

August 2011

FDD24AN06LA0_F085

N-Channel Logic Level PowerTrench® MOSFET 60V, 36A, 24m Ω

Features

- $r_{DS(ON)} = 20m\Omega$ (Typ.), $V_{GS} = 5V$, $I_D = 36A$
- $Q_g(tot) = 16nC (Typ.), V_{GS} = 5V$
- · Low Miller Charge
- Low Q_{RR} Body Diode
- UIS Capability (Single Pulse and Repetitive Pulse)
- Qualified to AEC Q101
- RoHS Compliant

Formerly developmental type 83547

Applications

- Motor / Body Load Control
- ABS Systems
- Powertrain Management
- Injection Systems
- DC-DC converters and Off-line UPS
- · Distributed Power Architectures and VRMs
- Primary Switch for 12V and 24V systems

DRAIN (FLANGE)

TO-252AA FDD SERIES

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
V _{DSS}	Drain to Source Voltage	60	V
V _{GS}	Gate to Source Voltage	±20	V
	Drain Current		
	Continuous ($T_C = 25^{\circ}C$, $V_{GS} = 10V$)	40	Α
	Continuous ($T_C = 25^{\circ}C$, $V_{GS} = 5V$)	36	А
ID	Continuous ($T_C = 100^{\circ}C$, $V_{GS} = 5V$)	25	А
	Continuous ($T_A = 25^{\circ}C$, $V_{GS} = 5V$, $R_{\theta JA} = 52^{\circ}C/W$)	7.1	А
	Pulsed	Figure 4	А
E _{AS}	Single Pulse Avalanche Energy (Note 1)	32	mJ
	Power dissipation	75	W
P_{D}	Derate above 25°C	0.5	W/°C
T _J , T _{STG}	Operating and Storage Temperature	-55 to 175	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance Junction to Case TO-252	2.0	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient TO-252	100	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient TO-252, 1in ² copper pad area	52	°C/W

This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/

Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.

All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDD24AN06LA0	FDD24AN06LA0	TO-252AA	330mm	16mm	2500 units

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted

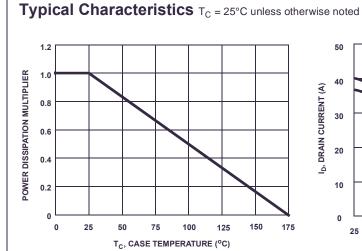
Parameter	Test C	onditions	Min	Тур	Max	Units
acteristics						
Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_C$	_{GS} = 0V	60	-	-	V
Zoro Coto Voltago Drain Current	V _{DS} = 50V		-	-	1	
Zero Gate Voltage Drain Current	$V_{GS} = 0V$	$T_{\rm C} = 150^{\rm o}{\rm C}$	-	-	250	μΑ
Gate to Source Leakage Current	$V_{GS} = \pm 20V$		-	-	±100	nA
	Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current	Drain to Source Breakdown Voltage $I_D = 250\mu A$, V_C Zero Gate Voltage Drain Current $V_{DS} = 50V$ $V_{GS} = 0V$	Drain to Source Breakdown Voltage $I_D = 250\mu A$, $V_{GS} = 0V$ Zero Gate Voltage Drain Current $V_{DS} = 50V$ $V_{GS} = 0V$ $V_{CS} = 150^{\circ}C$			

On Characteristics

V _{GS(TH)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 250\mu A$	1	-	2	V
r Drain to		$I_D = 40A, V_{GS} = 10V$	-	0.016	0.019	
	Drain to Source On Resistance	$I_D = 36A, V_{GS} = 5V$	-	0.020	0.024	0
^r DS(ON)	Drain to Godice on Resistance	$I_D = 36A, V_{GS} = 5V,$ $T_J = 175$ °C	-	0.047	0.056	22

Dynamic Characteristics

C _{ISS}	Input Capacitance	V 25V V 20V		-	1850	-	pF
C _{OSS}	Output Capacitance	V _{DS} = 25V, V _{GS} : f = 1MHz	= UV,	-	180	-	pF
C _{RSS}	Reverse Transfer Capacitance	1 = 11V1		-	75	-	pF
$Q_{g(TOT)}$	Total Gate Charge at 5V	$V_{GS} = 0V \text{ to } 5V$			16	21	nC
$Q_{g(TH)}$	Threshold Gate Charge	$V_{GS} = 0V \text{ to } 1V$	$V_{DD} = 30V$	-	1.8	2.4	nC
Q_{gs}	Gate to Source Gate Charge		I _D = 36A	-	6.3	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau		$I_g = 1.0 \text{mA}$	-	4.5	-	nC
Q_{gd}	Gate to Drain "Miller" Charge			-	5.0	-	nC


Switching Characteristics $(V_{GS} = 5V)$

t _{ON}	Turn-On Time		-	-	195	ns
t _{d(ON)}	Turn-On Delay Time		-	12	-	ns
t _r	Rise Time	$V_{DD} = 30V, I_{D} = 36A$	-	118	-	ns
t _{d(OFF)}	Turn-Off Delay Time	$V_{GS} = 5V$, $R_{GS} = 9.1\Omega$	-	26	-	ns
t _f	Fall Time		-	41	-	ns
t _{OFF}	Turn-Off Time		-	-	101	ns

