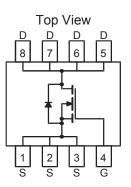


General Description


The AAT9560 30V N-Channel Power MOSFET is a member of AnalogicTech™'s TrenchDMOS™ product family. Using the ultra-high density proprietary TrenchDMOS technology, this product demonstrates high power handling and small size.

The SC70JW-8 package was specially designed for maximum silicon die area with minimum package footprint. This enables new breakthroughs in power density with conventional surface mount technology. The SC70JW-8 has an innovative J-type pin design which allows its extra-wide body to fit directly onto the industry-standard SC70 footprint.

Features

- $V_{DS(MAX)} = 30V$
- I_{D(MAX)} = 6.6A @ 25°C
- Low $R_{DS(ON)}$: 24 mΩ @ V_{GS} = 10V
 - 40 mΩ @ V_{GS} = 4.5V

SC70JW-8 Package

Preliminary Information

Applications

- Cellular & Cordless Telephones
- Battery-powered portable equipment •
- Laptop computers
- Hand held computers
- **Digital cameras**
- DC/DC converters

Symbol	Description		Value	Units	
V _{DS}	Drain-Source Voltage		30	V	
V _{GS}	Gate-Source Voltage		±20	V	
I _D	Continuous Drain Current @ T _J =150°C ¹	T _A = 25°C	±6.6		
		T _A = 70°C	±5.2		
I _{DM}	Pulsed Drain Current		±32	A	
I _S	Continuous Source Current (Source-Drain Diode) ¹		1.5		
D	Maximum Power Dissipation ¹	T _A = 25°C	1.7	W	
P _D		T _A = 70°C	1.0		
T _J , T _{STG}	Operating Junction and Storage Temperature Range		-55 to 150	°C	

Absolute Maximum Ratings (T_A=25°C unless otherwise noted)

Thermal Characteristics

Symbol	Description	Тур	Мах	Units	
R _{θJA}	Junction-to-Ambient steady state 1	100	120		
R _{0JA2}	Junction-to-Ambient t<5 seconds ¹	61	73.5	°C/W	
R_{\thetaJF}	Junction-to-Foot 1	33	40		

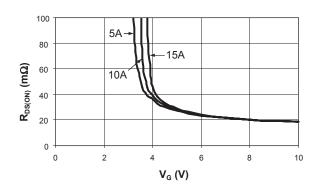
Symbol	Description	Conditions	Min	Тур	Max	Units	
DC Charac	DC Characteristics						
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250µA	30			V	
R _{DS(ON)}	Drain-Source ON-Resistance ²	V _{GS} =10V, I _D =6.6A		18	24	– mΩ	
		V _{GS} =4.5V, I _D =5.1A		30	40	11152	
I _{D(ON)}	On-State Drain Current ²	V_{GS} =10V, V_{DS} =5V (Pulsed)	32			Α	
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250µA	1.0			V	
I _{GSS}	Gate-Body Leakage Current	V _{GS} =±20V, V _{DS} =0V			±100	nA	
I	Drain Source Leakage Current	V _{GS} =0V, V _{DS} =30V			1	μA	
I _{DSS}		V _{GS} =0V, V _{DS} =24V, T _J =70°C			5		
9 _{fs}	Forward Transconductance ²	V _{DS} =5V, I _D =6.6A		12		S	
Dynamic C	Characteristics ³						
Q_{G}	Total Gate Charge	V _{DS} =15V, I _D =12.5A, V _{GS} =5V		8.6	13	nC	
Q _{GT}	Total Gate Charge	V _{DS} =15V, I _D =12.5A, V _{GS} =10V		16	24	nC	
Q_{GS}	Gate-Source Charge	V _{DS} =15V, I _D =12.5A, V _{GS} =10V		2.5		nC	
Q_{GD}	Gate-Drain Charge	V _{DS} =15V, I _D =12.5A, V _{GS} =10V		2.8		nC	
t _{D(ON)}	Turn-ON Delay	V_{DD} =15V, V_{GS} =10V, R_{D} =2.8 Ω , R_{G} =6 Ω		2.5		ns	
t _R	Turn-ON Rise Time	V_{DD} =15V, V_{GS} =10V, R_{D} =2.8 Ω , R_{G} =6 Ω		2.6		ns	
t _{D(OFF)}	Turn-OFF Delay	V_{DD} =15V, V_{GS} =10V, R_{D} =2.8 Ω , R_{G} =6 Ω		12		ns	
t _F	Turn-OFF Fall Time	V_{DD} =15V, V_{GS} =10V, R_{D} =2.8 Ω , R_{G} =6 Ω		5.7		ns	
Source-Dra	ain Diode Characteristics						
V _{SD}	Source-Drain Forward Voltage ²	V _{GS} =0, I _S =6.6A			1.3	V	
ا _s	Continuous Diode Current ²				1.5	A	

