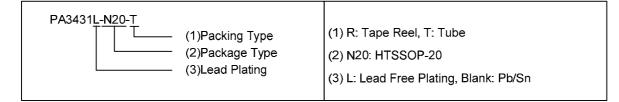


UNISONIC TECHNOLOGIES CO., LTD

PA3431

2W STEREO AUDIO AMPLIFIER

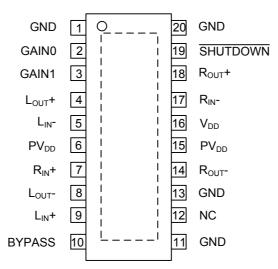
DESCRIPTION


As a stereo audio speaker which is operating on a single 5V supply, the UTC **PA3431** is capable of delivering 2W of output power per channel into 4Ω loads in Bridge-Tied Load (BTL) mode with less than 1% THD+N. Way of two terminals (GAIN0 and GAIN1) can configured and control the amplifier gain. It also provided BTL gain settings of 6 dB, 10 dB, 15.6 dB, and 21.6 dB (inverting). Other features: the SHDN mode is supported to disable UTC **PA3431** for the low current consumption applications; the current consumption can be reduced to typically 150µA.

FEATURES

- * 2W Output power into 4Ω load from 5V supply each channel
- * Gain control internally
- * Differential input fully
- * Depop circuitry
- * Shutdown protection thermally

ORDERING INFORMATION


Ordering	Deelvere	Deaking	
Normal	Lead Free Plating	Package	Packing
PA3431-N20-R	PA3431L-N20-R	HTSSOP-20	Tape Reel
PA3431-N20-T	PA3431L-N20-T	HTSSOP-20	Tube

*Pb-free plating product number: PA3431L

CMOS IC

■ PIN CONFIGURATION

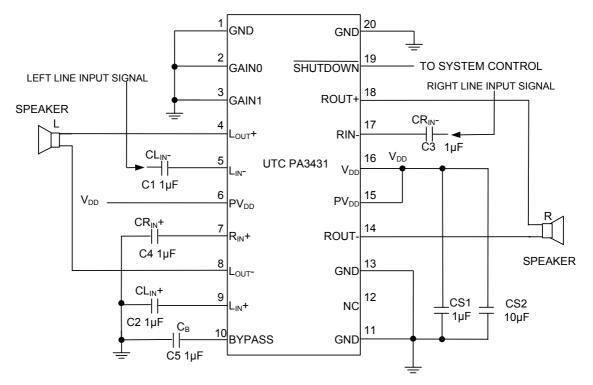
PIN DESCRIPTION

PIN NO.	PIN NAME	I/O	DESCRIPTION
1,11 13,20	GND		Ground
2	GAIN0	Ι	Bit 0 of gain control
3	GAIN1		Bit 1 of gain control
4	L _{OUT} +	0	Positive output for left channel
5	L _{IN} -		Negative differential input for left channel
6,15	PVDD	Ι	Supply voltage
7	R _{IN} +	Ι	Positive differential input for right channel
8	L _{OUT} -	0	Negative output for left channel
9	L _{IN} +	Ι	Positive differential input for left channel
10	BYPASS		Tap to voltage divider for internal mid supply bias generator
12	NC		Nothing connection
14	R _{OUT} -	0	Negative output for right channel
16	V _{DD}		Supply voltage
17	R _{IN} -	Ι	Negative differential input for right channel
18	R _{OUT} +	0	Positive output for right channel
19	SHUTDOWN	Ι	In shutdown mode when held low

ABSOLUTE MAXIMUM RATINGS

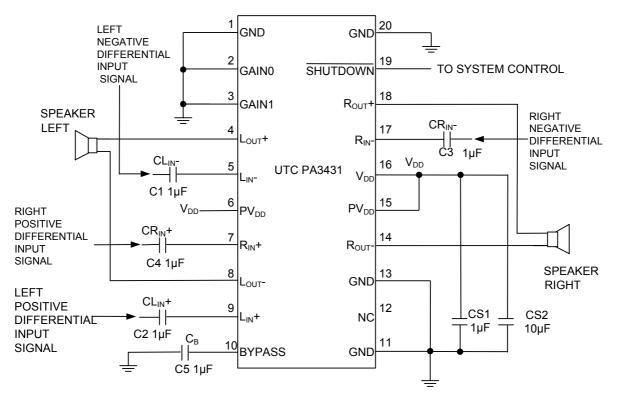
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{cc}	6	V
Power Dissipation (T _A ≤25)	PD	2.7	W
Junction Temperature	TJ	+150	
Operating Temperature	T _{OPR}	-40 ~ +85	
Storage Temperature Range	T _{STG}	-65 ~ +150	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.


