

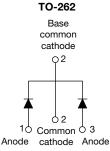
Vishay Semiconductors

RoHS

COMPLIANT

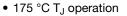
HALOGEN

FREE


Schottky Rectifier, 2 x 20 A

D²PAK Base common cathode O 2 1 Common O 3 node cathode Anode

VS-40CTQ150SPbF



VS-40CTQ150-1PbF

PRODUCT SUMMARY					
Package	TO-262AA, TO-263AB (D ² PAK)				
I _{F(AV)}	2 x 20 A				
V_{R}	150 V				
V _F at I _F	0.71 V				
I _{RM}	15 mA at 125 °C				
T _J max.	175 °C				
Diode variation	Common cathode				
E _{AS}	1 mJ				

FEATURES

- AEC-Q101 qualified
- Very low forward voltage drop
- Halogen-free according to IEC 61249-2-21 definition

- Center tap TO-220 package
- High frequency operation
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Guard ring for enhanced ruggedness and long term reliability
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- Compliant to RoHS Directive 2002/95/EC

DESCRIPTION

The VS-40CTQ... center tap Schottky rectifier has been optimized for very low forward voltage drop, with moderate leakage. The proprietary barrier technology allows for reliable operation up to 175 °C junction temperature. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS					
SYMBOL	CHARACTERISTICS	VALUES	UNITS		
I _{F(AV)}	Rectangular waveform	40	А		
V _{RRM}		150	V		
I _{FSM}	t _p = 5 μs sine	1500	А		
V_{F}	20 Apk, T _J = 125 °C (per leg)	0.71	V		
TJ		- 55 to 175	°C		

VOLTAGE RATINGS				
PARAMETER	SYMBOL	VS-40CTQ150SPbF VS-40CTQ150-1PbF	UNITS	
Maximum DC reverse voltage	V_{R}	150	V	
Maximum working peak reverse voltage	V _{RWM}	150	V	

VS-40CTQ150SPbF, VS-40CTQ150-1PbF

Vishay Semiconductors

Schottky Rectifier, 2 x 20 A

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST COND	ITIONS	VALUES	UNITS	
Maximum average pe	er leg	I _{F(AV)} 50 % duty cycle at T _C = 140 °C, rectangular waveform		20		
See fig. 5 per de			, rectangular wavelorm 40		^	
Maximum peak one cycle non-repetitiv surge current per leg		5 μs sine or 3 μs rect. pulse	Following any rated load condition and with rated	1500	A	
See fig. 7	I _{FSM}	10 ms sine or 6 ms rect. pulse	V _{RRM} applied	250		
Non-repetitive avalanche energy per le	g E _{AS}	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 1.5 \text{A}, L = 0.9$	mH	1.0	mJ	
Repetitive avalanche current per leg	I _{AR}	Current decaying linearly to ze Frequency limited by T _J maxim		1.5	Α	

ELECTRICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CO	TEST CONDITIONS		
		20 A	T _{.1} = 25 °C	0.93	
Maximum forward voltage drop per leg	V (1)	40 A	1 _J =25 C	1.16	V
See fig. 1	V _{FM} ⁽¹⁾	20 A	T 105 °C	0.71	
		40 A	T _J = 125 °C	0.85	
Maximum reverse leakage current per leg	I _{RM} ⁽¹⁾	T _J = 25 °C	V _R = Rated V _R	50	μΑ
See fig. 2		T _J = 125 °C	V _R = nateu V _R	15	mA
Maximum junction capacitance per leg	C _T	V _R = 5 V _{DC} (test signal ran	ge 100 kHz to 1 MHz), 25 °C	450	pF
Typical series inductance per leg	L _S	Measured lead to lead 5 mm from package body 8.0		8.0	nH
Maximum voltage rate of change	dV/dt	Rated V _R	Rated V _R 10 000 V		

Note

 $^{^{(1)}\,}$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS					
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction and storage temperature range		T _J , T _{Stg}		- 55 to 175	°C
Maximum thermal resistance, junction to case per leg Maximum thermal resistance, junction to case per package		В	DC operation See fig. 4	1.5	
		R _{thJC}	DC operation 0	0.75	°C/W
Typical thermal resistance, case to heatsink		R _{thCS}	Mounting surface, smooth and greased	0.5	
Annyayimata wajaht				2	g
Approximate weight				0.07	OZ.
Manustina taurus	minimum		No. of the signatural statements	6 (5)	kgf · cm
Mounting torque	maximum		Non-lubricated threads		(lbf \cdot in)
Marking davisa			Case style D ² PAK	40CTC	Q150S
Marking device			Case style TO-262	40CTC	150-1