Notes:

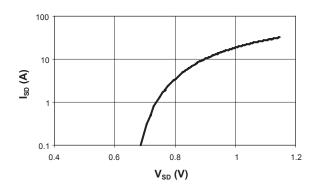
1. Based on thermal dissipation from junction to ambient while mounted on a 1" x 1" PCB with optimized layout. A 5 second pulse on a 1" x 1" PCB approximates testing a device mounted on a large multi-layer PCB as in many applications. $R_{\theta JF} + R_{\theta FA} = R_{\theta JA}$ where the foot thermal reference is defined as the normal solder mounting surface of the device's leads. $R_{\theta JF}$ is guaranteed by design, however $R_{\theta CA}$ is determined by the PCB design. Actual maximum continuous current is limited by the application's design.

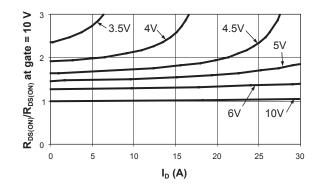
2. Pulse test: Pulse Width = 300 µs

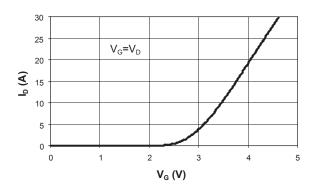

3. Guaranteed by design. Not subjected to production testing.

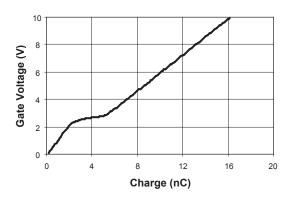

Typical Characteristics

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$


Forward Characteristics

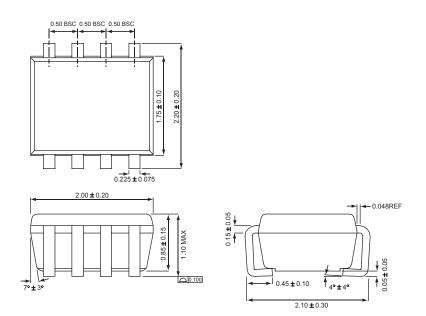

 $R_{DS(ON)}$ vs. V_{G}


Source to Drain Voltage


Normalized R_{DS(ON)}

Transfer

Gate Charge Characteristics


Ordering Information

Package	Marking ¹	Part Number (Tape and Reel)
SC70JW-8	CKXYY	AAT9560IJS-T1

Note: Sample stock is generally held on all part numbers listed in **BOLD**. Note 1: XYY = assembly and date code.

Package Information

SC70JW-8

All dimensions in millimeters.

AnalogicTech cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AnalogicTech product. No circuit patent licenses, copyrights, mask work rights, or other intellectual property rights are implied.

AnalogicTech reserves the right to make changes to their products or specifications or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

AnalogicTech warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with AnalogicTech's standard warranty. Testing and other quality control techniques are utilized to the extent AnalogicTech deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed.

Advanced Analogic Technologies, Inc. 830 E. Arques Avenue, Sunnyvale, CA 94085 Phone (408) 737-4600 Fax (408) 737-4611