■ ELECTRICAL CHARACTERISTICS (Ta=25 , unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
DC ELECTRICAL CHARACTERISTICS								
Supply Voltage	V _{DD}		4.5	5	5.5	V		
High-Level Input Voltage	VIH	SHUTDOWN, GAIN0, GAIN1	2			V		
Low-Level Input Voltage	VIL	SHUTDOWN, GAIN0, GAIN1			0.8	V		
DC Differential Output Voltage	V _{O(DIFF)}	V _{DD} = 5V,Gain = 2		5	50	mV		
Supply Current in Mute Mode	I _{DD}	V _{DD} = 5V, Stereo BTL		7.5	11	mA		
Supply Current, Shutdown Mode	I _{DD(SD)}	V _{DD} = 5V		160	300	μA		
AC ELECTRICAL CHARACTERISTIC	AC ELECTRICAL CHARACTERISTICS (V_{DD} = 5.0V, R_{L} = 4 Ω)							
	Роит	THD =1%, BTL, R _L = 4Ω, G=-2V/V		2		W		
Output Bower		THD =1%, BTL, R _L = 8Ω, G=-2V/V		1.2				
Output Power		THD =10%, BTL, R _L = 4Ω, G=-2V/V		2.5				
		THD = 10%, BTL,R _L = 8Ω, G=-2V/V		1.6				
Total Harmonic Distortion Plus Noise	THD+N	P _{OUT} = 1.6W, BTL,R _L = 4Ω, G=-2V/V		100		m%		
		P _{OUT} = 1W, BTL, R _L = 8Ω, G=-2V/V		60		11170		
Max Output Power Bandwidth	B _{OM}	THD = 5%		15		kHz		
Power Supply Ripple Rejection	PSRR	F=1kHz,BTL,G=-2V/V, C _{BYP} =1µF		68		dB		
Channel-to-Channel	£ 4111-			80				
Output Separation		f = 1kHz		80	dB			
Signal-to-Noise Ratio	SNR	P _{OUT} = 500mW, BTL, G=-2V/V		90		dB		
Output Noise Voltage	V	DTL C= 2)(A/ A Maighted filter		45		μV		
Output Noise Voltage	V _N	BTL, G=-2V/V, A Weighted filter		40		(rms)		

Note: Output power is measured at the output terminals of the IC at 1kHz.


TYPICAL APPLICATION CIRCUIT

Typical Application Circuit Using Single-Ended Inputs

TYPICAL APPLICATION CIRCUIT(Cont.)

Typical Application Circuit Using Differential Inputs

APPLICATION INFORMATION

Shutdown Mode Operating

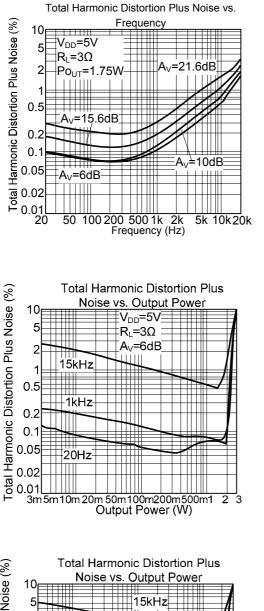
SHUTDOWN PIN INPUT	THE AMPLIFIER'S OUTPUT			
LOW	MUTE(the current of this device will be reduced to $160\mu A$)			
HIGH	BTL			
OTHERS	Don't Care			

C_I(Input Capacitor)

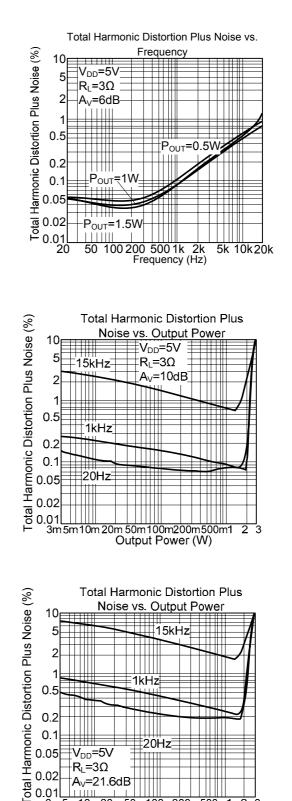
The value of C_1 is important to consider as it directly affects the bass performance of the application circuit. When C_1 is required to allow the amplifier to bias the input signal to the proper dc level for optimum operation, it's value can be calculate by this equation:

 $\label{eq:cl=1} \begin{array}{l} Cl=1/(2\pi R_l F_C) \\ R_l: Input \ Impedance \\ F_C: High-pass \ Filter's \ Frequency \end{array}$

The low leakage tantalum or ceramic capacitors are suggested to be used as the input coupling capacitors, because of the small leakage current of the input ca-pacitors will cause the dc offset voltage at the input to the amplifier that reduces the operation headroom, especially at the high gain applications. It is important to let the positive side connecting to the higher dc level of the application when using the polarized capacitors.

