

N-channel 100V 26.8 mΩ standard level MOSFET in D2PAK Rev. 1 — 20 October 2011 Objective data sh

Objective data sheet

Product profile 1.

. .

1.1 General description

Standard level N-channel MOSFET in D2PAK package qualified to 175C. This product is designed and qualified for use in a wide range of industrial, communications and domestic equipment.

1.2 Features and benefits

- High efficiency due to low switching and conduction losses
- Suitable for standard level gate drive

1.3 Applications

- DC-to-DC converters
- Load switching

- Motor control
- Server power supplies

1.4 Quick reference data

Quick reference data					
Parameter	Conditions	Min	Тур	Max	Unit
drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C	-	-	100	V
drain current	T_{mb} = 25 °C; V_{GS} = 10 V; see <u>Figure 1</u>	-	-	37	А
total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	-	103	W
junction temperature		-55	-	175	°C
aracteristics					
drain-source on-state resistance	V _{GS} = 10 V; I _D = 15 A; T _j = 100 °C; see <u>Figure 12</u>	-	-	48	mΩ
	V _{GS} = 10 V; I _D = 15 A; T _j = 25 °C; see <u>Figure 13</u>	-	21	26.8	mΩ
characteristics					
gate-drain charge	V_{GS} = 10 V; I _D = 30 A; V _{DS} = 50 V;	-	9	-	nC
total gate charge	see Figure 14; see Figure 15	-	30	-	nC
e ruggedness					
non-repetitive drain-source avalanche energy	$\label{eq:VGS} \begin{array}{l} V_{GS} = 10 \text{ V}; T_{j(\text{init})} = 25 \text{ °C}; I_{D} = 37 \text{ A}; \\ V_{sup} \leq 100 \text{ V}; \text{ unclamped}; \text{R}_{GS} = 50 \Omega \end{array}$	-	-	59	mJ
	Parameter drain-source voltage drain current total power dissipation junction temperature aracteristics drain-source on-state resistance characteristics gate-drain charge total gate charge e ruggedness non-repetitive drain-source	$\begin{tabular}{ c c c c } \hline Parameter & Conditions \\ \hline drain-source voltage & T_j \ge 25 \ ^{\circ}C; \ T_j \le 175 \ ^{\circ}C \\ \hline drain current & T_{mb} = 25 \ ^{\circ}C; \ V_{GS} = 10 \ V; \ see \ Figure 1 \\ \hline total power dissipation & T_{mb} = 25 \ ^{\circ}C; \ see \ Figure 2 \\ \hline junction temperature \\ \hline aracteristics & \\ \hline drain-source on-state \\ resistance & V_{GS} = 10 \ V; \ I_D = 15 \ A; \ T_j = 100 \ ^{\circ}C; \\ see \ Figure 12 \\ \hline V_{GS} = 10 \ V; \ I_D = 15 \ A; \ T_j = 25 \ ^{\circ}C; \\ see \ Figure 13 \\ \hline characteristics \\ \hline gate-drain \ charge & V_{GS} = 10 \ V; \ I_D = 30 \ A; \ V_{DS} = 50 \ V; \\ total gate \ charge & V_{GS} = 10 \ V; \ I_D = 30 \ A; \ V_{DS} = 50 \ V; \\ see \ Figure 14; \ see \ Figure 15 \\ \hline e \ ruggedness \\ \hline non-repetitive \\ drain-source & V_{GS} = 10 \ V; \ T_{j(init)} = 25 \ ^{\circ}C; \ I_D = 37 \ A; \\ V_{sup} \le 100 \ V; \ unclamped; \ R_{GS} = 50 \ \Omega \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c } \hline Parameter & Conditions & Min \\ \hline drain-source voltage & T_j \ge 25 \ ^\circ C; \ T_j \le 175 \ ^\circ C & - \\ \hline drain current & T_{mb} = 25 \ ^\circ C; \ V_{GS} = 10 \ V; see Figure 1 & - \\ \hline total power dissipation & T_{mb} = 25 \ ^\circ C; see Figure 2 & - \\ \hline junction temperature & -55 \\ \hline aracteristics & & & & & & & & & & & & & & & & & & &$	$\begin{tabular}{ c c c c } \hline Parameter & Conditions & Min & Typ \\ \hline drain-source voltage & T_j \ge 25 \ ^{\circ}C; \ T_j \le 175 \ ^{\circ}C & - & - & - & - & - & - & - & - & - & $	$\begin{tabular}{ c c c c } \hline Parameter & Conditions & Min & Typ & Max \\ \hline drain-source voltage & T_j \ge 25 \ ^{\circ}C; \ T_j \le 175 \ ^{\circ}C & - & - & 100 \\ \hline drain current & T_{mb} = 25 \ ^{\circ}C; \ V_{GS} = 10 \ V; \ see \ Figure 1 & - & - & 37 \\ \hline total power dissipation & T_{mb} = 25 \ ^{\circ}C; \ see \ Figure 2 & - & - & 103 \\ \hline junction temperature & -55 & - & 175 \\ \hline aracteristics & & & & & & & & & & & & & & & & & & &$

