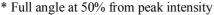


■Features

- Optical Output Power: CW 100mW
- Can Type: ϕ 5.6 mm Floating Mounted with Photo Diode and Zener Diode


■ Absolute Maximum Ratings

Item	Symbol	Absolute Maximum Ratings	Unit
Optical Output Power	Po	120	mW
Allowable Reverse Current	Ir (LD)	85	mA
PD Reverse Voltage	Vr (PD)	5	V
Storage Temperature	Tstg	- 40 ∼ 85	°C
Operating Case Temperature	Tc	- 10 ∼ 60	°C

■Initial Electrical/Optical Characteristics

(1	Γc=	=24	50	()
J	L		, '	\sim

indar Electrical optical characteristics						(10 23 0)	
em	Condition	Symbol	Min	Тур.	Max	Unit	
Optical Output Power		Po	-	-	100	mW	
Peak Wavelength		λр	440	445	450	nm	
Threshold Current		Ith	10	25	50	mA	
Operating Current		Iop	80	100	140	mA	
Slope Efficiency		η	0.8	1.3	1.8	W/A	
Operating Voltage		Vop	4.5	5.3	6.0	V	
Parallel	Po=100mW	θ//	7.0	8.5	12.5	0	
Perpendicular	Po=100mW	θΤ	17.0	23.5	25.0	0	
Parallel	Po=100mW	Δθ//	-2.5	-	2.5	0	
Perpendicular	Po=100mW	Δθ⊥	-3.0	-	3.0	0	
Monitor Current**		Im	0.2	1.0	2.0	mA	
	atput Power avelength Id Current Ig Current Ifficiency Ig Voltage Parallel Perpendicular Parallel Perpendicular	condition Lutput Power Lutput P	emConditionSymbolatput PowerCWPoavelengthPo=100mW λp Id CurrentCWIthag CurrentPo=100mWIopag VoltagePo=100mWVopParallelPo=100mW $\theta / /$ PerpendicularPo=100mW $\theta \bot$ PerpendicularPo=100mW $\Delta \theta / /$ PerpendicularPo=100mW $\Delta \theta / /$ PerpendicularPo=100mW $\Delta \theta / /$	emConditionSymbolMinatput PowerCWPo-avelengthPo=100mW λp 440Id CurrentCWIth10ag CurrentPo=100mWIop80ag VoltagePo=100mWVop4.5ParallelPo=100mW $\theta //$ 7.0PerpendicularPo=100mW $\theta \perp$ 17.0ParallelPo=100mW $\Delta \theta //$ -2.5PerpendicularPo=100mW $\Delta \theta //$ -3.0	em Condition Symbol Min Typ. atput Power CW Po - - avelength Po=100mW λp 440 445 Id Current CW Ith 10 25 Ing Current Po=100mW Iop 80 100 Ing Current CW η 0.8 1.3 Ing Voltage Po=100mW Vop 4.5 5.3 Parallel Po=100mW θ // 7.0 8.5 Perpendicular Po=100mW θ 1 17.0 23.5 Parallel Po=100mW $\Delta \theta$ // -2.5 - Perpendicular Po=100mW $\Delta \theta$ // -2.5 -	em Condition Symbol Min Typ. Max atput Power CW Po - - 100 avelength Po=100mW λp 440 445 450 Id Current CW Ith 10 25 50 Ing Current Po=100mW Iop 80 100 140 Ing Current CW η 0.8 1.3 1.8 Ing Voltage Po=100mW Vop 4.5 5.3 6.0 Parallel Po=100mW θ// 7.0 8.5 12.5 Perpendicular Po=100mW $\Delta \theta$ // -2.5 - 2.5 Perpendicular Po=100mW $\Delta \theta$ // -2.5 - 2.5 Perpendicular Po=100mW $\Delta \theta$ // -3.0 - 3.0	

^{**} Monitor Current is short time power reference purpose only. Not guaranteed for accuracy.

All figures in this specification are measured by Nichia's method and may contain measurement deviations.

The above specifications are for reference purpose only and subjected to change without prior notice.

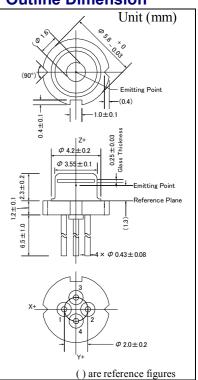
Safety of Laser light

- Laser Light can damege the human eyes and skin. Do not expose the eye or skin to any laser light directly and/or through optical lens. When handling the LDs, wear appropriate safety glasses to prevent laser light, even any reflections from entering to the eye. Focused laser beam through optical instruments will increase the chance of eye hazard.
- These LDs are classified in Class 4 of IEC60825-1 and 21 CFR Part 1040.10 Safety Standards. It is absolutely necessary to take overall safety measures against User's modules, equipment and systems into which Nichia LDs are incorporated and/or integrated.

