ADSP-21060 Industrial SHARC ${ }^{8}$ DSP Microcomputer Family

Preliminary Technical Data ADSP-21060C/ADSP-21060LC

SUMMARY

High Performance Signal Processor for Communications, Graphics, and Imaging Applications
Super Harvard Architecture
Four Independent Buses for Dual Data Fetch, Instruction Fetch, and Nonintrusive I/O
32-Bit IEEE Floating-Point Computation UnitsMultiplier, ALU, and Shifter
Dual-Ported On-Chip SRAM and Integrated I/O
Peripherals-A Complete System-On-A-Chip Integrated Multiprocessing Features
Industrial Temperature Grade Hermetic Ceramic QFP Package

KEY FEATURES

40 MIPS, 25 ns Instruction Rate, Single-Cycle Instruction Execution
120 MFLOPS Peak, 80 MFLOPS Sustained Performance Dual Data Address Generators with Modulo and BitReverse Addressing

Efficient Program Sequencing with Zero-Overhead Looping: Single-Cycle Loop Setup
IEEE J TAG Standard 1149.1 Test Access Port and On-Chip Emulation
240-Lead Thermally Enhanced PQFP Package 32-Bit Single-Precision and 40-Bit Extended-Precision IEEE Floating-Point Data Formats or 32-Bit FixedPoint Data Format

Parallel Computations

Single-Cycle Multiply and ALU Operations in Parallel with Dual Memory Read/ Writes and Instruction Fetch Multiply with Add and Subtract for Accelerated FFT Butterfly Computation

4 Mbit On-Chip SRAM

Dual-Ported for Independent Access by Core Processor and DMA

Off-Chip Memory Interfacing

4 Gigawords Addressable
Programmable Wait State Generation, Page-Mode DRAM Support

Figure 1. Block Diagram

SH ARC is a registered trademark of Analog Devices, Inc.
REV. PrA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703

DMA Controller
 10 DMA Channels for Transfers Between ADSP-2106x Internal Memory and External Memory, External Peripherals, Host Processor, Serial Ports, or Link Ports
 Background DMA Transfers at $\mathbf{4 0} \mathbf{~ M H z}$, in Parallel with Full-Speed Processor Execution

Host Processor Interface to 16- and 32-Bit Microprocessors
Host Can Directly Read/ Write ADSP-2106x Internal Memory

Multiprocessing
 Glueless Connection for Scalable DSP Multiprocessing Architecture
 Distributed On-Chip Bus Arbitration for Parallel Bus Connect of Up to Six ADSP-2106xs Plus Host
 Six Link Ports for Point-to-Point Connectivity and Array Multiprocessing
 240 Mbytes/s Transfer Rate Over Parallel Bus 240 Mbytes/s Transfer Rate Over Link Ports

Serial Ports
Two 40 Mbit/s Synchronous Serial Ports with Companding Hardware
Independent Transmit and Receive Functions