N-channel 100V 26.8 mΩ standard level MOSFET in D2PAK

2. Pinning information

Table 2.	Pinning	information		
Pin	Symbol	Description	Simplified outline	Graphic symbol
1	G	gate		-
2	D	drain ^[1]	mb	
3	S	source		
mb	D	mounting base; connected to drain		mbb076 S
			SOT404 (D2PAK)	

[1] It is not possible to make connection to pin 2.

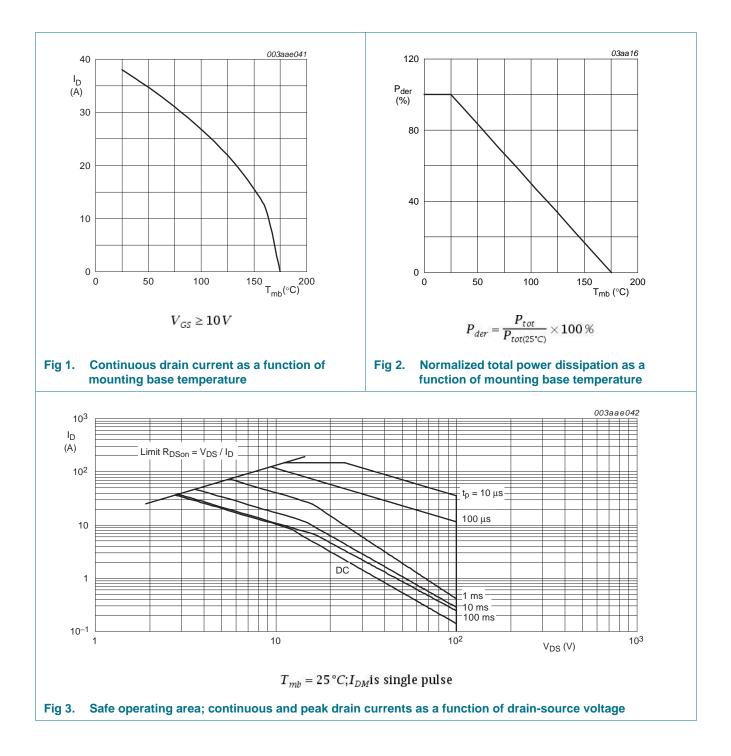
3. Ordering information

Table 3. Ordering information Type number Package Name Description

	Name	Description	Version
PSMN027-100BS	D2PAK	plastic single-ended surface-mounted package (D2PAK); 3 leads (one lead cropped)	SOT404

4. Limiting values

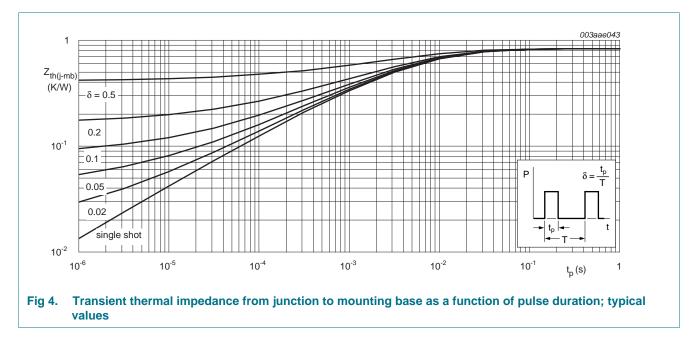
Table 4. Limiting values


In accordance with the Absolute Maximum Rating System (IEC 60134).