Schottky Rectifier, 2 x 20 A

Vishay Semiconductors

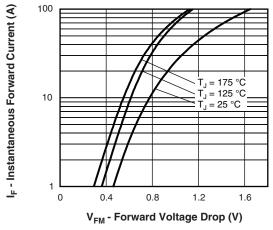


Fig. 1 - Maximum Forward Voltage Drop Characteristics

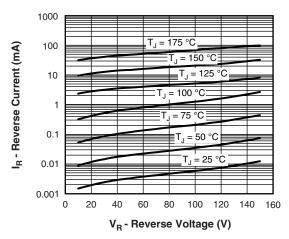


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

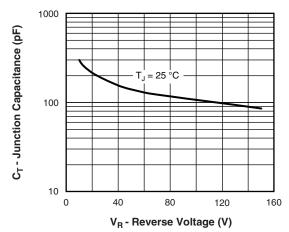


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

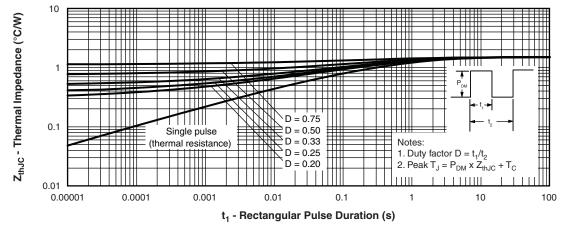


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

VS-40CTQ150SPbF, VS-40CTQ150-1PbF

Vishay Semiconductors

Schottky Rectifier, 2 x 20 A

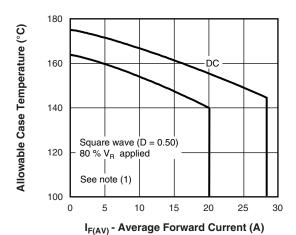


Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current

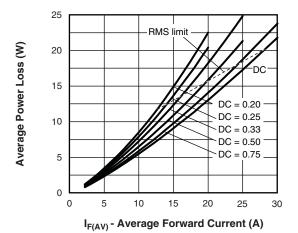


Fig. 6 - Forward Power Loss Characteristics

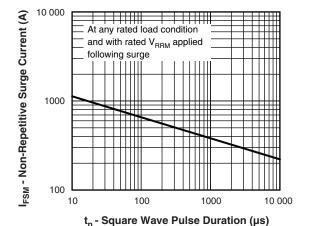
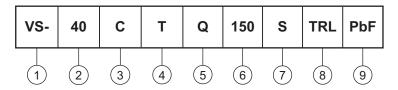


Fig. 7 - Maximum Non-Repetitive Surge Current (Per Leg)

Note

 $\begin{array}{ll} \text{(1)} & \text{Formula used: } T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}; \\ Pd = \text{Forward power loss} = I_{F(AV)} \times V_{FM} \text{ at } (I_{F(AV)}/D) \text{ (see fig. 6);} \\ Pd_{REV} = \text{Inverse power loss} = V_{R1} \times I_R \text{ (1 - D); } I_R \text{ at } V_{R1} = 80 \% V_R \text{ applied} \\ \end{array}$


VS-40CTQ150SPbF, VS-40CTQ150-1PbF

Schottky Rectifier, 2 x 20 A

Vishay Semiconductors

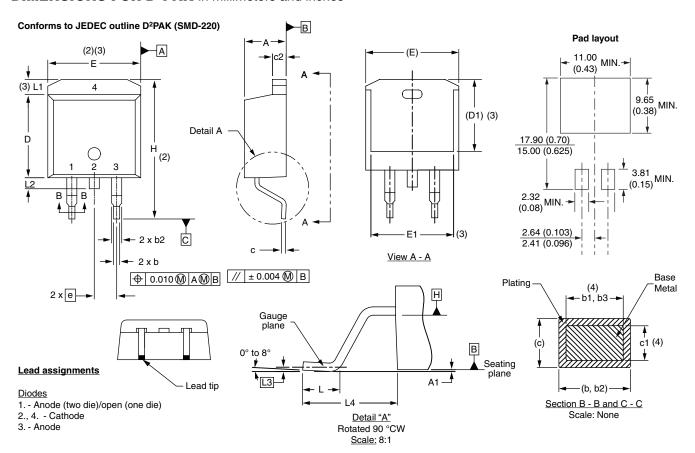
ORDERING INFORMATION TABLE

Device code

- 1 Vishay Semiconductors product
- 2 Current rating (40 A)
- Circuit configuration:

