

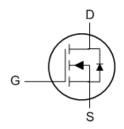
### **General Description**

The UI02N60 is the highest performance trench P-ch MOSFETs with extreme high cell density , which provide excellent RDSON and gate charge for most of the synchronous buck converter applications .

The UI02N60 meet the RoHS and Green Product requirement , 100% EAS guaranteed with full function reliability approved.

#### **Features**

- Advanced high cell density Trench technology
- Super Low Gate Charge
- Excellent CdV/dt effect decline
- 100% EAS Guaranteed
- Green Device Available


#### **Product Summery**

| BVDSS | RDs(on) | ID |
|-------|---------|----|
| 600V  | 3.9 Ω   | 2A |

### **Applications**

- High Frequency Point-of-Load Synchronous Buck Converter for MB/NB/UMPC/VGA
- Networking DC-DC Power System
- Load Switch

## **TO-251 Pin Configuration**



# **Absolute Maximum Ratings**

| Symbol                           | Parameter                                                                                                      |         | TO-251 |              | Unites       |
|----------------------------------|----------------------------------------------------------------------------------------------------------------|---------|--------|--------------|--------------|
| V <sub>DSS</sub>                 | Drain-Source Voltage                                                                                           |         | 6      | 600          |              |
| 1                                | Drain Current —Continuous(T <sub>C</sub> = 25° <sub>C</sub> ) —Continuous(T <sub>C</sub> = 100° <sub>C</sub> ) |         |        | 2            | Α            |
| I <sub>D</sub>                   |                                                                                                                |         | 1.35   |              | Α            |
| I <sub>DM</sub>                  | Drain Current -Pulsed                                                                                          | (Note1) | 8      |              | Α            |
| V <sub>GSS</sub>                 | Gate-Source Voltage                                                                                            |         | ±30    |              | V            |
| E <sub>AS</sub>                  | Single Pulsed Avalanche Energy                                                                                 | (Note2) | 55     |              | mJ           |
| dv/dt                            | Peak Diode Recovery dv/dt                                                                                      | (Note3) | 4.5    |              | V/ns         |
| D                                | Power Dissipation (T <sub>C</sub> = 25°C)                                                                      |         | 56     | 29           | W            |
| P <sub>D</sub>                   | -Derate above 25℃                                                                                              |         | 0.44   | 0.23         | W/°C         |
| T <sub>J1</sub> T <sub>STG</sub> | Operating and Storage Temperature Range                                                                        |         | -55 to | + 150        | $^{\circ}$ C |
| TL                               | Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds                                  |         | 00     | $^{\circ}$ C |              |

### **Thermal Data**

| Symbol            | Parameter                               | Тур | Max  | Units |
|-------------------|-----------------------------------------|-----|------|-------|
| R <sub>e JC</sub> | Thermal Resistance, Junction-to-Case    |     | 2.25 | °C/W  |
| R <sub>e JA</sub> | Thermal Resistance, Junction-to-Ambient |     | 62.5 | °C/W  |



# Electrical Characteristics (T<sub>J</sub>=25 ℃, unless otherwise noted)

| Symbol Parameter | Test Conditions | Min | Тур | Max | Units |
|------------------|-----------------|-----|-----|-----|-------|
|------------------|-----------------|-----|-----|-----|-------|

#### **Off Characteristics**

| BV <sub>DSS</sub>              | Drain-Source Breakdown Voltage               | V <sub>GS</sub> = 0 V, I <sub>D</sub> = 250μA                                       | 600 | 645 |      | V    |
|--------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------|-----|-----|------|------|
| $\Delta BV_{DSS}/\Delta T_{J}$ | Breakdown Voltage Temperature<br>Coefficient | I <sub>D</sub> = 250μ A, Referenced to 25°C                                         |     | 0.6 |      | V/°C |
| 2                              | Zoro Cota Voltaga Drain Current              | $V_{DS} = 600 \text{ V}, V_{GS} = 0 \text{ V}$<br>( $T_{c} = 25^{\circ}\text{C}$ )  | 322 |     | 10   | μA   |
|                                | Zero Gate Voltage Drain Current              | $V_{DS} = 480 \text{ V}, V_{GS} = 0 \text{ V}$<br>( $T_{c} = 125^{\circ}\text{C}$ ) | 100 | -   | 100  | μA   |
| I <sub>GSSF</sub>              | Gate-Body Leakage Current,<br>Forward        | V <sub>GS</sub> = 30 V, V <sub>DS</sub> = 0 V                                       |     |     | 100  | nA   |
| I <sub>GSSR</sub>              | Gate-Body Leakage Current,<br>Reverse        | V <sub>GS</sub> = -30 V, V <sub>DS</sub> = 0 V                                      |     | ·   | -100 | nΑ   |