Parameter	Conditions	Min	Max	Unit
drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C	-	100	V
drain-gate voltage	T _j ≤ 175 °C; T _j ≥ 25 °C; R _{GS} = 20 kΩ	-	100	V
gate-source voltage		-20	20	V
drain current	V _{GS} = 10 V; T _{mb} = 100 °C; see <u>Figure 1</u>	-	26	А
	V_{GS} = 10 V; T_{mb} = 25 °C; see <u>Figure 1</u>	-	37	А
peak drain current	pulsed; t _p ≤ 10 µs; T _{mb} = 25 °C; see <u>Figure 3</u>	-	148	А
total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	103	W
storage temperature		-55	175	°C
junction temperature		-55	175	°C
peak soldering temperature		-	260	°C
diode				
source current	T _{mb} = 25 °C	-	37	А
peak source current	pulsed; $t_p \le 10 \ \mu s$; $T_{mb} = 25 \ ^{\circ}C$	-	148	А
gedness .				
non-repetitive drain-source avalanche energy	V_{GS} = 10 V; $T_{j(init)}$ = 25 °C; I_D = 37 A; V_{sup} ≤ 100 V; unclamped; R_{GS} = 50 Ω	-	59	mJ
	drain-source voltage drain-gate voltage gate-source voltage drain current peak drain current total power dissipation storage temperature junction temperature peak soldering temperature diode source current peak source current peak source current peak source current peak source current	$\begin{array}{ll} drain-source \ voltage & T_j \geq 25 \ ^{\circ}\text{C}; \ T_j \leq 175 \ ^{\circ}\text{C} \\ drain-gate \ voltage & T_j \leq 175 \ ^{\circ}\text{C}; \ T_j \geq 25 \ ^{\circ}\text{C}; \ R_{GS} = 20 \ \text{k}\Omega \\ gate-source \ voltage & & & & & \\ \\ drain \ current & V_{GS} = 10 \ \text{V}; \ T_{mb} = 100 \ ^{\circ}\text{C}; \ see \ Figure \ 1} \\ \hline V_{GS} = 10 \ \text{V}; \ T_{mb} = 25 \ ^{\circ}\text{C}; \ see \ Figure \ 1} \\ peak \ drain \ current & pulsed; \ t_p \leq 10 \ \mu\text{s}; \ T_{mb} = 25 \ ^{\circ}\text{C}; \\ see \ Figure \ 3} \\ total \ power \ dissipation & T_{mb} = 25 \ ^{\circ}\text{C}; \ see \ Figure \ 2} \\ storage \ temperature & \\ junction \ temperature & \\ peak \ soldering \ temperature & \\ peak \ soldering \ temperature & \\ \hline diode & & \\ source \ current & T_{mb} = 25 \ ^{\circ}\text{C} \\ peak \ source \ current & pulsed; \ t_p \leq 10 \ \mu\text{s}; \ T_{mb} = 25 \ ^{\circ}\text{C} \\ peak \ source \ current & pulsed; \ t_p \leq 10 \ \mu\text{s}; \ T_{mb} = 25 \ ^{\circ}\text{C} \\ peak \ source \ current & V_{GS} = 10 \ \text{V}; \ T_{j(init)} = 25 \ ^{\circ}\text{C} \\ \end{array}$	$\begin{array}{cccc} drain-source \mbox{ voltage } & T_j \ge 25 \ {}^\circ\mbox{C}; \ T_j \le 175 \ {}^\circ\mbox{C} & - & & & \\ drain-gate \mbox{ voltage } & T_j \le 175 \ {}^\circ\mbox{C}; \ R_{GS} = 20 \ k\Omega & - & \\ gate-source \mbox{ voltage } & & -20 \\ drain \ current & & V_{GS} = 10 \ V; \ T_{mb} = 100 \ {}^\circ\mbox{C}; \ see \ Figure 1 & - & \\ \hline V_{GS} = 10 \ V; \ T_{mb} = 25 \ {}^\circ\mbox{C}; \ see \ Figure 1 & - & \\ \hline V_{GS} = 10 \ V; \ T_{mb} = 25 \ {}^\circ\mbox{C}; \ see \ Figure 1 & - & \\ \hline V_{GS} = 10 \ V; \ T_{mb} = 25 \ {}^\circ\mbox{C}; \ see \ Figure 1 & - & \\ \hline peak \ drain \ current & pulsed; \ t_p \le 10 \ \mu\mbox{s}; \ T_{mb} = 25 \ {}^\circ\mbox{C}; \ see \ Figure 2 & - & \\ \ storage \ temperature & & -55 \\ \ junction \ temperature & & & -55 \\ peak \ soldering \ temperature & & & -55 \\ \ peak \ soldering \ temperature & & & & - & \\ \ diode & & & & \\ \ source \ current & \ T_{mb} = 25 \ {}^\circ\mbox{C} & & & - & \\ \ pulsed; \ t_p \le 10 \ \mu\mbox{s}; \ T_{mb} = 25 \ {}^\circ\mbox{C} & & - & \\ \ peak \ source \ current & \ T_{mb} = 25 \ {}^\circ\mbox{C} & & - & \\ \ pulsed; \ t_p \le 10 \ \mu\mbox{s}; \ T_{mb} = 25 \ {}^\circ\mbox{C} & & - & \\ \ peak \ source \ current & \ T_{mb} = 25 \ {}^\circ\mbox{C} & & - & \\ \ peak \ source \ current & \ T_{mb} = 25 \ {}^\circ\mbox{C} & & - & \\ \ peak \ source \ current & \ V_{GS} = 10 \ V; \ T_{j(init)} = 25 \ {}^\circ\mbox{C} & & - & \\ \ peak \ source \ current & \ V_{GS} = 10 \ V; \ T_{j(init)} = 25 \ {}^\circ\mbox{C} & & - & \\ \ peak \ source \ term and \ source \ v_{GS} = 10 \ V; \ T_{j(init)} = 25 \ {}^\circ\mbox{C}; \ I_D = 37 \ A; & - & \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{cccc} drain-source \ voltage & T_j \ge 25 \ ^{\circ}\text{C}; \ T_j \le 175 \ ^{\circ}\text{C} & - & 100 \\ \\ drain-gate \ voltage & T_j \le 175 \ ^{\circ}\text{C}; \ T_j \ge 25 \ ^{\circ}\text{C}; \ R_{GS} = 20 \ \text{k}\Omega & - & 100 \\ \\ gate-source \ voltage & -20 & 20 \\ \\ drain \ current & V_{GS} = 10 \ ^{\circ}\text{V}; \ T_{mb} = 100 \ ^{\circ}\text{C}; \ see \ Figure 1 & - & 26 \\ \hline V_{GS} = 10 \ ^{\circ}\text{V}; \ T_{mb} = 25 \ ^{\circ}\text{C}; \ see \ Figure 1 & - & 37 \\ \\ peak \ drain \ current & pulsed; \ t_p \le 10 \ ^{\circ}\text{y}; \ T_{mb} = 25 \ ^{\circ}\text{C}; \ see \ Figure 2 & - & 148 \\ \\ see \ Figure \ 3 & storage \ temperature & -55 & 175 \\ \\ junction \ temperature & -55 & 175 \\ peak \ soldering \ temperature & -55 & 175 \\ \\ peak \ soldering \ temperature & -55 & 175 \\ \\ peak \ soldering \ temperature & T_{mb} = 25 \ ^{\circ}\text{C}; \ & - & 260 \\ \hline \textbf{diode} & & & & & & & & & \\ \hline \textbf{diode} & & & & & & & & & & & & & & & & & \\ \hline \textbf{source \ current} & \ T_{mb} = 25 \ ^{\circ}\text{C} & - & & & & & & & & & & & & & & & & & $