C = Common cathode

- 4 T = TO-220
- 5 Schottky "Q" series
- Voltage rating (150 = 150 V)
- 7 • S = D²PAK
 - -1 = TO-262
- 8 • None = Tube (50 pieces)
 - TRL = Tape and reel (left oriented for D²PAK only)
 - TRR = Tape and reel (right oriented for D2PAK only)
- 9 PbF = Lead (Pb)-free


LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95014			
Part marking information	www.vishay.com/doc?95008			
Packaging information	www.vishay.com/doc?95032			
SPICE model	www.vishay.com/doc?95434			

Vishay High Power Products

D²PAK, TO-262

DIMENSIONS FOR D²PAK in millimeters and inches

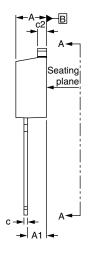
OVII DOI	MILLIM	IETERS	INC		
SYMBOL	MIN.	MAX.	MIN.	MAX.	NOTES
А	4.06	4.83	0.160	0.190	
A1	0.00	0.254	0.000	0.010	
b	0.51	0.99	0.020	0.039	
b1	0.51	0.89	0.020	0.035	4
b2	1.14	1.78	0.045	0.070	
b3	1.14	1.73	0.045	0.068	4
С	0.38	0.74	0.015	0.029	
c1	0.38	0.58	0.015	0.023	4
c2	1.14	1.65	0.045	0.065	
D	8.51	9.65	0.335	0.380	2

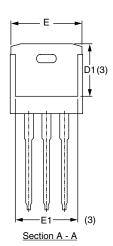
SYMBOL	MILLIM	ETERS	INC	HES	NOTES
STIVIBOL	MIN.	MAX.	MIN.	MAX.	NOTES
D1	6.86	8.00	0.270	0.315	3
E	9.65	10.67	0.380	0.420	2, 3
E1	7.90	8.80	0.311	0.346	3
е	2.54 BSC		0.100 BSC		
Н	14.61	15.88	0.575	0.625	
L	1.78	2.79	0.070	0.110	
L1	-	1.65	-	0.066	3
L2	1.27	1.78	0.050	0.070	
L3	0.25 BSC		0.010	BSC	
L4	4.78	5.28	0.188	0.208	

Notes

- (1) Dimensioning and tolerancing per ASME Y14.5 M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- $^{(3)}\,$ Thermal pad contour optional within dimension E, L1, D1 and E1
- (4) Dimension b1 and c1 apply to base metal only
- (5) Datum A and B to be determined at datum plane H
- (6) Controlling dimension: inch

(7) Outline conforms to JEDEC outline TO-263AB

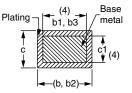

Vishay High Power Products


D²PAK, TO-262

DIMENSIONS FOR TO-262 in millimeters and inches

⊕ 0.010**⋒**|A**⋒**|B

Lead assignments



<u>Diodes</u>

-3 x b2 --3 x b

> 1. - Anode (two die)/open (one die) 2., 4. - Cathode

3. - Anode

Section B - B and C - C Scale: None

OVMDOL	MILLIMETERS		INC	INCHES		
SYMBOL	MIN.	MAX.	MIN.	MAX.	NOTES	
Α	4.06	4.83	0.160	0.190		
A1	2.03	3.02	0.080	0.119		
b	0.51	0.99	0.020	0.039		
b1	0.51	0.89	0.020	0.035	4	
b2	1.14	1.78	0.045	0.070		
b3	1.14	1.73	0.045	0.068	4	
С	0.38	0.74	0.015	0.029		
c1	0.38	0.58	0.015	0.023	4	
c2	1.14	1.65	0.045	0.065		
D	8.51	9.65	0.335	0.380	2	
D1	6.86	8.00	0.270	0.315	3	
E	9.65	10.67	0.380	0.420	2, 3	
E1	7.90	8.80	0.311	0.346	3	
е	2.54 BSC		0.10	0 BSC		
L	13.46	14.10	0.530	0.555		
L1	-	1.65	-	0.065	3	
L2	3.56	3.71	0.140	0.146		

Notes

- (1) Dimensioning and tolerancing as per ASME Y14.5M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- (3) Thermal pad contour optional within dimension E, L1, D1 and E1
- (4) Dimension b1 and c1 apply to base metal only
- (5) Controlling dimension: inches

(6) Outline conform to JEDEC TO-262 except A1 (maximum), b (minimum) and D1 (minimum) where dimensions derived the actual package outline

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 11-Mar-11