#### On Characteristics

| V <sub>GS(th)</sub> | Gate Threshold Voltage               | V <sub>DS</sub> = V <sub>GS</sub> , I <sub>D</sub> = 250 μA | 2.5 | 3.6 | 4.5 | V |
|---------------------|--------------------------------------|-------------------------------------------------------------|-----|-----|-----|---|
| R <sub>DS(on)</sub> | Static Drain-Source<br>On-resistance | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 1 A                |     | 3.9 | 4.4 | Ω |
| <b>g</b> FS         | Forward Transconductance             | V <sub>DS</sub> = 10 V, I <sub>D</sub> = 1 A (Note 4)       |     | 1.5 |     | S |

### **Dynamic Characteristics**

| Ciss | Input Capacitance            | VIII - 12-17-17-17-17-17-17-17-17-17-17-17-17-17- | <br>249  | 323 | pF |
|------|------------------------------|---------------------------------------------------|----------|-----|----|
| Coss | Output Capacitance           | $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$    | <br>30.7 | 40  | pF |
| Cree | Reverse Transfer Capacitance | f = 1.0 MHZ                                       | <br>5.0  | 6.5 | pF |

#### **Switching Characteristics**

| t <sub>d(on)</sub>  | Turn-On Delay Time  |                                                |             |      | 9.1  | 22   | ns |
|---------------------|---------------------|------------------------------------------------|-------------|------|------|------|----|
| tr                  | Turn-On Rise Time   | V <sub>DD</sub> = 300 V, I <sub>D</sub> = 2 A, |             |      | 9.8  | 24   | ns |
| t <sub>d(off)</sub> | Turn-Off Delay Time | $R_G = 25 \Omega$                              | (Nata 4 E)  | :    | 17.4 | 42   | ns |
| t <sub>f</sub>      | Turn-Off Fall Time  |                                                | (Note 4, 5) |      | 12.4 | 30   | ns |
| Qq                  | Total Gate Charge   | V <sub>DS</sub> = 480 V, I <sub>D</sub> = 2 A, | 98          | 1224 | 9.4  | 13.1 | nC |
| Q <sub>qs</sub>     | Gate-Source Charge  | V <sub>GS</sub> = 10 V                         |             |      | 2.2  |      | nC |
| $Q_{gd}$            | Gate-Drain Charge   | 120-                                           | (Note 4, 5) |      | 4.7  |      | nC |

#### **Drain-Source Diode Characteristics and Maximum Ratings**

| Is              | Maximum Continuous Drain-Source Diode Forward Current |                                            | <br>     | 2       | Α   |    |
|-----------------|-------------------------------------------------------|--------------------------------------------|----------|---------|-----|----|
| I <sub>SM</sub> | Maximum Pulsed Drain-Source Diode Forward Current -   |                                            | <br>     | 8       | Α   |    |
| V <sub>SD</sub> | Drain-Source Diode Forward Voltage                    | V <sub>GS</sub> = 0 V, I <sub>S</sub> = 2A | 7.0      | <br>0.9 | 1.4 | V  |
| t <sub>rr</sub> | Reverse Recovery Time                                 | $V_{GS} = 0 \ V_{,I_S} = 2A$               |          | <br>490 |     | ns |
| Qrr             | Reverse Recovery Charge                               | $dI_F/dt = 100 A/\mu s$                    | (Note 4) | <br>0.8 |     | μС |

#### Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature
- 2. L = 25mH,  $I_{AS}$  = 2A,  $V_{DD}$  = 50V,  $R_{G}$  =25 $\Omega$ , Starting  $T_{J}$  = 25 $^{\circ}$ C
- 3.  $I_{SD} \le 2A$ , di/dt  $\le 200A/\mu S$ ,  $V_{DD} \le BV_{DSS}$ , Starting  $T_J = 25^{\circ}C$
- 4. Pulse Test : Pulse width ≤  $300\mu$ S, Duty cycle ≤ 2%
- 5. Essentially independent of operating temperature

**Typical Characteristics** 

Figure 1. On-Region Characteristics

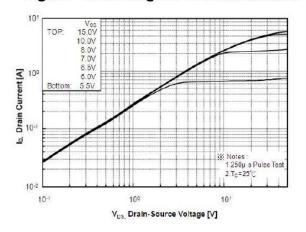



Figure 2. Transfer Characteristics

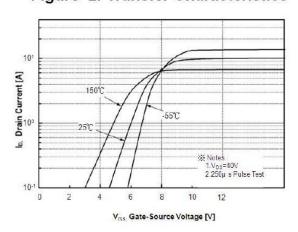
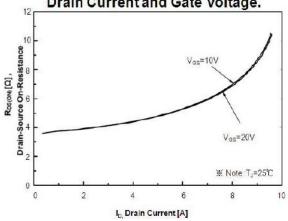
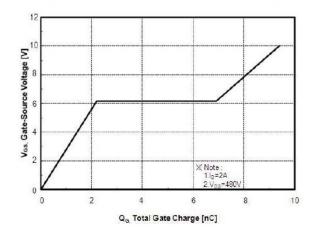
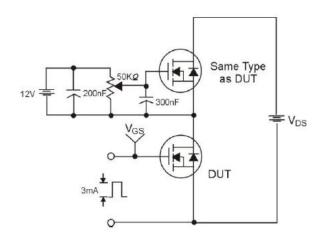
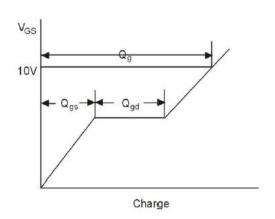
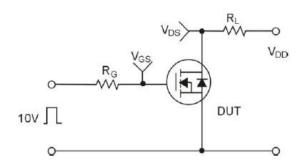


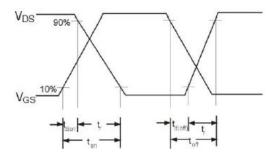

Figure 3. On-Resistance Variation VS.
Drain Current and Gate Voltage.

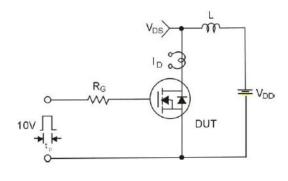


Figure 4. Gate Charge Characteristics

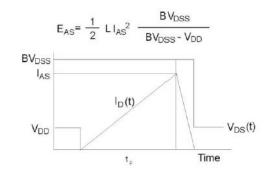






## **Gate Charge Test Circuit &Waveform**

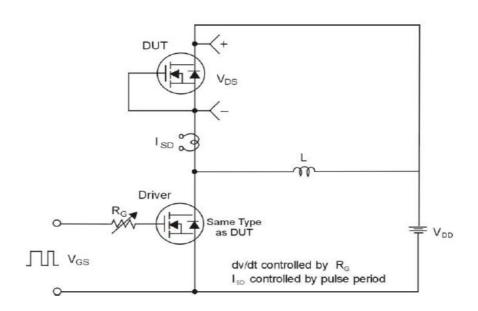


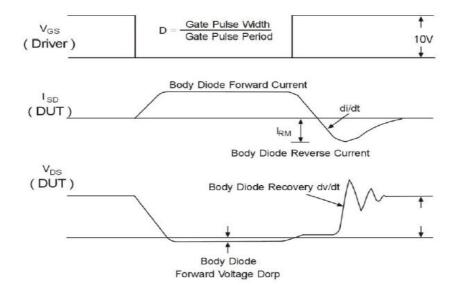




### **Resistive Switching Test Circuit &Waveforms**






# **Unclamped Inductive Switching Test Circuit &Waveforms**








# **Gate Charge Test Circuit &Waveform**



