

PN4392

Linear Systems replaces discontinued Siliconix PN4392

The PN4392 features many of the superior characteristics of JFETs which make it a good choice for demanding analog switching applications and for specialized amplifier circuits.

PN4392 Benefits:

- Low Error Voltage
- High-Speed Analog Circuit Performance
- Negligible "Off-Error," Excellent Accuracy
- Good Frequency Response, Low Glitches
- Eliminates Additional Buffering

PN4392 Applications:

- **Analog Switches**
- Choppers, Sample-and-Hold
- Normally "On" Switches, Current Limiters

FEATURES						
DIRECT REPLACEMENT FOR SILICONIX PN4392						
LOW ON RESISTANCE $r_{DS(on)} \le 60\Omega$						
LOW GATE OPERATING CURRENT	$I_{D(off)} = 5pA$					
FAST SWITCHING $t_{(ON)} \le 15$ ns						
ABSOLUTE MAXIMUM RATINGS ¹ @ 25°C (unless other	erwise noted)					
Maximum Temperatures						
Storage Temperature	-65°C to +200°C					
Operating Junction Temperature	-55°C to +200°C					
Maximum Power Dissipation						
Continuous Power Dissipation	350mW					
MAXIMUM CURRENT						
Gate Current (Note 1)	I _G = 50mA					
MAXIMUM VOLTAGES						
Gate to Drain Voltage / Gate to Source Voltage -40V						

PN4392 ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	MIN	TYP.	MAX	UNITS	CONDITIONS		
BV _{GSS}	Gate to Source Breakdown Voltage	-40				$I_{G} = -1\mu A$, $V_{DS} = 0V$		
V _{GS(off)}	Gate to Source Cutoff Voltage	-2		-5	V	$V_{DS} = 20V, I_{D} = 1nA$		
$V_{GS(F)}$	Gate to Source Forward Voltage	-	0.7	1		$I_G = 1mA$, $V_{DS} = 0V$		
V _{DS(on)}	Drain to Source On Voltage		0.25			$V_{GS} = 0V$, $I_D = 3mA$		
V _{DS(on)}	Drain to Source On Voltage		0.3	0.4		$V_{GS} = 0V$, $I_D = 6mA$		
V _{DS(on)}	Drain to Source On Voltage		0.35			$V_{GS} = 0V$, $I_{D} = 12mA$		
I _{DSS}	Drain to Source Saturation Current ²	25		100	mA	$V_{DS} = 20V, V_{GS} = 0V$		
I _{GSS}	Gate Reverse Current	-	-5	-1000		$V_{GS} = -20V, \ V_{DS} = 0V$		
I _G	Gate Operating Current	-	-5			$V_{DG} = 15V, I_D = 10mA$		
			5		pA	$V_{DS} = 20V, V_{GS} = -5V$		
I _{D(off)}	Drain Cutoff Current		5	1000		$V_{DS} = 20V, V_{GS} = -7V$		
			5	1		$V_{DS} = 20V, V_{GS} = -12V$		
r _{DS(on)}	Drain to Source On Resistance			60	Ω	$V_{GS} = 0V, I_{D} = 1mA$		

						-	
PN4392 DYNA	MIC ELECTRICA	LCHAR	ACTERISTICS @	25	°C (unless otherw	ise	noted

SYMBOL	CHARACTERISTIC	TYP	MIN	MAX	UNITS	CONDITIONS
g fs	Forward Transconductance	6			mS	$V_{DS} = 20V, I_{D} = 1 \text{mA}, f = 1 \text{kHz}$
g _{os}	Output Conductance	25			μS	$V_{DS} = 20V, I_{D} = 1mA, f = 1kHz$
r _{ds(on)}	Drain to Source On Resistance			60	Ω	$V_{GS} = 0V$, $I_D = 0A$, $f = 1kHz$
C _{iss}	Input Capacitance	12		16		$V_{DS} = 20V$, $V_{GS} = 0V$, $f = 1MHz$
C _{rss}		3.5			pF	$V_{DS} = 0V$, $V_{GS} = -5V$, $f = 1MHz$
C _{rss}	Reverse Transfer Capacitance	3.4		5	γ.	$V_{DS} = 0V$, $V_{GS} = -7V$, $f = 1MHz$
C _{rss}		3.0				$V_{DS} = 0V$, $V_{GS} = -12V$, $f = 1MHz$
e _n	Equivalent Input Noise Voltage	3			nV/√Hz	$V_{DS} = 10V$, $I_{D} = 10mA$, $f = 1kHz$

PN4392 SWITCHING ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	TYP	MIN	MAX	UNITS	CONDITIONS	
t _{d(on)}		2		15			
t _r	Turn On Time	2		5	nc	$V_{DD} = 10V, V_{GS(H)} = 0V$	
t _{d(off)}		6		35	ns		
t _f	Turn Off Time	13		20			

Notes: 1. Absolute ratings are limiting values above which serviceability may be impaired

TO-92 (Bottom View)

2. Pulse test: PW ≤ 300µs, Duty Cycle ≤ 3%

PN4392 SWITCHING CIRCUIT PARAMETERS

V _{GS(L)}	-7V
R_L	1600Ω
I _{D(on)}	6mA

Available Packages:

PN4392 in TO-92 PN4392 in bare die.

Contact Micross for full package and die dimensions

Micross Components Europe

Tel: +44 1603 788967

Email: chipcomponents@micross.com Web: http://www.micross.com/distribution

