-state output enable time $\overline{\mathrm{OE}}$ to Qn	see Figs 9 and 10	1.5	-	6.5	ns
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	3-state output enable time $\overline{\mathrm{OE}}$ to Qn	see Figs 9 and 10	1.5	-	6.4	ns
tw	LE pulse width HIGH	see Fig. 7	3	-	-	ns
t_{su}	set-up time Dn to LE	see Fig. 8	1.7	-	-	ns
t_{h}	hold time Dn to LE	see Fig. 8	1.2	-	-	ns
$\mathrm{V}_{\mathrm{Cc}}=3.3 \pm 0.3 \mathrm{~V}$; note1						
$\mathrm{t}_{\text {PHL }} / \mathrm{tPLH}$	propagation delay Dn to Qn	see Figs 6 and 10	1.5	3.0	4.7	ns
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay LE to Qn	see Figs 7 and 10	1.5	3.4	4.8	ns
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	3-state output enable time $\overline{O E}$ to Qn	see Figs 9 and 10	1.5	3.5	5.5	ns
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	3-state output enable time $\overline{\text { OE }}$ to Qn	see Figs 9 and 10	1.5	3.9	5.4	ns
t_{W}	LE pulse width HIGH	see Fig. 7	3	2.0	-	ns
$\mathrm{t}_{\text {su }}$	set-up time Dn to LE	see Fig. 8	+1.7	-0.1	-	ns
$\mathrm{th}^{\text {l }}$	hold time Dn to LE	see Fig. 8	1.2	0.1	-	ns

Note

1. Typical values are measured at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

16-bit D-type transparent latch with 5 V

AC WAVEFORMS

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$.
$\mathrm{V}_{\mathrm{M}}=0.5 \mathrm{~V}_{\mathrm{CC}}$ at $\mathrm{V}_{\mathrm{CC}}<2.7 \mathrm{~V}$.
V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.
Fig. 6 Input (Dn) to output (Qn) propagation delays.

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$.
$V_{M}=0.5 \mathrm{~V}_{\mathrm{CC}}$ at $\mathrm{V}_{\mathrm{CC}}<2.7 \mathrm{~V}$.
V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.
Fig. 7 Latch enable input (LE) pulse width, and the latch enable input to output (Qn) propagation delays.

16-bit D-type transparent latch with 5 V

The shaded areas indicate when the input is permitted to change for predictable performance.
$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$.
$\mathrm{V}_{\mathrm{M}}=0.5 \mathrm{~V}_{\mathrm{CC}}$ at $\mathrm{V}_{\mathrm{CC}}<2.7 \mathrm{~V}$.
V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.
Fig. 8 Data set-up and hold times for the Dn input to the LE input.

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$.
$\mathrm{V}_{\mathrm{M}}=0.5 \mathrm{~V}_{\mathrm{CC}}$ at $\mathrm{V}_{\mathrm{CC}}<2.7 \mathrm{~V}$.
$\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$.
$\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{OL}}+0.1 \mathrm{~V}_{\mathrm{CC}}$ at $\mathrm{V}_{\mathrm{CC}}<2.7 \mathrm{~V}$.
$\mathrm{V}_{\mathrm{Y}}=\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$.
$V_{Y}=V_{O H}-0.1 \mathrm{~V}_{\mathrm{CC}}$ at $\mathrm{V}_{\mathrm{CC}}<2.7 \mathrm{~V}$.
V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.
Fig. 9 3-state enable and disable times.

16-bit D-type transparent latch with 5 V

$\mathbf{V}_{\mathbf{C C}}$	$\mathbf{V}_{\mathbf{I}}$
$<2.7 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}$
2.7 to 3.6	2.7 V

TEST	S1
$\mathrm{t}_{\mathrm{PLH}} / \mathrm{t}_{\text {PHL }}$	open
$\mathrm{t}_{\mathrm{PLZ}} / \mathrm{t}_{\mathrm{PZL}}$	$2 \times \mathrm{V}_{\mathrm{CC}}$
$\mathrm{t}_{\mathrm{PHZ}} / \mathrm{t}_{\mathrm{PZH}}$	GND

Definitions for test circuits:
$R_{L}=$ Load resistor.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$R_{\mathrm{T}}=$ Termination resistance should be equal to the output impedance Z_{0} of the pulse generator.
Fig. 10 Load circuitry for switching times.