TABLE OF CONTENTS

GENERAL DESCRIPTION 3
ADSP-21000 FAMILY CORE ARCHITECTURE 4
ADSP-21060C/ADSP-21060LC FEATURES 4
DEVELOPMENT TOOLS 7
PIN FUNCTION DESCRIPTIONS 8
TARGET BOARD CONNECTOR FOR EZ-ICE® PROBE11
RECOMMENDED OPERATING CONDITIONS (5V) 13
ELECT RICAL CHARACTERISTICS (5V) 13
POWER DISSIPATION ADSP-21060 (5V) 14
RECOMMENDED OPERATING CONDITIONS (3.3V) 15
ELECTRICAL CHARACTERISTICS (3.3V) 15
POWER DISSIPATION ADSP-21060L (3.3V) 16
ABSOLUTE MAXIMUM RATINGS 17
TIMING SPECIFICATIONS 17
M emory Read-Bus M aster 20
M emory W rite-Bus M aster 21
Synchronous Read/W rite—Bus M aster 22
Synchronous Read/W rite-Bus Slave 24
M ultiprocessor Bus Request and Host Bus Request 25
Asynchronous Read/W rite-H ost to AD SP-2106x 27
Three-StateT iming-Bus M aster, Bus Slave,
$\overline{\mathrm{HBR}}, \overline{\mathrm{SBTS}}$ 29
D M A H andshake 30
Link Ports: $1 \times$ CLK Speed Operation 32
Link Ports: $2 \times$ CLK Speed Operation 33
Serial Ports 35
JTAG Test Access Port and Emulation 38
OUTPUT DRIVE CURRENTS 39
POWER DISSIPATION 39
TEST CONDITIONS 39
ENVIRONMENTAL CONDITIONS 42
240-LEAD METRIC PQFP PIN CONFIGURATIONS 43
OUTLINE DIMENSIONS 44
ORDERING GUIDE 44
FIGURES
Figure 1. ADSP-21060C/AD SP-21060LC Block Diagram 1
Figure 2. AD SP-2106x System 4
Figure 3. Shared M emory M ultiprocessing System 6
Figure 4. AD SP-21060C/AD SP-21060LC Memory M ap 7
Figure 5. T arget Board Connector For ADSP-2106xEZ-ICE Emulator (Jumpers in Place)11
Figure 6. JTAG Scan Path Connections for M ultiple AD SP-2106x Systems 11
Figure 7. JTAG Clocktree for M ultiple ADSP-2106x Systems 12
Figure 8. Clock Input 18
Figure 9. Reset 18
Figure 10. Interrupts 18
Figure 11. T imer 19
Figure 12. Flags 19
Figure 13. M emory Read-Bus M aster 20
Figure 14. M emory W rite-Bus M aster 21
Figure 15. Synchronous Read/W rite-Bus M aster 23
Figure 16. Synchronous Read/W rite-Bus Slave 24
Figure 17. M ultiprocessor Bus Request and Host Bus Request 26
Figure 18a. Synchronous REDY T iming 27
Figure 18b. Asynchronous R ead/W rite-H ost to ADSP-2106x 28
Figure 19a. Three-State T iming (Bus T ransition Cycle, SBTS Assertion) 29
Figure 19b. Three-State Timing (H ost T ransition Cycle) 29
Figure 20. DM A Handshake T iming 31
Figure 21. Link Ports 34
Figure 22. Serial Ports 36
Figure 23. External L ate F rame Sync 37
Figure 24. IEEE 11499.1 JTAG Test Access Port 38
Figure 25. Output Enable/D isable 40
Figure 26. Equivalent Device Loading for AC M easurements (Includes All Fixtures) 40
Figure 27. Voltage Reference L evels for $A C M$ easurements (Except O utput Enable/D isable) 40
Figure 28. AD SP-2106x T ypical Drive Currents ($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$) 41
Figure 29. Typical Output Rise Time ($10 \%-90 \% \mathrm{~V}_{\mathrm{DD}}$) vs. Load Capacitance (VD $=5 \mathrm{~V}$) 41
Figure 30. T ypical Output Rise T ime ($0.8 \mathrm{~V}-2.0 \mathrm{~V}$)vs. Load Capacitance (VD $=5 \mathrm{~V}$)41
Figure 31. T ypical Output D elay or H old vs. L oad C apacitance(at M aximum C ase T emperature) ($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$)41
Figure 32. ADSP-2106x T ypical D rive Currents $\left(\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}\right)$ 41
Figure 33. T ypical Output Rise Time ($10 \%-90 \% V_{D D}$) vs. Load C apacitance ($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$) 41
Figure 34. T ypical Output Rise T ime ($0.8 \mathrm{~V}-2.0 \mathrm{~V}$) vs. Load C apacitance ($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$) 42
Figure 35. T ypical Output D elay or H old vs. L oad C apacitance(at M aximum Case T emperature) $\left(\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}\right.$)42

GENERAL DESCRIPTION

The AD SP-2106x SHARC - Super H arvard Architecture Com-puter-is a signal processing microcomputer that offers new capabilities and levels of performance. The AD SP-2106x SH ARC s are 32-bit processors optimized for high performance DSP applications. The ADSP-2106x builds on the ADSP21000 D SP core to form a complete system-on-a-chip, adding a dual-ported on-chip SRAM and integrated I/O peripherals supported by a dedicated I/O bus.
Fabricated in a high speed, low power CM OS process, the AD SP-2106x has a 25 ns instruction cycle time and operates at 40 M IPS. With its on-chip instruction cache, the processor can execute every instruction in a single cycle. Table I shows performance benchmarks for the AD SP-2106x.
The ADSP-2106x SH ARC represents a new standard of integration for signal computers, combining a high performance floating-point DSP core with integrated, on-chip system features including a 4 M bit SRAM memory host processor interface, D M A controller, serial ports, and link port and parallel bus connectivity for glueless DSP multiprocessing.
Figure 1 shows a block diagram of the ADSP-21060C/ ADSP-21060LC, illustrating the following architectural features:

Computation U nits (ALU, M ultiplier and Shifter) with a Shared D ata Register File
D ata Address Generators (DAG1, DAG 2)
Program Sequencer with Instruction C ache
Interval T imer
On-C hip SRAM
External Port for Interfacing to Off-C hip M emory and Peripherals
H ost Port and M ultiprocessor Interface
DM A Controller
Serial Ports and Link Ports
JTAG Test Access Port
Figure 2 shows a typical single-processor system. A multiprocessing system is shown in Figure 3.

Table I. ADSP-21060C/ADSP-21060LC Benchmarks (@ 40 MHz)

1024-Pt. Complex FFT	0.46 ms	18,221 cycles
(Radix 4, with Digit Reverse)		
FIR Filter (per T ap)	25 ns	1 cycle
IIR Filter (per Biquad)	100 ns	4 cycles
Divide (y/x)	150 ns	6 cycles
Inverse Square Root (1/ $\sqrt{\mathrm{x}})$	225 ns	9 cycles
DM A Transfer Rate	240 M bytes/s	

ADSP-21060C/ADSP-21060LC

ADSP-21000 FAMILY CORE ARCHITECTURE

The ADSP-2106x includes the following architectural features of the ADSP-21000 family core. The ADSP-21060C is codeand function-compatible with the ADSP-21061 and AD SP-21062.

Independent, Parallel Computation Units

The arithmetic/logic unit (ALU), multiplier and shifter all perform single-cycle instructions. T he three units are arranged in parallel, maximizing computational throughput. Single multifunction instructions execute parallel ALU and multiplier operations. T hese computation units support IEEE 32-bit singleprecision floating-point, extended precision 40-bit floatingpoint, and 32-bit fixed-point data formats.