PSMN027-100BS
Objective data sheet

PSMN027-100BS

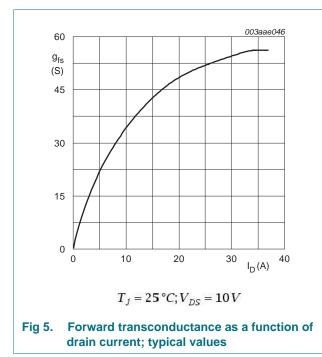

N-channel 100V 26.8 m Ω standard level MOSFET in D2PAK

N-channel 100V 26.8 m Ω standard level MOSFET in D2PAK

5. Thermal characteristics

Table 5.	Thermal characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{th(j-mb)}	thermal resistance from junction to mounting base	see Figure 4	-	0.8	1.46	K/W
R _{th(j-a)}	thermal resistance from junction to ambient	Minimum footprint; mounted on a printed circuit board	-	60	-	K/W

N-channel 100V 26.8 m Ω standard level MOSFET in D2PAK


6. Characteristics

	Characteristics	• ***		_		
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
Static chara	acteristics					
V _{(BR)DSS}	drain-source	$I_D = 0.25 \text{ mA}; V_{GS} = 0 \text{ V}; T_j = -55 \text{ °C}$	90	-	-	V
	breakdown voltage	I_D = 0.25 mA; V_{GS} = 0 V; T_j = 25 °C	100	-	-	V
V _{GS(th)}	gate-source threshold voltage	I _D = 1 mA; V _{DS} = V _{GS} ; T _j = 175 °C; see <u>Figure 10</u>	1	-	-	V
		$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 25 \text{ °C};$ see Figure 11; see Figure 10	2	3	4	V
		$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = -55 \text{ °C};$ see Figure 10	-	-	4.8	V
I _{DSS}	drain leakage current	V_{DS} = 100 V; V_{GS} = 0 V; T_j = 125 °C	-	-	50	μA
		V_{DS} = 100 V; V_{GS} = 0 V; T_j = 25 °C	-	0.08	2	μA
I _{GSS}	gate leakage current	$V_{GS} = 20 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	10	100	nA
		V_{GS} = -20 V; V_{DS} = 0 V; T_j = 25 °C	-	10	100	nA
Doon	drain-source on-state resistance	V _{GS} = 10 V; I _D = 15 A; T _j = 100 °C; see <u>Figure 12</u>	-	-	48	mΩ
		V _{GS} = 10 V; I _D = 15 A; T _j = 175 °C; see <u>Figure 12</u>	-	59	75	mΩ
		V_{GS} = 10 V; I _D = 15 A; T _j = 25 °C; see <u>Figure 13</u>	-	21	26.8	mΩ
R _G	internal gate resistance (AC)	f = 1 MHz	-	0.92	-	Ω
Dynamic cl	naracteristics					
Q _{G(tot)}	total gate charge	$I_D = 30 \text{ A}; V_{DS} = 50 \text{ V}; V_{GS} = 10 \text{ V};$ see Figure 14; see Figure 15	-	30	-	nC
		$I_D = 0 \text{ A}; \text{ V}_{DS} = 0 \text{ V}; \text{ V}_{GS} = 10 \text{ V}$	-	24	-	nC
Q _{GS}	gate-source charge	$I_D = 30 \text{ A}; V_{DS} = 50 \text{ V}; V_{GS} = 10 \text{ V};$ see Figure 14; see Figure 15	-	8	-	nC
Q _{GS(th)}	pre-threshold gate-source charge	$I_D = 30 \text{ A}; V_{DS} = 50 \text{ V}; V_{GS} = 10 \text{ V};$ see Figure 14	-	4.8	-	nC
Q _{GS(th-pl)}	post-threshold gate-source charge		-	3.4	-	nC
Q _{GD}	gate-drain charge	$I_D = 30 \text{ A}; V_{DS} = 50 \text{ V}; V_{GS} = 10 \text{ V};$ see <u>Figure 14</u> ; see <u>Figure 15</u>	-	9	-	nC
V _{GS(pl)}	gate-source plateau voltage	V _{DS} = 50 V; see <u>Figure 14;</u> see <u>Figure 15</u>	-	4.9	-	V
C _{iss}	input capacitance	$V_{DS} = 50 \text{ V}; \text{ V}_{GS} = 0 \text{ V}; \text{ f} = 1 \text{ MHz};$	-	1624	-	pF
C _{oss}	output capacitance	T _j = 25 °C; see <u>Figure 16</u>	-	115	-	pF
C _{rss}	reverse transfer capacitance		-	74	-	pF