16-bit D-type transparent latch with 5 V tolerant inputs/outputs (3-state)

PACKAGE OUTLINES

SSOP48: plastic shrink small outline package; 48 leads; body width 7.5 mm
SOT370-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	2.8	$\begin{aligned} & 0.4 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 2.35 \\ & 2.20 \end{aligned}$	0.25	$\begin{aligned} & 0.3 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 16.00 \\ & 15.75 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 74 \end{aligned}$	0.635	$\begin{aligned} & 10.4 \\ & 10.1 \end{aligned}$	1.4	$\begin{aligned} & 1.0 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.0 \end{aligned}$	0.25	0.18	0.1	0.85 0.40	$8^{8}{ }^{\circ}$

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT370-1		MO-118			$-95-02-04$	

16-bit D-type transparent latch with 5 V

detail X

DIMENSIONS (mm are the original dimensions).

UNIT	\mathbf{A} $\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(2)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	\mathbf{Z}	$\boldsymbol{\theta}$
mm	1.2	0.15	1.05	0.25	0.28	0.2	12.6	6.2	0.5	8.3	1	0.8	0.50	0.25	0.08	0.1	0.8	8^{0}
		0.05	0.85		0.17	0.1	12.4	6.0	0.5	7.9	1	0.4	0.35	0.4	0°			

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES					EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ				
SOT362-1		MO-153				-	$-95-02-10$
$99-12-27$							

16-bit D-type transparent latch with 5 V tolerant inputs/outputs (3-state)

74LVC16373A;
 74LVCH16373A

SOLDERING

Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.
Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to $250^{\circ} \mathrm{C}$. The top-surface temperature of the packages should preferable be kept below $220^{\circ} \mathrm{C}$ for thick/large packages, and below $235^{\circ} \mathrm{C}$ for small/thin packages.

Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
- larger than or equal to 1.27 mm , the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
- smaller than 1.27 mm , the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.
The footprint must incorporate solder thieves at the downstream end.
- For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

16-bit D-type transparent latch with 5 V tolerant inputs/outputs (3-state)

 74LVC16373A;Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE $^{(1)}$	SOLDERING METHOD	
	WAVE	REFLOW $^{(2)}$
BGA, LBGA, LFBGA, SQFP, TFBGA, VFBGA	not suitable	suitable
HBCC, HBGA, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, HVQFN,	not suitable ${ }^{(3)}$	suitable
HVSON, SMS	suitable	suitable
PLCC(4), SO, SOJ	not recommended(4)(5)	suitable
LQFP, QFP, TQFP	not recommended ${ }^{(6)}$	suitable
SSOP, TSSOP, VSO		

Notes

1. For more detailed information on the BGA packages refer to the "(LF)BGA Application Note" (AN01026); order a copy from your Philips Semiconductors sales office.
2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
3. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface.
4. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
5. Wave soldering is suitable for LQFP, TQFP and QFP packages with a pitch (e) larger than 0.8 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm .
6. Wave soldering is suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm .

16-bit D-type transparent latch with 5 V tolerant inputs/outputs (3-state)

DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ${ }^{(1)}$	PRODUCT STATUS ${ }^{(2)(3)}$	DEFINITION
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

DEFINITIONS

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.
16-bit D-type transparent latch with 5 V 74LVC16373A; tolerant inputs/outputs (3-state) 74LVCH16373A

NOTES
16-bit D-type transparent latch with 5 V 74LVC16373A; tolerant inputs/outputs (3-state) 74LVCH16373A

NOTES
16-bit D-type transparent latch with 5 V 74LVC16373A; tolerant inputs/outputs (3-state) 74LVCH16373A

NOTES

Philips Semiconductors - a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 402724825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