Figure 2. ADSP-2106x System

Data Register File

A general purpose data register file is used for transferring data between the computation units and the data buses, and for storing intermediate results. This 10-port, 32-register (16 primary, 16 secondary) register file, combined with the ADSP21000 H arvard architecture, allows unconstrained data flow between computation units and internal memory.

Single-Cycle Fetch of Instruction and Two Operands

The ADSP-2106x features an enhanced H arvard architecture in which the data memory (D M) bus transfers data and the program memory (PM) bus transfers both instructions and data (see Figure 1). With its separate program and data memory buses and on-chip instruction cache, the processor can simultaneously fetch two operands and an instruction (from the cache), all in a single cycle.

Instruction Cache

T he AD SP-2106x includes an on-chip instruction cache that enables three-bus operation for fetching an instruction and two data values. The cache is selective-only the instructions whose fetches conflict with PM bus data accesses are cached. T his allows full-speed execution of core, looped operations such as digital filter multiply-accumulates and FFT butterfly processing.

Data Address Generators with Hardware Circular Buffers

 The AD SP-2106x's two data address generators (DAGs) implement circular data buffers in hardware. Circular buffers allow efficient programming of delay lines and other data structures required in digital signal processing, and are commonly used in digital filters and F ourier transforms. The two DAG s of the AD SP-2106x contain sufficient registers to allow the creation of up to 32 circular buffers (16 primary register sets, 16 secondary). The DAGs automatically handle address pointer wraparound, reducing overhead, increasing performance, and simplifying implementation. C ircular buffers can start and end at any memory location.
Flexible Instruction Set

The 48-bit instruction word accommodates a variety of parallel operations, for concise programming. For example, the ADSP2106x can conditionally execute a multiply, an add, a subtract and a branch, all in a single instruction.

ADSP-21060C/ADSP-21060LC FEATURES

Augmenting the AD SP-21000 family core, the AD SP-21060 adds the following architectural features:

Dual-Ported On-Chip Memory

The AD SP-21060C contains four megabits of on-chip SRAM, organized as two blocks of 2 M bits each, which can be configured for different combinations of code and data storage. E ach memory block is dual-ported for single-cycle, independent accesses by the core processor and I/O processor or D M A controller. The dual-ported memory and separate on-chip buses allow two data transfers from the core and one from I/O, all in a single cycle.
On the AD SP-21060C, the memory can be configured as a maximum of 128 K words of 32 -bit data, 256 K words of 16 -bit data, 80 K words of 48 -bit instructions (or 40 -bit data), or combinations of different word sizes up to four megabits. All of the memory can be accessed as 16 -bit, 32 -bit, or 48 -bit words.
A 16-bit floating-point storage format is supported that effectively doubles the amount of data that may be stored on-chip. C onversion between the 32-bit floating-point and 16-bit floatingpoint formats is done in a single instruction.
While each memory block can store combinations of code and data, accesses are most efficient when one block stores data, using the DM bus for transfers, and the other block stores instructions and data, using the PM bus for transfers. U sing the DM bus and PM bus in this way, with one dedicated to each memory block, assures single-cycle execution with two data transfers. In this case, the instruction must be available in the cache. Single-cycle execution is also maintained when one of the data operands is transferred to or from off-chip, via the ADSP2106x's external port.

Off-Chip Memory and Peripherals Interface

The AD SP-2106x's external port provides the processor's interface to off-chip memory and peripherals. The 4-gigaword offchip address space is included in the ADSP-2106x's unified address space. T he separate on-chip buses-for PM addresses, PM data, DM addresses, DM data, I/O addresses, and I/O data-are multiplexed at the external port to create an external system bus with a single 32 -bit address bus and a single 48 -bit (or 32-bit) data bus.
Addressing of external memory devices is facilitated by on-chip decoding of high-order address lines to generate memory bank select signals. Separate control lines are also generated for simplified addressing of page-mode DRAM . The ADSP-2106x provides programmable memory wait states and external memory acknowledge controls to allow interfacing to DRAM and peripherals with variable access, hold, and disable time requirements.

Host Processor Interface

The AD SP-2106x's host interface allows easy connection to standard microprocessor buses, both 16-bit and 32-bit, with little additional hardware required. Asynchronous transfers at speeds up to the full clock rate of the processor are supported. The host interface is accessed through the ADSP-2106x's external port and is memory-mapped into the unified address space. F our channels of DM A are available for the host interface; code and data transfers are accomplished with low software overhead.
T he host processor requests the ADSP-2106x's external bus with the host bus request ($\overline{\mathrm{HBR}}$), host bus grant ($\overline{\mathrm{HBG}}$), and ready (REDY) signals. The host can directly read and write the internal memory of the ADSP-2106x, and can access the DM A channel setup and mailbox registers. Vector interrupt support is provided for efficient execution of host commands.

