

V62C1161024L(L) Ultra Low Power 64K x 16 CMOS SRAM

Features

- Ultra Low-power consumption
 - Active: 30mA $I_{CC}\xspace$ at 70ns
 - Stand-by: 5 μ A (CMOS input/output) 1 μ A (CMOS input/output, L version)
- 70/85/100/120 ns access time
- Equal access and cycle time
- Single +1.8V to 2.2V Power Supply
- Tri-state output
- Automatic power-down when deselected
- Multiple center power and ground pins for improved noise immunity
- Individual byte controls for both Read and Write cycles
- Available in 44 pin TSOP (II) Package

Logic Block Diagram

Functional Description

The V62C1161024L is a Low Power CMOS Static RAM organized as 65,536 words by 16 bits. Easy memory expansion is provided by an active LOW (CE) and (OE) pin.

This device has an automatic power-down mode feature when deselected. Separate Byte Enable controls (BLE and BHE) allow individual bytes to <u>be accessed</u>. BLE controls the lower bits I/O1 - I/O8. BHE controls the upper bits I/O9 - I/O16.

Writing to these devices is performed by taking Chip Enable (\overline{CE}) with Write Enable (\overline{WE}) and Byte Enable (BLE/BHE) LOW.

Reading from the device is performed by taking Chip Enable (\overline{CE}) with Output Enable (\overline{OE}) and Byte Enable (BLE/BHE) LOW while Write Enable (WE) is held HIGH.

TSOP(II)

Absolute Maximum Ratings *

Parameter	Symbol	Minimum	Maximum	Unit
Voltage on Any Pin Relative to Gnd	Vt	-0.5	+4.0	V
Power Dissipation	PT	_	1.0	W
Storage Temperature (Plastic)	Tstg	-55	+150	0 ⁰ C
Temperature Under Bias	Tbias	-40	+85	0 ⁰ C

* Note: Stresses greater than those listed above Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and function operation of the device at these or any other conditions outside those indicated in the operational sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect reliability.

Truth Table

CE	OE	WE	BLE	BHE	I/O1-I/O8	I/O9-I/O16	Power	Mode
Н	Х	Х	Х	Х	High-Z	High-Z	Standby	Standby
L	L	Н	L	Н	Data Out	High-Z	Active	Low Byte Read
L	L	Н	Н	L	High-Z	Data Out	Active	High Byte Read
L	L	Н	L	L	Data Out	Data Out	Active	Word Read
L	Х	L	L	L	Data In	Data In	Active	Word Write
L	Х	L	L	Н	Data In	High-Z	Active	Low Byte Write
L	Х	L	Н	L	High-Z	Data In	Active	High Byte Write
L	Н	Н	Х	Х	High-Z	High-Z	Active	Output Disable
L	Х	Х	Н	Н	High-Z	High-Z	Active	Output Disable

* Key: X = Don't Care, L = Low, H = High

Recommended Operating Conditions ($T_A = 0^{\circ}C$ to $+70^{\circ}C / -40^{\circ}C$ to $85^{\circ}C^{**}$)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{CC}	1.8	2.0	2.2	V
Supply Vollage	Gnd	0.0	0.0	0.0	V
Input Voltogo	V _{IH}	1.6	-	V _{CC} + 0.2	V
Input Voltage	V _{IL}	-0.5*	-	0.4	V

* V_{IL} min = -2.0V for pulse width less than $t_{RC}/2$.