PSMN027-100BS

N-channel 100V 26.8 m Ω standard level MOSFET in D2PAK

Table 6.	Characteristics continued					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{d(on)}	turn-on delay time	$V_{DS} = 50 \text{ V}; \text{ R}_{L} = 1.7 \Omega; \text{ V}_{GS} = 10 \text{ V};$	-	14.4	-	ns
t _r	rise time	$R_{G(ext)} = 4.7 \ \Omega; \ T_j = 25 \ ^{\circ}C$	-	11.4	-	ns
t _{d(off)}	turn-off delay time		-	29.6	-	ns
t _f	fall time		-	8.9	-	ns
Source-d	rain diode					
V_{SD}	source-drain voltage	I _S = 15 A; V _{GS} = 0 V; T _j = 25 °C; see <u>Figure 17</u>	-	0.8	1.2	V
t _{rr}	reverse recovery time	$I_{S} = 10 \text{ A}; \text{ d}I_{S}/\text{d}t = 100 \text{ A}/\mu\text{s}; \text{ V}_{GS} = 0 \text{ V};$	-	47	-	ns
Q _r	recovered charge	$V_{DS} = 50 V$	-	91	-	nC

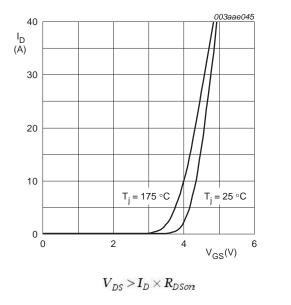
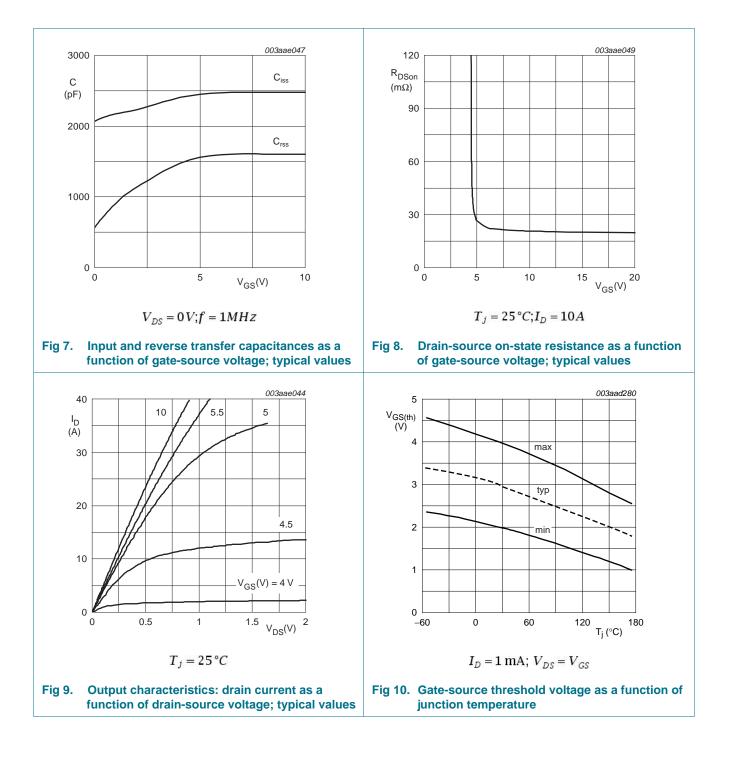
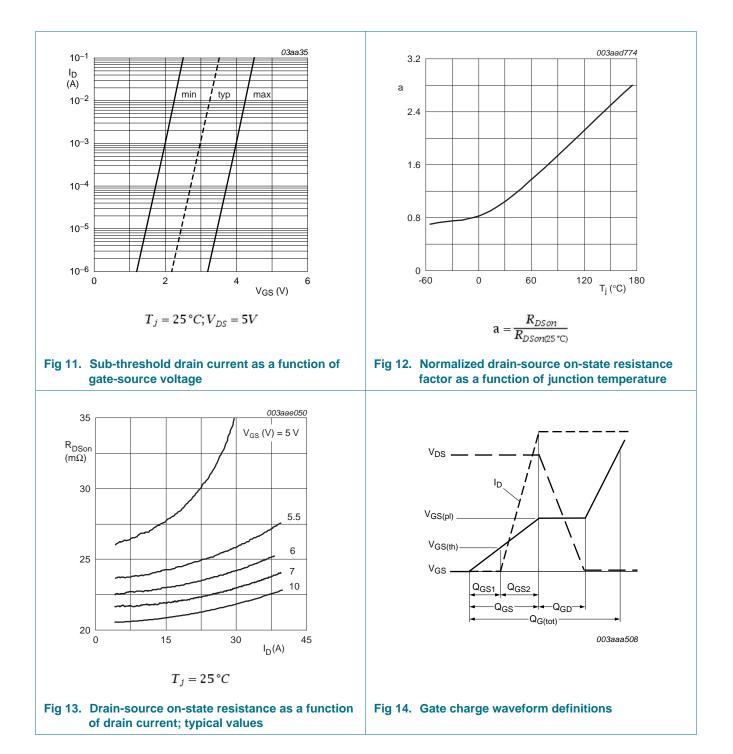
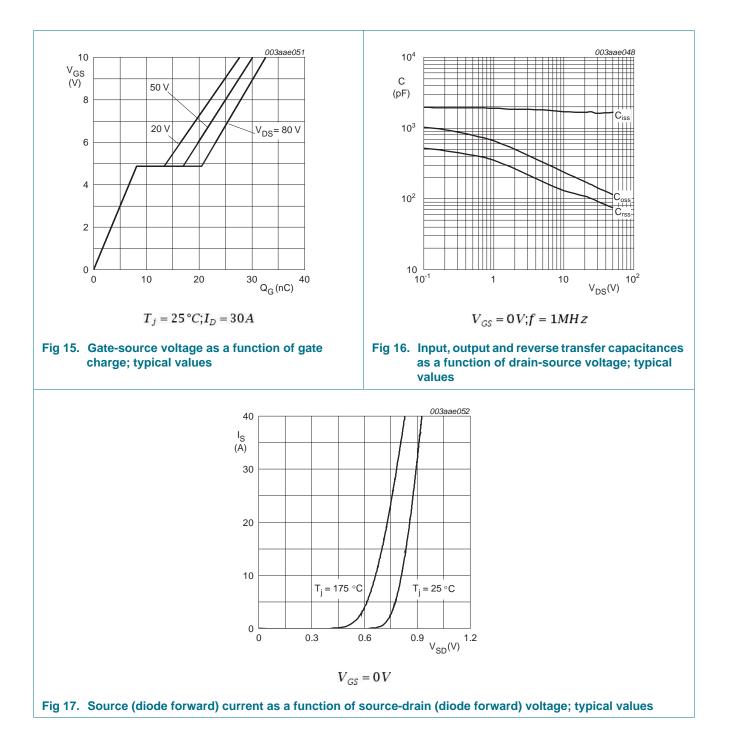



Fig 6. Transfer characteristics: drain current as a function of gate-source voltage; typical values