DMA Controller

The AD SP-2106x's on-chip D M A controller allows zerooverhead data transfers without processor intervention. The D M A controller operates independently and invisibly to the processor core, allowing D M A operations to occur while the core is simultaneously executing its program instructions.
D M A transfers can occur between the AD SP-2106x's internal memory and either external memory, external peripherals or a host processor. DM A transfers can also occur between the AD SP-2106x's internal memory and its serial ports or link ports. D M A transfers between external memory and external peripheral devices are another option. External bus packing to 16-, 32-, or 48-bit words is performed during D M A transfers.
T en channels of DM A are available on the ADSP-2106x-two via the link ports, four via the serial ports, and four via the processor's external port (for either host processor, other ADSP-2106xs, memory or I/O transfers). Four additional link port DM A channels are shared with serial port 1 and the external port. Programs can be downloaded to the AD SP-2106x using D M A transfers. A synchronous off-chip peripherals can control two DM A channels using D M A Request/G rant lines ($\overline{\text { DMAR1-2 }}, \overline{\text { DMAG1-2 }}$). Other DM A features include interrupt generation upon completion of DMA transfers and DMA chaining for automatic linked DM A transfers.

Serial Ports

The AD SP-2106x features two synchronous serial ports that provide an inexpensive interface to a wide variety of digital and mixed-signal peripheral devices. The serial ports can operate at the full clock rate of the processor, providing each with a maximum data rate of $40 \mathrm{M} \mathrm{bit} / \mathrm{s}$. Independent transmit and receive functions provide greater flexibility for serial communications. Serial port data can be automatically transferred to and from on-chip memory via D M A. Each of the serial ports offers T D M multichannel mode.
The serial ports can operate with little-endian or big-endian transmission formats, with word lengths selectable from 3 bits to 32 bits. They offer selectable synchronization and transmit modes as well as optional μ-law or A-law companding. Serial port clocks and frame syncs can be internally or externally generated.

Multiprocessing

The AD SP-2106x offers powerful features tailored to multiprocessing D SP systems. The unified address space (see Figure 4) allows direct interprocessor accesses of each AD SP$2106 x$'s internal memory. Distributed bus arbitration logic is included on-chip for simple, glueless connection of systems containing up to six AD SP-2106xs and a host processor. M aster processor changeover incurs only one cycle of overhead. Bus arbitration is selectable as either fixed or rotating priority. Bus lock allows indivisible read-modify-write sequences for semaphores. A vector interrupt is provided for interprocessor commands. M aximum throughput for interprocessor data transfer is 240 M bytes/s over the link ports or external port. B roadcast writes allow simultaneous transmission of data to all AD SP-2106xs and can be used to implement reflective semaphores.

Link Ports

The AD SP-2106x features six 4-bit link ports that provide additional I/O capabilities. The link ports can be clocked twice per cycle, allowing each to transfer eight bits per cycle. Link port 1/O is especially useful for point-to-point interprocessor communication in multiprocessing systems.
The link ports can operate independently and simultaneously, with a maximum data throughput of 240 M bytes/s. Link port data is packed into 32- or 48-bit words, and can be directly read by the core processor or D M A-transferred to on-chip memory.
Each link port has its own double-buffered input and output registers. Clock/acknowledge handshaking controls link port transfers. T ransfers are programmable as either transmit or receive.

Program Booting

The internal memory of the ADSP-2106x can be booted at system power-up from either an 8-bit EPROM, a host processor, or through one of the link ports. Selection of the boot source is controlled by the $\overline{\mathrm{BMS}}$ (Boot M emory Select), EBOOT (EPROM Boot), and LBOOT (Link/H ost Boot) pins. 32-bit and 16 -bit host processors can be used for booting.

Figure 3. Shared Memory Multiprocessing System

NORMAL WORD ADDRESSING: 32-BIT DATA WORDS 48-BIT INSTRUCTION WORDS SHORT WORD ADDRESSING: 16-BIT DATA WORDS

Figure 4. ADSP-21060C/ADSP-21060LC Memory Map

DEVELOPMENT TOOLS

The ADSP-21060C is supported with a complete set of software and hardware development tools, including an EZ-IC E InCircuit Emulator, EZ-K it, and development software. The SH ARC EZ-K it is a complete low cost package for DSP evaluation and prototyping. The EZ-K it contains a PC plug-in card (EZ-LAB ${ }^{\circledR}$) with an ADSP-21062 (5 V) processor. The EZ-K it also includes an optimizing compiler, assembler, instruction level simulator, run-time libraries, diagnostic utilities and a complete set of example programs.
The same EZ-ICE hardware can be used for the ADSP-21061/ ADSP-21062, to fully emulate the ADSP-21060C, with the exception of displaying and modifying the two new SPORTS registers. The emulator will not display these two registers, but your code can use them.
Analog D evices ADSP-21000 F amily D evelopment Software includes an easy to use Assembler based on an algebraic syntax, Assembly Library/Librarian, Linker, instruction-level Simulator, an ANSI C optimizing Compiler, the CBug ${ }^{\text {TM }}$ C Source-Level D ebugger and a C Runtime Library including DSP and mathematical functions. The Optimizing Compiler includes N umerical C extensions based on the work of the AN SI N umerical C Extensions Group. N umerical C provides extensions to the C language for array selections, vector math operations, complex data types, circular pointers and variably dimensioned arrays.

CBUG and SHARCPAC are trademarks of Analog Devices, Inc. EZ-LAB is a registered trademark of A nalog D evices, Inc.