** For Industrial Temperature

DC Operating Characteristics ($V_{cc} = 2V \pm 10\%$, Gnd = 0V, $T_A = 0^0$ C to $+70^0$ C / -40^0 C to 85^0 C)

Parameter	Sym	Test Conditions	-'	70	-8	85	-]	100	-	Unit	
	Sym	Test conditions	Min	Max	Min	Max	Min	Max	Min	Max	Omt
Input Leakage Current	lı _{lı}	V_{cc} = Max, V_{in} = Gnd to V_{cc}	-	1	-	1	-	1	-	1	μA
Output Leakage Current	li _{lo}	$\frac{CE}{V_{OUT}} = V_{IH} \text{ or } V_{CC} = Max,$ $V_{OUT} = Gnd \text{ to } V_{CC}$	-	1	-	1	-	1	-	1	μA
Operating Power Supply Current	I _{CC}		-	3	-	3	-	3	-	3	mA
Average Operating Current	I _{CC1}	I _{OUT} = 0mA, Min Cycle, 100% Duty	-	30	-	25	-	20	-	20	mA
	I _{CC2}	$\begin{array}{l} CE \leq 0.2V\\ I_{OUT} = 0mA,\\ Cycle Time=1 \mu s, Duty=100\% \end{array}$	-	3	-	3	-	3	-	3	mA
Standby Power Supply Current (TTL Level)	I _{SB}	CE = V _{IH}	-	0.5	-	0.5	-	0.5	-	0.5	mA
Standby Power Supply Current (CMOS Level)	I _{SB1}	$\overline{CE} \ge V_{cc} - 0.2V \qquad L \\ V_{IN} \le 0.2V \text{ or}$	-	5	-	5	-	5	-	5	μΑ
		$V_{\rm IN} \ge V_{\rm CC} - 0.2V$ LL	-	1	-	1	-	1	-	1	μA
Output Low Voltage	V _{OL}	I _{OL} = 2 mA	-	0.4	-	0.4	-	0.4	-	0.4	V
Output High Voltage	V _{OH}	I _{OH} = -1 mA	1.6	-	1.6	-	1.6	-	1.6	-	V

Capacitance (f = 1MHz, $T_A = 25^0C$)

Parameter*	Symbol	Test Condition	Max	Unit
Input Capacitance	C _{in}	V _{in} = 0V	7	pF
I/O Capacitance	C _{I/O}	$V_{in} = V_{out} = 0V$	8	pF

* This parameter is guaranteed by device characterization and is not production tested.

AC Test Conditions	
Input Pulse Level	0.4V to 1.6V
Input Rise and Fall Time	5ns
Input and Output Timing	
Reference Level	1.0V
Output Load Condition	
70ns/85ns	$C_{L} = 30 pf + 1 TTL Load$
Load for 100ns/120ns	$C_{L} = 100 pf + 1 TTL Load$

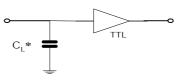
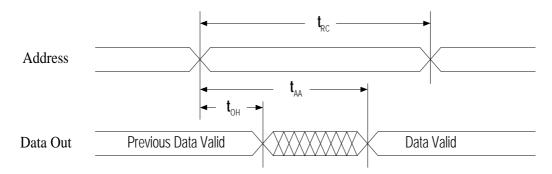


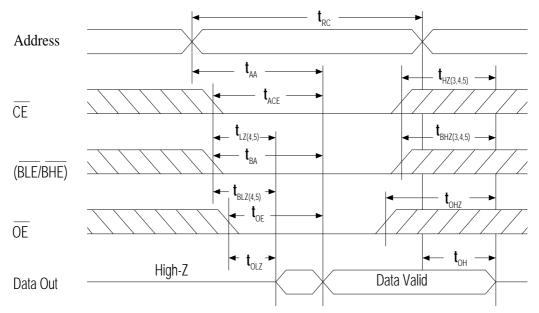
Figure A. * Including Scope and Jig Capacitance

V62C1161024L(L)

