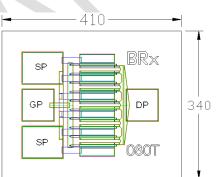


BCP080T

HIGH EFFICIENCY HETEROJUNCTION POWER FET CHIP (.25µm x 800µm)


The BeRex BCP080T is a GaAs Power pHEMT with a nominal 0.25 micron gate length and 800 micron gate width making the product ideally suited for applications where high-gain and medium power in the 1000 MHz to 26.5 GHz frequency range are required. The product may be used in either wideband (6-18 GHz) or narrow-band applications. The BCP080T is produced using state of the art metallization with SI_3N_4 passivation and is screened to assure reliability.

PRODUCT FEATURES

- 30 dBm Typical Output Power
- 10.5 dB Typical Gain @ 12 GHz
- 0.25 X 800 Micron Recessed Gate

APPLICATIONS

- Commercial
- Military / Hi-Rel.
- Test & Measurement

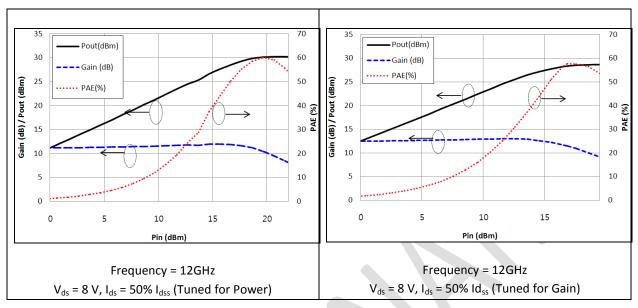
Chip dimensions : 410 X 340 microns Gate pad(GP) : 75 X 75 microns Drain pad(DP) : 75 X 75 microns Source pad(SP) : 95 X 75 microns Chip thickness : 100 microns

ELECTRICAL CHARACTERISTIC (TUNED FOR POWER) $T_a = 25^{\circ} C$

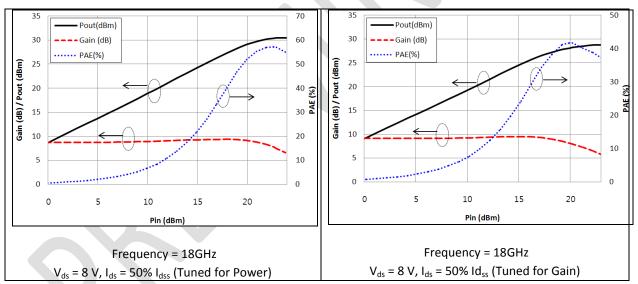
SYMBOL	PARAMETER/TEST CONDITIONS	TEST FREQ.	MIN.	TYPICAL	MAX.	UNIT
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\%$	12 GHz	29.0	30.0		dBm
I 1dB	l _{dss})	18 GHz		30.0		
G_{1dB}	Gain @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	12 GHz	9.5	10.5		dB
U _{1dB}	Gain $@P_{1dB}(V_{ds} - \delta V, I_{ds} - 50\% I_{dss})$	18 GHz		7.5		
PAE	PAE @ P_{1dB} (V_{ds} = 8V, I_{ds} = 50% I_{dss})	12 GHz		60		%
FAL		18 GHz		55		
l _{dss}	Saturated Drain Current ($V_{gs} = 0V$, $V_{ds} = 1.0V$)	160	240	320	mA	
G _m	Transconductance (V_{ds} = 3V, V_{gs} = 50% I_{dss})		320		mS	
V _p	Pinch-off Voltage (I_{ds} = 800 μ A, V_{ds} = 2V)	-2.5	-1.1	-0.5	V	
BV_{gd}	Drain Breakdown Voltage (I _{gd} = 0.8 mA, sour		-15	-12.0	V	
BV _{gs}	Source Breakdown Voltage (I _g = 0.8 mA, dra		-13		V	
R _{th}	Thermal Resistance (Au-Sn Eutectic Attach)			61		°C/W

SYMBOL	PARAMETER/TEST CONDITIONS	TEST FREQ.	MIN.	TYPICAL	MAX.	UNIT
P _{1dB}	Output Power @ P_{1dB} (V_{ds} = 8V, I_{ds} = 50%	12 GHz	27.5	28.5		dBm
· 10B	l _{dss})	18 GHz		28.0		0.5
G _{1dB}	Gain @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\%$ I_{dss})	12 GHz	10.5	11.5		dB
G _{1dB}	$Gain (W P_{1dB} (V_{ds} - \delta V, I_{ds} - 50\% I_{dss})$	18 GHz		8.0		
DAE	PAE @ P_{1dB} (V_{ds} = 8V, I_{ds} = 50% I_{dss})	12 GHz		58		%
PAE		18 GHz		45		
I _{dss}	Saturated Drain Current ($V_{gs} = 0V$, $V_{ds} = 1.0V$	160	240	320	mA	
G _m	Transconductance (V_{ds} = 3V, V_{gs} = 50% I_{dss})		320		mS	
Vp	Pinch-off Voltage (I_{ds} = 800 μ A, V_{ds} = 2V)	-2.5	-1.1	-0.5	V	
BV_{gd}	Drain Breakdown Voltage (I _{gd} = 0.8 mA, sour		-15	- 12.0	V	
BV _{gs}	Source Breakdown Voltage (I _g = 0.8 mA, dra		-13		V	
R _{th}	Thermal Resistance (Au-Sn Eutectic Attach)		61		° C/W	