The ADSP-21000 F amily D evelopment Software is available for both the PC and Sun platforms.
The ADSP-21061 EZ-IC E Emulator uses the IEEE 1149.1 JTAG test access port of the AD SP-21061 processor to monitor and control the target board processor during emulation. The EZ-ICE provides full-speed emulation, allowing inspection and modification of memory, registers, and processor stacks. N onintrusive in-circuit emulation is assured by the use of the processor's JT AG interface- the emulator does not affect target system loading or timing.
F urther details and ordering information are available in the A D SP-21000 F amily H ardware and Software Development Tools data sheet (ADDS-210xx-TOOLS). This data sheet can be requested from any A nalog D evices sales office or distributor.
In addition to the software and hardware development tools available from A nalog D evices, third parties provide a wide range of tools supporting the SH ARC processor family. H ardware tools include SH ARC PC plug-in cards multiprocessor SH ARC VM E boards, and daughter and modules with multiple SH ARCs and additional memory. These modules are based on the SHARCPAC ${ }^{\text {m }}$ module specification. Third Party software tools include an Ada compiler, DSP libraries, operating systems and block diagram design tools.

ADDITIONAL INFORMATION

This data sheet provides a general overview of the ADSP-21060C architecture and functionality. F or detailed information on the AD SP-21000 F amily core architecture and instruction set, refer to the A D SP-2106x SHARC U ser's M anual, Second Edition.

ADSP-21060C/ADSP-21060LC

PIN FUNCTION DESCRIPTIONS

ADSP-21060C pin definitions are listed below. All pins are identical on the ADSP-21060C and ADSP-21060LC. Inputs identified as synchronous (S) must meet timing requirements with respect to CLKIN (or with respect to TCK for TMS, TDI). Inputs identified as asynchronous (A) can be asserted asynchronously to CLKIN (or to TCK for TRST).
U nused inputs should be tied or pulled to VDD or GND, except for $\operatorname{ADDR}_{31-0}$, DATA $_{47-0}, \mathrm{FLAG}_{3-0}, \overline{\mathrm{SW}}$, and inputs that have internal pull-up or pull-down resistors ($\overline{\mathrm{CPA}}, \mathrm{ACK}, \mathrm{DT} x$,

DRx, TCLKx, RCLKx, LxDAT 3-0, LxCLK, LxACK, TM S and TDI)-these pins can be left floating. These pins have a logic-level hold circuit that prevents the input from floating internally.
$\mathrm{A}=$ Asynchronous $\quad \mathrm{G}=\mathrm{Ground} \quad \mathrm{I}=$ Input
0 = Output
$P=$ Power Supply $\quad S=$ Synchronous
$(A / D)=$ Active Drive $\quad(O / D)=O$ pen Drain
T = Three-State (when $\overline{\text { SBTS }}$ is asserted, or when the
AD SP-2106x is a bus slave)

Pin	Type	Function
AD D R $31-0$	I/0/T	External Bus Address. The AD SP-2106x outputs addresses for external memory and peripherals on these pins. In a multiprocessor system the bus master outputs addresses for read/writes of the internal memory or IOP registers of other ADSP-2106xs. The ADSP-2106x inputs addresses when a host processor or multiprocessing bus master is reading or writing its internal memory or IOP registers.
DAT A_{47-0}	1/0/T	External Bus Data. The ADSP-2106x inputs and outputs data and instructions on these pins. 32-bit single-precision floating-point data and 32-bit fixed-point data is transferred over bits 47-16 of the bus. 40-bit extended-precision floating-point data is transferred over bits 47-8 of the bus. 16 -bit short word data is transferred over bits 31-16 of the bus. In PROM boot mode, 8-bit data is transferred over bits 23-16. Pull-up resistors on unused DAT A pins are not necessary.
$\overline{\mathrm{MS}}_{3-0}$	O/T	Memory Select Lines. These lines are asserted (low) as chip selects for the corresponding banks of external memory. M emory bank size must be defined in the ADSP-2106x's system control register (SYSCON). The $\overline{\mathrm{MS}}_{3-0}$ lines are decoded memory address lines that change at the same time as the other address lines. When no external memory access is occurring the $\overline{\mathrm{MS}}_{3-0}$ lines are inactive; they are active however when a conditional memory access instruction is executed, whether or not the condition is true. $\overline{\mathrm{MS}}_{0}$ can be used with the PAGE signal to implement a bank of DRAM memory (Bank 0). In a multiprocessing system the $\overline{\mathrm{MS}}_{3-0}$ lines are output by the bus master.
$\overline{\mathrm{RD}}$	1/0/T	Memory Read Strobe This pin is asserted (low) when the ADSP-2106x reads from external memory devices or from the internal memory of other ADSP-2106xs. External devices (including other ADSP2106xs) must assert $\overline{\mathrm{RD}}$ to read from the AD SP-2106x's internal memory. In a multiprocessing system $\overline{\mathrm{RD}}$ is output by the bus master and is input by all other ADSP-2106xs.
$\overline{\mathrm{WR}}$	1/0/T	Memory Write Strobe. This pin is asserted (low) when the ADSP-2106x writes to external memory devices or to the internal memory of other AD SP-2106xs. External devices must assert $\overline{\mathrm{WR}}$ to write to the ADSP-2106x's internal memory. In a multiprocessing system $\overline{\mathrm{WR}}$ is output by the bus master and is input by all other ADSP-2106xs.
PAGE	0/T	DRAM Page Boundary. The ADSP-2106x asserts this pin to signal that an external DRAM page boundary has been crossed. DRAM page size must be defined in the ADSP-2106x's memory control register (WAIT). DRAM can only be implemented in external memory Bank 0; the PAGE signal can only be activated for Bank 0 accesses. In a multiprocessing system PAGE is output by the bus master.
ADRCLK	0/T	Clock Output Reference In a multiprocessing system AD RCLK is output by the bus master.
$\overline{\text { SW }}$	1/0/T	Synchronous Write Select. This signal is used to interface the AD SP-2106x to synchronous memory devices (including other AD SP-2106xs). The ADSP-2106x asserts $\overline{\text { SW }}$ (low) to provide an early indication of an impending write cycle, which can be aborted if $\overline{\mathrm{WR}}$ is not later asserted (e.g., in a conditional write instruction). In a multiprocessing system, $\overline{\mathrm{SW}}$ is output by the bus master and is input by all other ADSP-2106xs to determine if the multiprocessor memory access is a read or write. $\overline{\mathrm{SW}}$ is asserted at the same time as the address output. A host processor using synchronous writes must assert this pin when writing to the ADSP-2106x(s).
ACK	I/O/S	Memory Acknowledge. External devices can deassert ACK (low) to add wait states to an external memory access. ACK is used by I/O devices, memory controllers, or other peripherals to hold off completion of an external memory access. The AD SP-2106x deasserts ACK as an output to add wait states to a synchronous access of its internal memory. In a multiprocessing system, a slave AD SP2106x deasserts the bus master's ACK input to add wait state(s) to an access of its internal memory. The bus master has a keeper latch on its ACK pin that maintains the input at the level to which it was last driven.