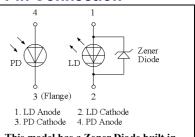
NICHIA CORPORATION

http://www.nichia.co.jp

♦ HEADQUARTERS


491 Oka, Kaminaka-Cho, Anan-Shi, TOKUSHIMA 774-8601, JAPAN PHONE: +81-884-22-2311 FAX: +81-884-21-0148

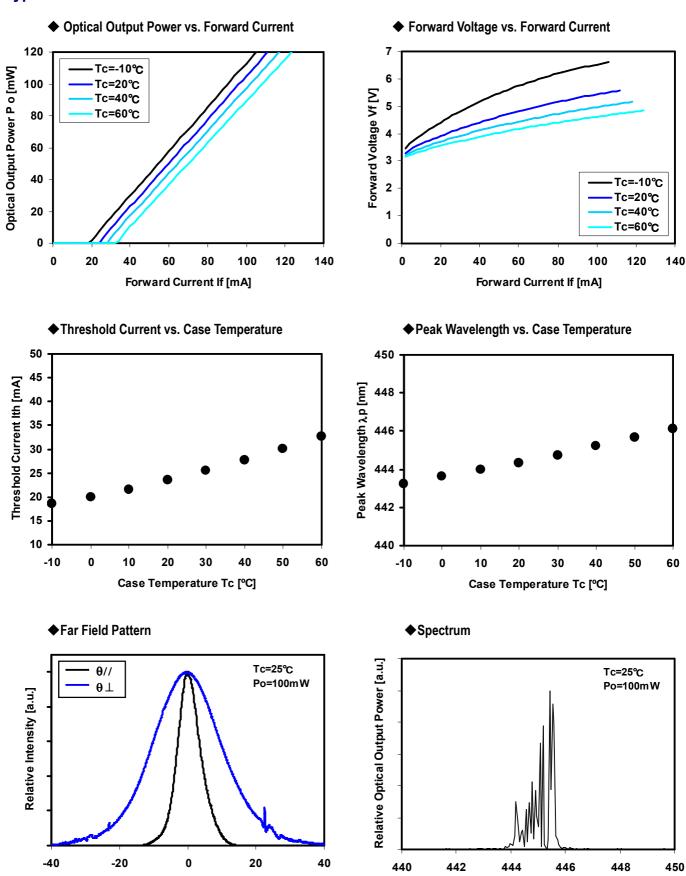
◆ CONTACT


TOKYO SALES OFFICE

13F Tamachi Center Building 34-7, Shiba 5-Chome, Minato-Ku, TOKYO 108-0014, JAPAN PHONE: +81-3-3456-3108 FAX: +81-3-5440-7330

Outline Dimension

Pin Connection



This model has a Zener Diode built in as a protection circuit against static

electricity.

■Typical Characteristics

Wavelength λ [nm]

Angle θ [°]

■Cautions

(1) Operating method

- The LD shall change its forward voltage requirement and optical output power according to temperature change. Also, the LD will require more operation current to maintain same output power as it degrades.
- Confirm that the optical output power generated by spike current when switching on and off does not exceed the maximum absolute rating. Also, employ appropriate countermeasures to reduce chattering and/or overshooting in the Circuit.

(2) Static Electricity

• Static electricity or electrical surges will reduce and degrade the reliability of the LDs. It is recommended to use a wrist strap or anti-electrostatic glove when handling the Product.

(3) Absolute Maximum Rating

Active layer of LDs shall have high current density and generate high electric field during its operation. In order to prevent
excessive damage, the LD must be operated strictly below Absolute Max Rating.

(4) Others

- Nichia LDs described in this brochure are intended to be used for ordinary electronic equipment (such as office equipment, communications equipment, measurement instruments and household appliances). Consult Nichia's sales staff in advance for information on the applications in which exceptional quality and reliability are required, particularly when the failure or malfunction of the LDs may directly jeopardize life or health (such as for airplanes, aerospace, submersible repeaters, nuclear reactor control systems, automobiles, traffic control equipment, life support systems and safety devices).
- The Purchaser must acknowledge that any LD can be failed statically and must design its equipments fail safe design. Prior to use of the LD, please confirm that the LD, as described in Nichia's specifications, meets the life expectancy needs of, and provides the features required by the Circuit and any related modules, equipment and/or systems.
- Nichia prohibit Purchaser from reverse engineering, disassembling, or taking any other steps to derive the structure or design of the LD.
- The appearance and specifications of the product may be modified for improvement without notice. The formal specifications must be exchanged and signed by both parties before large volume purchase begins.
- No unauthorized transmission or reproduction of this document, either in whole or in part, is permitted.