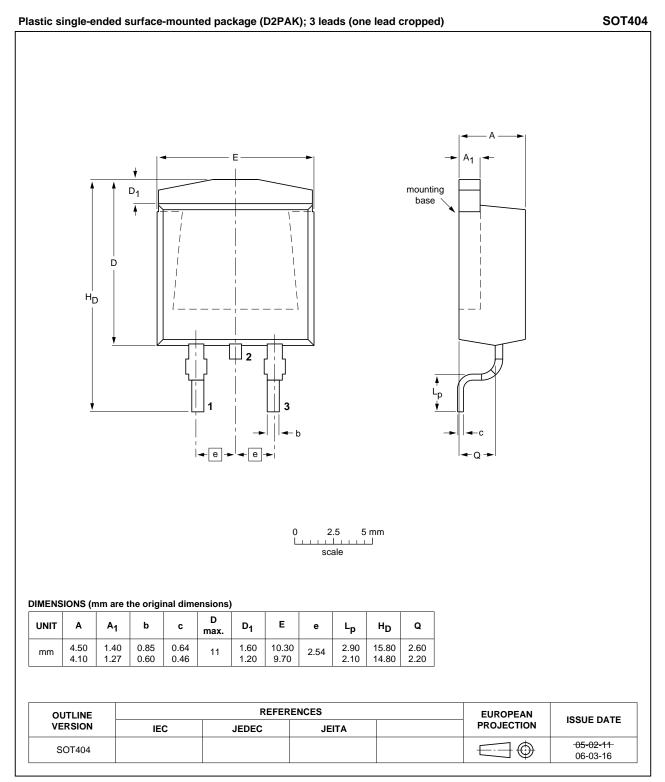

PSMN027-100BS

N-channel 100V 26.8 m Ω standard level MOSFET in D2PAK



PSMN027-100BS

N-channel 100V 26.8 m Ω standard level MOSFET in D2PAK


N-channel 100V 26.8 m Ω standard level MOSFET in D2PAK

PSMN027-100BS

N-channel 100V 26.8 m Ω standard level MOSFET in D2PAK

7. Package outline

Fig 18. Package outline SOT404 (D2PAK)

All information provided in this document is subject to legal disclaimers.

N-channel 100V 26.8 mΩ standard level MOSFET in D2PAK

8. Revision history

Table 7. Revision h	istory			
Document ID	Release date	Data sheet status	Change notice	Supersedes
PSMN027-100BS v.1	20111020	Objective data sheet	-	-

9. Legal information

9.1 Data sheet status

Document status [1] [2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>http://www.nxp.com</u>.

9.2 Definitions

Preview — The document is a preview version only. The document is still subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

9.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

PSMN027-100BS

12 of 14

N-channel 100V 26.8 m Ω standard level MOSFET in D2PAK

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nxp.com/profile/terms</u>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

10. Contact information

For more information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, please send an email to: salesaddresses@nxp.com

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Adelante, Bitport, Bitsound, CoolFlux, CoReUse, DESFire, EZ-HV, FabKey, GreenChip, HiPerSmart, HITAG, I²C-bus logo, ICODE, I-CODE, ITEC, Labelution, MIFARE, MIFARE Plus, MIFARE Ultralight, MoReUse, QLPAK, Silicon Tuner, SiliconMAX, SmartXA, STARplug, TOPFET, TrenchMOS, TriMedia and UCODE — are trademarks of NXP B.V.

HD Radio and HD Radio logo — are trademarks of iBiquity Digital Corporation.

PSMN027-100BS

N-channel 100V 26.8 m Ω standard level MOSFET in D2PAK

11. Contents

1	Product profile1
1.1	General description1
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Limiting values2
5	Thermal characteristics4
6	Characteristics5
7	Package outline10
8	Revision history11
9	Legal information12
9.1	Data sheet status12
9.2	Definitions12
9.3	Disclaimers
9.4	Trademarks13
10	Contact information13

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2011.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 20 October 2011 Document identifier: PSMN027-100BS