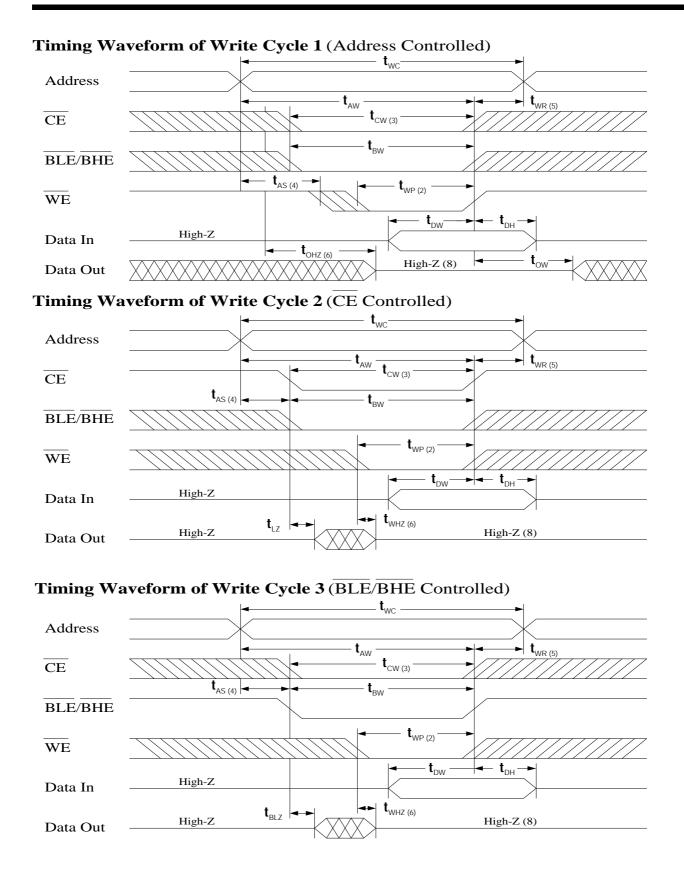
Parameter	Sym	-70		-85		-100		-120		Unit	Note
		Min	Max	Min	Max	Min	Max	Min	Max		
Read Cycle Time	t _{RC}	70	-	85	-	100	-	120	-	ns	
Address Access Time	t _{AA}	-	70	-	85	-	100	-	120	ns	
Chip Enable Access Time	t _{ACE}	-	70	-	85	-	100	-	120	ns	
Output Enable Access Time	t _{OE}	-	40	-	40	-	50	-	60	ns	
Output Hold from Address Change	t _{OH}	10	-	10	-	10	-	10	-	ns	
Chip Enable to Output in Low-Z	t _{LZ}	10	-	10	-	10	-	10	-	ns	4,5
Chip Disable to Output in High-Z	t _{HZ}	-	30	-	35	-	40	-	40	ns	3,4,5
Output Enable to Output in Low-Z	t _{OLZ}	5	-	5	-	5	-	5	-	ns	
Output Disable to Output in High-Z	t _{OHZ}	-	25	-	30	-	35	-	40	ns	
BLE, BHE Enable to Output in Low-Z	t _{BLZ}	5	-	5	-	5	-	5	-	ns	4,5
BLE, BHE Disable to Output in High-Z	t _{BHZ}	-	25	-	30	-	35	-	40	ns	3,4,5
BLE, BHE Access Time	t _{BA}	-	40	-	40	-	50	-	60	ns	


Read Cycle ⁽⁹⁾ ($V_{cc} = 2V \pm 0.2V$, Gnd = 0V, $T_A = 0^0 C$ to $+70^0 C / -40^0 C$ to $+85^0 C$)

Write Cycle ⁽¹¹⁾ ($V_{cc} = 2V \pm 0.2V$, Gnd = 0V, $T_A = 0^0 C$ to $+70^0 C / -40^0 C$ to $+85^0 C$)