Drain-Source Diode Characteristics

V _{SD}	Source to Drain Diode Voltage	I _{SD} = 36A	-	-	1.25	V
	Source to Drain Diode Voltage	I _{SD} = 18A	-	-	1.0	1.0 V
t _{rr}	Reverse Recovery Time	$I_{SD} = 36A$, $dI_{SD}/dt = 100A/\mu s$	-	-	34	ns
Q _{RR}	Reverse Recovered Charge	$I_{SD} = 36A$, $dI_{SD}/dt = 100A/\mu s$	-	-	30	nC

Notes: 1: Starting $T_J = 25^{\circ}C$, $L = 80\mu H$, $I_{AS} = 28A$.

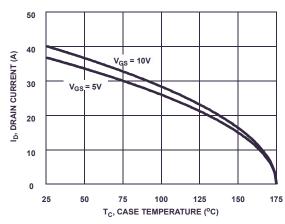


Figure 1. Normalized Power Dissipation vs Ambient Temperature

Figure 2. Maximum Continuous Drain Current vs
Case Temperature

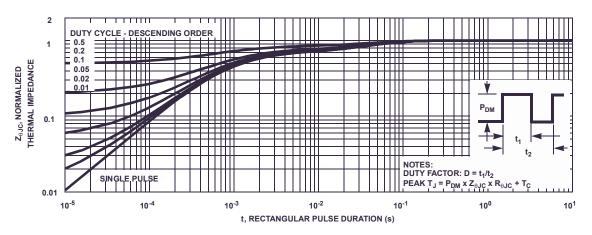


Figure 3. Normalized Maximum Transient Thermal Impedance

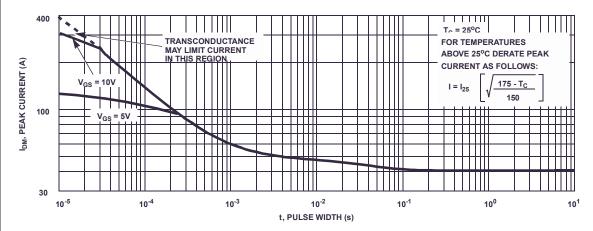


Figure 4. Peak Current Capability

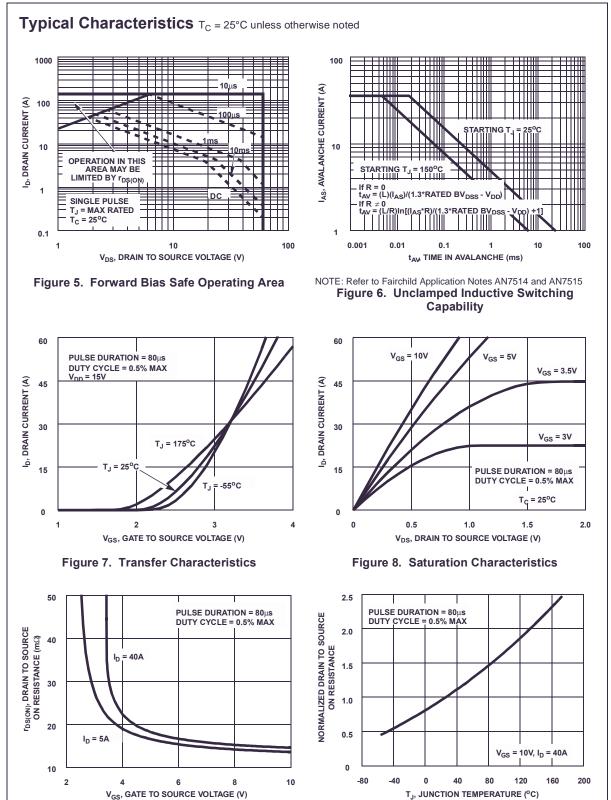


Figure 9. Drain to Source On Resistance vs Gate

Voltage and Drain Current

Figure 10. Normalized Drain to Source On

Resistance vs Junction Temperature

Typical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted

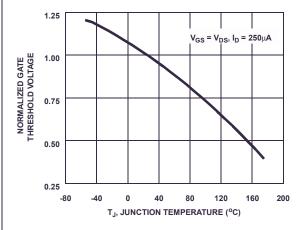


Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature

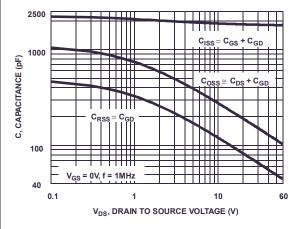


Figure 13. Capacitance vs Drain to Source Voltage

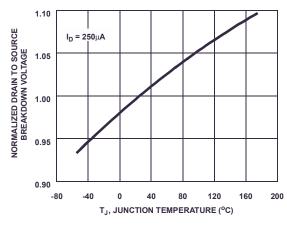


Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

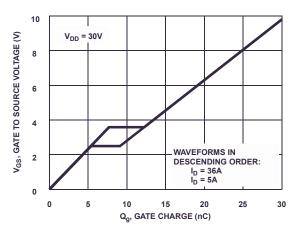


Figure 14. Gate Charge Waveforms for Constant Gate Current

Test Circuits and Waveforms

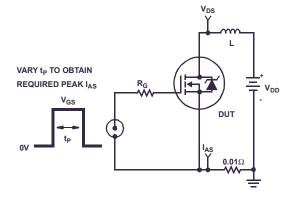


Figure 15. Unclamped Energy Test Circuit

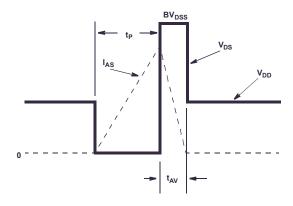


Figure 16. Unclamped Energy Waveforms

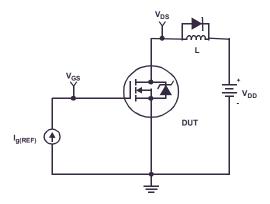


Figure 17. Gate Charge Test Circuit

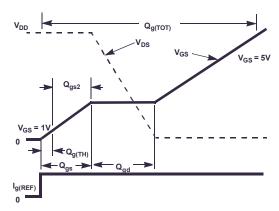


Figure 18. Gate Charge Waveforms

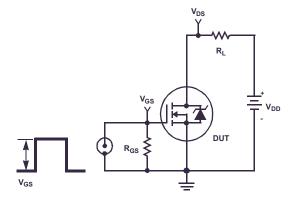


Figure 19. Switching Time Test Circuit

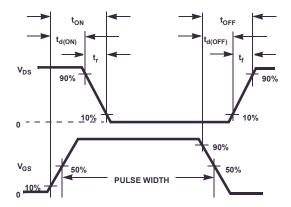


Figure 20. Switching Time Waveforms

Thermal Resistance vs. Mounting Pad Area

The maximum rated junction temperature, T_{JM} , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM} , in an application. Therefore the application's ambient temperature, T_A (°C), and thermal resistance $R_{\theta JA}$ (°C/W) must be reviewed to ensure that T_{JM} is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

$$P_{DM} = \frac{(T_{JM} - T_A)}{R_{\theta JA}} \tag{EQ. 1}$$