ELECTRICAL CHARACTERISTIC (TUNED FOR GAIN) T_a = 25° C


MAXIMUM RATING $(T_a = 25^{\circ} C)$

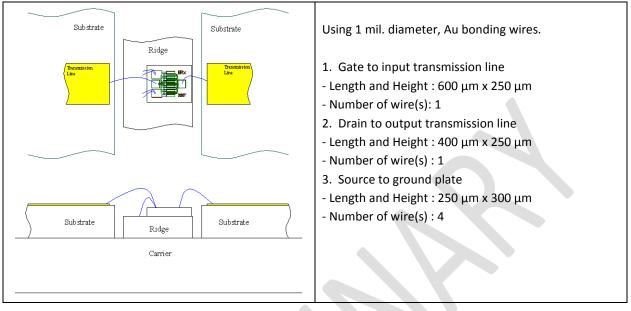
SYMBOLS	PARAMETERS	ABSOLUTE	CONTINUOUS	
V _{ds}	Drain-Source Voltage	12 V	8 V	
V_{gs}	Gate-Source Voltage	-6 V	-3 V	
I _{ds}	Drain Current	I _{dss}	I _{dss}	
I_{gsf}	Forward Gate Current	40 mA	7 mA	
P _{in}	Input Power	27 dBm	@ 3dB compression	
T_{ch}	Channel Temperature	175° C	150° C	
T_{stg}	Storage Temperature	-60° C - 150° C	-60° C - 150° C	
Pt	Total Power Dissipation	3.0 W	2.5 W	


Exceeding any of the above Maximum Ratings will result in reduced MTTF and may cause permanent damage to the device.

BCP080T

P_{IN}_P_{OUT}/Gain, PAE (12 GHz)

P_{IN}_P_{OUT}/Gain, PAE (18 GHz)



S-PARAMETER ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)

FREQ.	\$11	\$11	S21	S21	S12	S12	S22	S22
[GHZ]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]
1	0.88	-76.19	15.20	133.42	0.024	52.92	0.33	-48.85
2	0.80	-122.05	10.28	107.10	0.026	39.88	0.23	-79.11
3	0.78	-150.41	7.46	90.51	0.028	32.53	0.18	-100.71
4	0.78	-169.11	5.73	78.17	0.032	27.33	0.15	-118.62
5	0.78	177.02	4.62	67.37	0.033	26.98	0.15	-135.40
6	0.79	165.27	3.82	57.85	0.037	26.66	0.16	-148.85
7	0.81	156.52	3.20	49.39	0.039	26.35	0.18	-160.17
8	0.82	147.81	2.79	41.06	0.040	27.57	0.20	-167.44
9	0.84	140.62	2.44	33.85	0.045	26.68	0.22	-176.73
10	0.84	134.26	2.17	26.58	0.048	26.40	0.24	177.83
11	0.86	126.33	1.94	18.60	0.052	24.32	0.26	171.10
12	0.87	119.77	1.73	10.95	0.054	22.92	0.29	165.39
13	0.89	114.17	1.56	4.42	0.056	20.74	0.32	158.94
14	0.89	107.48	1.41	-3.40	0.058	17.25	0.35	152.81
15	0.90	102.39	1.24	-10.36	0.061	15.12	0.39	146.64
16	0.92	98.18	1.12	-16.82	0.062	12.32	0.44	140.53
17	0.93	93.38	0.99	-24.48	0.063	7.68	0.48	135.58
18	0.93	92.33	0.86	-28.98	0.065	8.39	0.52	130.41
19	0.93	90.25	0.76	-34.74	0.064	6.46	0.56	125.87
20	0.94	86.43	0.67	-40.26	0.063	6.69	0.61	122.41
21	0.95	87.08	0.57	-43.33	0.064	4.00	0.64	119.62
22	0.94	88.18	0.51	-46.45	0.063	3.40	0.66	117.23
23	0.94	87.44	0.44	-49.43	0.064	2.63	0.70	115.29
24	0.94	90.11	0.39	-50.10	0.064	1.51	0.73	114.62
25	0.94	91.60	0.35	-52.21	0.061	4.83	0.75	113.64
26	0.95	90.36	0.31	-52.11	0.058	10.58	0.76	114.36

Note: S-parameters include bond wires. Reference planes are at edge of substrates shown on "Wire Bonding Information" figure below.

WIRE BONDING INFORMATION

Proper ESD procedures should be followed when handling this device.

DISCLAIMER

BEREX RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. BEREX DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

BEREX PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES WITHOUT THE EXPRESS WRITTEN APPROVAL OF BEREX.

- Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.