Pin	Type	Function
$\overline{\text { SBTS }}$	I/S	Suspend Bus Three-State External devices can assert $\overline{\text { SBTS }}$ (low) to place the external bus address, data, selects and strobes in a high impedance state for the following cycle. If the AD SP-2106x attempts to access external memory while $\overline{\text { SBTS }}$ is asserted, the processor will halt and the memory access will not be completed until $\overline{\text { SBTS }}$ is deasserted. $\overline{\text { SBTS }}$ should only be used to recover from host processor/AD SP-2106x deadlock, or used with a DRAM controller.
$\overline{\mathrm{IRQ}}_{2-0}$	I/A	Interrupt Request Lines. M ay be either edge-triggered or level-sensitive.
FLAG_{3-0}	I/O/A	Flag Pins Each is configured via control bits as either an input or output. As an input, it can be tested as a condition. As an output, it can be used to signal external peripherals.
TIMEXP	0	Timer Expired. Asserted for four cycles when the timer is enabled and TCOUNT decrements to zero.
$\overline{\mathrm{HBR}}$	I/A	Host Bus Request M ust be asserted by a host processor to request control of the ADSP-2106x's external bus. When $\overline{\mathrm{HBR}}$ is asserted in a multiprocessing system, the ADSP-2106x that is bus master will relinquish the bus and assert $\overline{\text { HBG }}$. To relinquish the bus, the ADSP-2106x places the address, data, select and strobe lines in a high impedance state. $\overline{\mathrm{HBR}}$ has priority over all ADSP-2106x bus requests $\left(\overline{\mathrm{BR}}_{6-1}\right)$ in a multiprocessing system.
$\overline{\mathrm{HBG}}$	I/O	Host Bus Grant. Acknowledges an $\overline{\mathrm{HBR}}$ bus request, indicating that the host processor may take control of the external bus. HBG is asserted (held low) by the ADSP-2106x until $\overline{\text { HBR }}$ is released. In a multiprocessing system, $\overline{\mathrm{HBG}}$ is output by the ADSP-2106x bus master and is monitored by all others.
$\overline{\text { CS }}$	I/A	Chip Select. Asserted by host processor to select the ADSP-2106x.
REDY (0/D)	0	Host Bus Acknowledge. The ADSP-2106x deasserts REDY (low) to add wait states to an asynchronous access of its internal memory or IOP registers by a host. Open drain output (O/D) by default; can be programmed in ADREDY bit of SYSCON register to be active drive (A/D). REDY will only be output if the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{HBR}}$ inputs are asserted.
$\overline{\text { DMAR1 }}$	I/A	DMA Request 1 (DM A C hannel 7).
$\overline{\text { DMAR2 }}$	I/A	DMA Request 2 (DM A C hannel 8).
$\overline{\text { DMAG1 }}$	0/T	DMA Grant 1 (DM A C hannel 7)
$\overline{\text { DMAG2 }}$	0/T	DMA Grant 2 (DM A C hannel 8).
$\overline{\mathrm{BR}}_{6-1}$	I/0/S	Multiprocessing Bus Requests Used by multiprocessing ADSP-2106xs to arbitrate for bus mastership. An ADSP-2106x only drives its own $\overline{\mathrm{BRx}} \mathrm{line}$ (corresponding to the value of its ID_{2-0} inputs) and monitors all others. In a multiprocessor system with less than six ADSP-2106xs, the unused $\overline{\mathrm{BR}} \mathrm{x}$ pins should be pulled high; the processor's own $\overline{\mathrm{BR}} \mathrm{x}$ line must not be pulled high or low because it is an output.
$1 \mathrm{D}_{2-0}$	1	Multiprocessing ID. Determines which multiprocessing bus request ($\overline{\mathrm{BR1}}-\overline{\mathrm{BR} 6})$ is used by ADSP2106x. ID $=001$ corresponds to $\overline{B R 1}, I D=010$ corresponds to $\overline{B R 2}$, etc. ID $=000$ in single processor systems. These lines are a system configuration selection which should be hardwired or only changed at reset.
RPBA	I/S	Rotating Priority Bus Arbitration Select When RPBA is high, rotating priority for multiprocessor bus arbitration is selected. When RPBA is low, fixed priority is selected. This signal is a system configuration selection which must be set to the same value on every ADSP-2106x. If the value of RPBA is changed during system operation, it must be changed in the same CLKIN cycle on every ADSP-2106x.
$\overline{\mathrm{CPA}}$ (0/D)	I/O	Core Priority Access. Asserting its $\overline{\text { CPA }}$ pin allows the core processor of an AD SP-2106x bus slave to interrupt background DM A transfers and gain access to the external bus. $\overline{\text { CPA }}$ is an open drain output that is connected to all ADSP-2106xs in the system. The $\overline{\text { CPA }}$ pin has an internal $5 \mathrm{k} \Omega$ pull-up resistor. If core access priority is not required in a system, the $\overline{\text { CPA }}$ pin should be left unconnected.
DTx	0	Data Transmit (Serial Ports 0, 1). Each DT pin has a $50 \mathrm{k} \Omega$ internal pull-up resistor.
DRx	1	Data Receive (Serial Ports 0, 1). Each DR pin has a $50 \mathrm{k} \Omega$ internal pull-up resistor.
TCLKx	1/0	Transmit Clock (Serial Ports 0, 1). Each TCLK pin has a $50 \mathrm{k} \Omega$ internal pull-up resistor.
RCLK X	I/O	Receive Clock (Serial Ports 0, 1). Each RCLK pin has a $50 \mathrm{k} \Omega$ internal pull-up resistor.