In using surface mount devices such as the TO-252 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of P_{DM} is complex and influenced by many factors:

- Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
- The number of copper layers and the thickness of the board.
- 3. The use of external heat sinks.
- 4. The use of thermal vias.
- 5. Air flow and board orientation.
- For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.

Fairchild provides thermal information to assist the designer's preliminary application evaluation. Figure 21 defines the $R_{\theta JA}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve.

Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inches square and equation 3 is for area in centimeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads.

$$R_{\Theta JA} = 33.32 + \frac{23.84}{(0.268 + Area)}$$
 (EQ. 2)

Area in Inches Squared

$$R_{\theta JA} = 33.32 + \frac{154}{(1.73 + Area)}$$
 (EQ. 3)

Area in Centimeters Squared

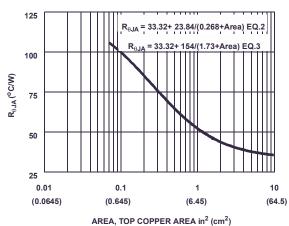


Figure 21. Thermal Resistance vs Mounting Pad Area

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ Auto-SPM™ AX-CAP™* $\mathsf{BitSiC}^{\mathbb{R}}$ Build it Now™ CorePLUS™ CorePOWER™

CROSSVOLTTM CTL™ Current Transfer Logic™ DEUXPEED[®] Dual Cool™ EcoSPARK® EfficentMax™ ESBC™

Ŧ

 $\mathsf{Fairchild}^{\mathbb{R}}$ Fairchild Semiconductor® FACT Quiet Series™ FACT®

FAST® FastvCore™ FETBench™ FlashWriter® * FPS™ F-PFS™ FRFET®

Global Power ResourceSM Green FPS™

Green FPS™ e-Series™ $\mathsf{G} \mathsf{m} \mathsf{a} \mathsf{x}^{\mathsf{T} \mathsf{M}}$ GTO™

IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFETT' MicroPak™ MicroPak2™ MillerDrive™ $MotionMax^{TM}$ Motion-SPM™ mWSaver™

OptiHiT™ OPTOLOGIC® OPTOPLANAR® PDP SPM™ Power-SPM™ PowerTrench® PowerXS™

Programmable Active Droop™

OFĔT[®] QSTM

Quiet Series™ RapidConfigure™

SmartMax™

Saving our world, 1mW/W/kW at a time™ SignalWise™

SMART START™ SPM® STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS[®] SyncFET™ Sync-Lock™

SYSTEM ®* GENERAL

The Power Franchise®

The Right Technology for Your Success™

bwer franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC[®] TriFault Detect™ TRUECURRENT®* μSerDes™

UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ XSTM.

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification Product Status		Definition
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.