Parameter	Symbol	-	70	-8	5	-1	100	-1	20	Unit	Note
		Min	Max	Min	Max	Min	Max	Min	Max	-	
Write Cycle Time	t _{WC}	70	-	85	-	100	-	120	-	ns	
Chip Enable to Write End	t _{CW}	60	-	70	-	80	-	90	-	ns	
Address Setup to Write End	t _{AW}	60	-	70	-	80	-	40	-	ns	
Address Setup Time	t _{AS}	0	-	0	-	0	-	0	-	ns	
Write Pulse Width	t _{WP}	50	-	60	-	70	-	80	-	ns	
Write Recovery Time	t _{WR}	0	-	0	-	0	-	0	-	ns	
Data Valid to Write End	t _{DW}	30	-	35	-	40	-	45	-	ns	
Data Hold Time	t _{DH}	0	-	0	-	0	-	0	-	ns	
Write Enable to Output in High-Z	t _{WHZ}	-	30	-	35	-	40	-	40	ns	
Output Active from Write End	tow	5	-	5	-	5	-	5	-	ns	
BLE, BHE Setup to Write End	t _{BW}	60	-	70	-	80	-	90	-	ns	
			4							•	

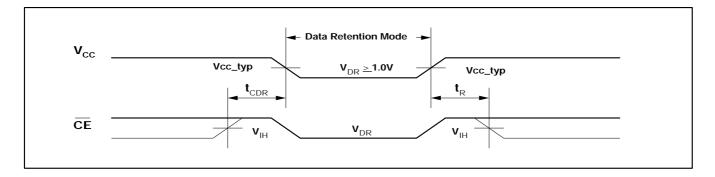
Timing Waveform of Read Cycle 1 (Address Controlled)


Timing Waveform of Read Cycle 2

Notes (Read Cycle)

- 1. WE are high for read cycle.
- 2. All read cycle timing is referenced from the last valid address to the first transition address.
- 3. t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit condition referenced to V_{OH} or V_{OL} levels.
- 4. At any given temperature and voltage condition t_{HZ} (max.) is less than t_{LZ} (min.) both for a given device and from device to device.
- 5. Transition is measured \pm 200mV from steady state voltage with load. This parameter is sampled and not 100% tested.
- 6. Device is continuously selected with $\overline{CE} = V_{IL}$.
- 7. Address valid prior to coincident with \overline{CE} transition Low.
- 8. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.
- 9. For test conditions, see AC Test Condition, Figure A.

Notes (Write Cycle)


- 1. All write timing is referenced from the last valid address to the first transition address.
- 2. A write occurs during the overlap of a low \overline{CE} and \overline{WE} . A write begins at the latest transition among \overline{CE} and \overline{WE} going low: A write ends at the earliest transition among \overline{CE} going high and \overline{WE} going high. t_{WP} is measured from the beginning of write to the end of write.
- 3. t_{cw} is measured from the later of \overline{CE} going low to end of write.
- 4. t_{AS} is measured from the address valid to the beginning of write.
- 5. t_{wR} is measured from the end of write to the address change.
- 6. If \overline{OE} , \overline{CE} and \overline{WE} are in the Read Mode during this period, the I/O pins are in the output Low-Z state. Inputs of opposite phase of the output must not be applied because bus contention can occur.
- 7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.
- 8. If CE goes low simultaneously with WE going low or after WE going low, the outputs remain high impedance state.
- 9. DOUT is the read data of the new address.
- 10. When \overline{CE} is low: I/O pins are in the outputs state. The input signals in the opposite phase leading to the output should not be applied.
- 11. For test conditions, see AC Test Condition, Figure A & B.

Data Retention Characteristics (L Version Only)⁽¹⁾

Parameter	Symbol	Test Condition	Min	Max	Unit
V _{CC} for Data Retention	V _{DR}	$\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.2\text{V}$	1.0	-	V
Data Retention Current	I _{CCDR}	L	-	5 1	μA
Chip Deselect to Data Retention Time	t _{CDR}	V _{IN} .∠V _{CC} - 0.2V or	0	-	ns
Operation Recovery Time ⁽²⁾	t _R	V _{IN} <_ 0.2V	t _{RC}	-	ns

Data Retention Waveform (L Version Only) ($T_A = 0^0C$ to $+70^0C / -40^0C$ to $+85^0C$)