Pin	Type	Function
TFSx	I/0	Transmit Frame Sync (Serial Ports 0, 1).
RFSx	1/0	Receive Frame Sync (Serial Ports 0, 1).
LxDTA_{3-0}	I/0	Link Port Data (Link Ports 0-5). Each LxCLK pin has a $50 \mathrm{k} \Omega$ internal pull-down resistor that is enabled or disabled by the LPDRD bit of the LCOM register.
LxCLK	I/O	Link Port Clock (Link Ports 0-5). Each LxCLK pin has a $50 \mathrm{k} \Omega$ internal pull-down resistor that is enabled or disabled by the LPDRD bit of the LCOM register.
L XACK	I/O	Link Port Acknowledge (Link Ports 0-5). Each LxACK pin has a $50 \mathrm{k} \Omega$ internal pull-down resistor that is enabled or disabled by the LPDRD bit of the LCOM register.
EBOOT	I	EPROM Boot Select. When EBOOT is high, the ADSP-2106x is configured for booting from an 8bit EPROM. When EBOOT is low, the LBOOT and $\overline{\text { BMS }}$ inputs determine booting mode. See table below. T his signal is a system configuration selection that should be hardwired.
LBOOT	I	Link Boot. When LBOOT is high, the ADSP-2106x is configured for link port booting. When LBOOT is low, the ADSP-2106x is configured for host processor booting or no booting. See table below. This signal is a system configuration selection that should be hardwired.
$\overline{\text { BMS }}$	1/0/T*	Boot Memory Select 0 utput: U sed as chip select for boot EPROM devices (when EBOOT = 1 , $\mathrm{LBOOT}=0$). In a multiprocessor system, $\overline{\mathrm{BMS}}$ is output by the bus master. Input: When low, indicates that no booting will occur and that ADSP-2106x will begin executing instructions from external memory. See table below. This input is a system configuration selection that should be hardwired. *T hree-statable only in EPROM boot mode (when $\overline{\mathrm{BMS}}$ is an output).
CLKIN	I	Clock In. External clock input to the AD SP-2106x. The instruction cycle rate is equal to CLKIN. CLKIN may not be halted, changed, or operated below the minimum specified frequency.
$\overline{\text { RESET }}$	I/A	Processor Reset. Resets the ADSP-2106x to a known state and begins execution at the program memory location specified by the hardware reset vector address. T his input must be asserted (low) at power-up.
TCK	I	Test Clock (JTAG). Provides an asynchronous clock for JTAG boundary scan.
TMS	I/S	Test Mode Select (JTAG). U sed to control the test state machine. TM S has a $20 \mathrm{k} \Omega$ internal pull-up resistor.
TDI	I/S	Test Data Input (JTAG). Provides serial data for the boundary scan logic. T DI has a $20 \mathrm{k} \Omega$ internal pull-up resistor.
TDO	0	Test Data Output (JTAG). Serial scan output of the boundary scan path.
TRST	I/A	Test Reset (JTAG). Resets the test state machine. $\overline{\text { TRST }}$ must be asserted (pulsed low) after powerup or held low for proper operation of the ADSP-2106x. TRST has a $20 \mathrm{k} \Omega$ internal pull-up resistor.
$\overline{\mathrm{EMU}}$ (0/D)	0	Emulation Status. M ust be connected to the ADSP-2106x EZ-ICE target board connector only.
ICSA	0	Reserved, leave unconnected.
VDD	P	Power Supply; nominally +5.0 V dc for 5 V devices or +3.3 V dc for 3.3 V devices. (30 pins).
GND	G	Power Supply Return. (30 pins).
NC		Do Not Connect. Reserved pins which must be left open and unconnected.