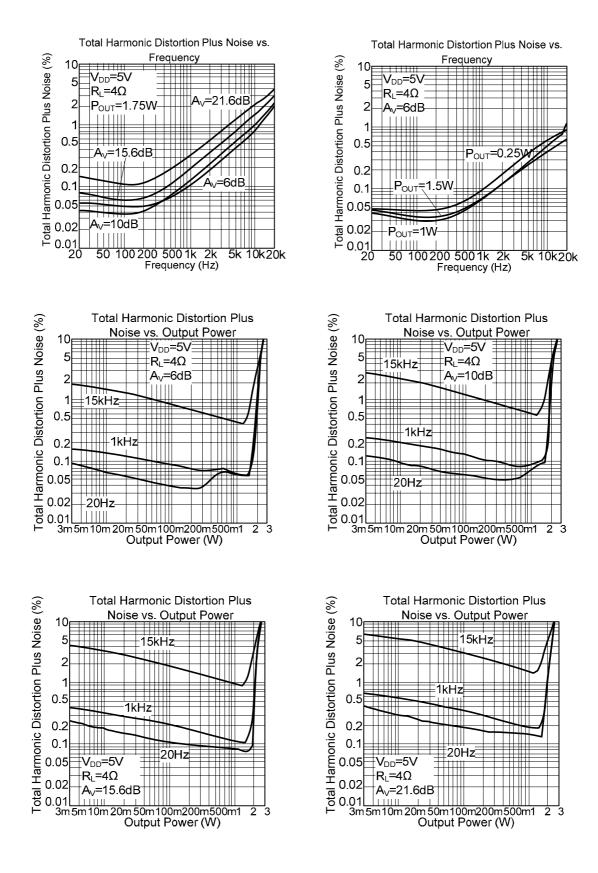

Gain setting (VS GAIN0, GAIN1 and R_I)

Gain setting is determined by GAIN0 and GAIN1. The gains listed in the next table are realized by changing the taps on the input resistors inside the amplifier which will cause the internal input impedance(R_1) to be dependent on the gain setting as we can see listed in the next table.

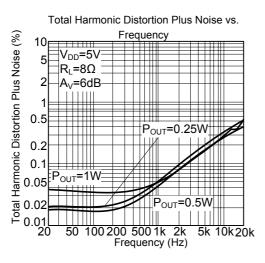

A _V (dB)	GAIN0	GAIN1	R _l (kΩ)
6	0	0	90
10	0	1	70
15.6	1	0	45
21.6	1	1	30

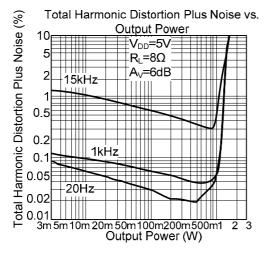
TYPICAL CHARACTERISTICS

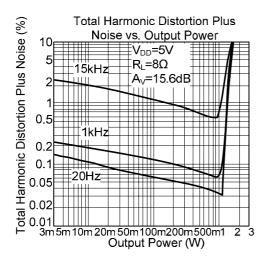
Harmonic Distortion Plus Noise (%) 2 1 1kHz 0.5 0.2 -20Hz 0.1 0.05 $V_{DD}=5V$ R∟=3Ω 0.02 A_v=15.6dB тіш 3m5m10m20m50m100m200m500m1 Output Power (W) 2 3

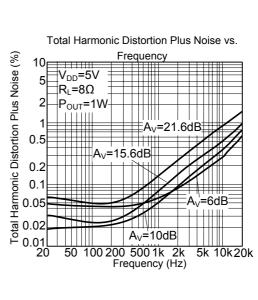


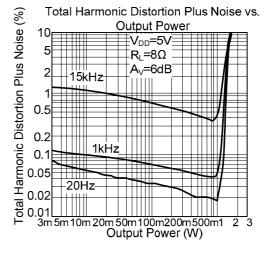
3m5m10m20m50m100m200m500m1 Output Power (W)

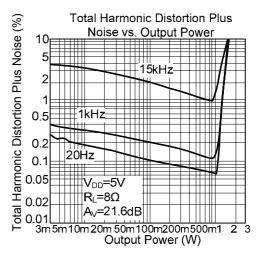

UTC U

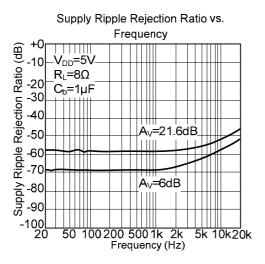

2 3

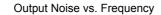

TYPICAL CHARACTERISTICS(Cont.)

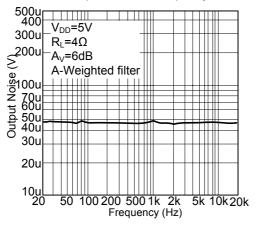


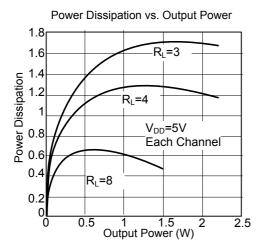

TYPICAL CHARACTERISTICS(Cont.)

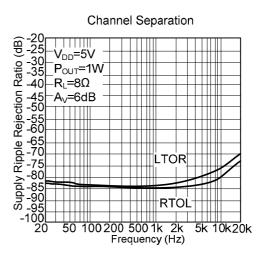


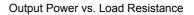


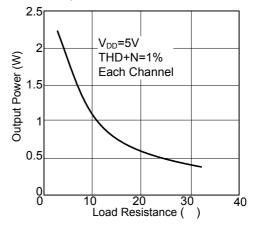







■ TYPICAL CHARACTERISTICS(Cont.)





UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