Notes

- 1. L-version includes this feature.
- 2. This Parameter is sampled and not 100% tested.
- 3. For test conditions, see AC Test Condition, Figure A.
- 4. This parameter is tested with CL = 5pF as shown in Figure B. Transition is measured \pm 500mV from steady-state voltage.
- 5. This parameter is guaranteed, but is not tested.
- 6. $\overline{\text{WE}}$ is High for read cycle.
- 7. $\overline{\text{CE}}$ and $\overline{\text{OE}}$ are LOW for read cycle.
- 8. Address valid prior to or coincident with \overline{CE} transition LOW.
- 9. All read cycle timings are referenced from the last valid address to the first transiton address.
- 10. $\overline{\text{CE}}$ or $\overline{\text{WE}}$ must be HIGH during address transition.
- 11. All write cycle timings are referenced from the last valid address to the first transition address.

Ordering Information

Device Type*	Speed	Package
V62C1161024L-70T	70 ns	44-pin TSOP Type 2
V62C1161024L-85T	85 ns	
V62C1161024L-100T	100 ns	
V62C1161024L-120T	120 ns	
V62C1161024LL-70T	70 ns	
V62C1161024LL-85T	85 ns	
V62C1161024LL-100T	100 ns	
V62C1161024LL-120T	120 ns	

* For Industrial temperature tested devices, an "I" designator will be added to the end of the device number.

MOSEL VITELIC

U.S.A.

3910 NORTH FIRST STREET SAN JOSE, CA 95134 PHONE: 408-433-6000 FAX: 408-433-0952 TAIWAN 7F, NO. 102 MIN-CHUAN E. ROAD, SEC. 3 TAIPEI PHONE: 886-2-2545-1213 FAX: 886-2-2545-1209

WORLDWIDE OFFICES

NO 19 LI HSIN ROAD SCIENCE BASED IND. PARK HSIN CHU, TAIWAN, R.O.C. PHONE: 886-3-579-5888 FAX: 886-3-566-5888

SINGAPORE

10 ANSON ROAD #23-13 INTERNATIONAL PLAZA SINGAPORE 079903 PHONE: 65-3231801 FAX: 65-3237013

JAPAN

ONZE 1852 BUILDING 6F 2-14-6 SHINTOMI, CHUO-KU TOKYO 104-0041 PHONE: 03-3537-1400 FAX: 03-3537-1402

V62C1161024L(L)

UK & IRELAND

SUITE 50, GROVEWOOD BUSINESS CENTRE STRATHCLYDE BUSINESS PARK BELLSHILL, LANARKSHIRE, SCOTLAND, ML4 3NQ PHONE: 44-1698-748515 FAX: 44-1698-748516

GERMANY (CONTINENTAL EUROPE & ISRAEL) BENZSTRASSE 32 71083 HERRENBERG GERMANY PHONE: +49 7032 2796-0 FAX: +49 7032 2796 22

U.S. SALES OFFICES

NORTHWESTERN

3910 NORTH FIRST STREET SAN JOSE, CA 95134 PHONE: 408-433-6000 FAX: 408-433-0952 SOUTHWESTERN 302 N. EL CAMINO REAL #200 SAN CLEMENTE, CA 92672 PHONE: 949-361-7873 FAX: 949-361-7807 CENTRAL, NORTHEASTERN & SOUTHEASTERN 604 FIELDWOOD CIRCLE RICHARDSON, TX 75081 PHONE: 214-826-6176 FAX: 214-828-9754

© Copyright 2001, MOSEL VITELIC Inc.

4/01 Printed in U.S.A

The information in this document is subject to change without notice.

MOSEL VITELIC makes no commitment to update or keep current the information contained in this document. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of MOSEL-VITELIC. MOSEL VITELIC subjects its products to normal quality control sampling techniques which are intended to provide an assurance of high quality products suitable for usual commercial applications. MOSEL VITELIC does not do testing appropriate to provide 100% product quality assurance and does not assume any liability for consequential or incidental arising from any use of its products. If such products are to be used in applications in which personal injury might occur from failure, purchaser must do its own quality assurance testing appropriate to such applications.