TARGET BOARD CONNECTOR FOR EZ-ICE PROBE

The AD SP-2106x EZ-ICE Emulator uses the IEEE 1149.1 JTAG test access port of the ADSP-2106x to monitor and control the target board processor during emulation. The EZ-ICE probe requires the ADSP-2106x's CLKIN, TMS, TCK, $\overline{\text { TRST, TDI, }}$ TDO, $\overline{\text { EMU, }}$, and GND signals be made accessible on the target system via a 14 -pin connector (a 2 row $\times 7$ pin strip header) such as that shown in Figure 5. The EZ-ICE probe plugs directly onto this connector for chip-on-board emulation. Y ou must add this connector to your target board design if you intend to use the AD SP-2106x EZ-ICE. The total trace length between the EZICE connector and the furthest device sharing the EZ-ICE JTAG pins should be limited to 15 inches maximum for guaranteed operation. This length restriction must include EZ-ICE JTAG signals that are routed to one or more ADSP-2106x devices, or a combination of ADSP-2106x devices and other JTAG devices on the chain.

The 14-pin, 2-row pin strip header is keyed at the Pin 3 location Pin 3 must be removed from the header. The pins must be 0.025 inch square and at least 0.20 inch in length. Pin spacing should be 0.1×0.1 inches. Pin strip headers are available from vendors such as 3 M , M cK enzie and Samtec.
The BTM S, BTCK, $\overline{\text { BTRST }}$ and BTDI signals are provided so the test access port can also be used for board-level testing. When the connector is not being used for emulation, place jumpers between the Bxxx pins and the xxx pins. If the test access port will not be used for board testing, tie $\overline{\text { BTRST }}$ to GND and tie or pull BTCK up to VDD. The TRST pin must be asserted after power-up (through $\overline{\text { BTRST }}$ on the connector) or held low for proper operation of the ADSP-2106x. N one of the Bxxx pins (Pins 5, 7, 9, 11) are connected on the EZ-ICE probe.
TheJTAG signals are terminated on the EZ-ICE probe as follows:

Signal	Termination
TM S	D riven through 22Ω Resistor (16 mA D river)
TCK	D riven at 10 M Hz through 22Ω Resistor (16 mA Driver)
$\overline{\text { TRST }}$	Active Low Driven through 22Ω Resistor (16 mA
	Driver) (Pulled Up by On-Chip $20 \mathrm{k} \Omega$ Resistor)
TD	Driven by 22Ω Resistor (16 mA Driver)
TDO	One T T L L oad, Split T ermination (160/220)
CLKIN	One T T L L oad, Split T ermination (160/220)
$\overline{\text { EMU }}$	Active Low $4.7 \mathrm{k} \Omega$ Pull-Up Resistor, One TTL Load (Open-D rain Output from the DSP)

*TRST is driven low until the EZ-ICE probe is turned on by the emulator at software start-up. A fter software start-up, TRST is driven high.
Figure 6 shows JT AG scan path connections for systems that contain multiple AD SP-2106x processors.

Figure 5. Target Board Connector For ADSP-2106x EZ-ICE Emulator (J umpers in Place)

Figure 6. J TAG Scan Path Connections for Multiple ADSP-2106x Systems

ADSP-21060C/ADSP-21060LC

Connecting CLKIN to Pin 4 of the EZ-ICE header is optional. The emulator only uses CLK IN when directed to perform operations such as starting, stopping and single-stepping multiple AD SP-21061 in a synchronous manner. If you do not need these operations to occur synchronously on the multiple processors, simply tie Pin 4 of the EZ-ICE header to ground.
If synchronous multiprocessor operations are needed and CLKIN is connected, clock skew between the multiple AD SP-21061/ADSP-21061L processors and the CLKIN pin on the EZ-ICE header must be minimal. If the skew is too large, synchronous operations may be off by one or more cycles between processors. F or synchronous multiprocessor operation TCK,

TM S, CLKIN and $\overline{\text { EMU }}$ should be treated as critical signals in terms of skew, and should be laid out as short as possible on your board. If TCK, TM S and CLKIN are driving a large number of ADSP-21061 (more than eight) in your system, then treat them as a clock tree using multiple drivers to minimize skew. (See Figure 7, JTAG Clock Tree, and Clock Distribution in the High F requency D esign C onsiderations section of the A DSP-2106x U ser's M anual, Second Edition.)
If synchronous multiprocessor operations are not needed (i.e., CLKIN is not connected), just use appropriate parallel termination on TCK and TMS. TDI, TDO, EMU and TRST are not critical signals in terms of skew.

F or complete information on the SHARC EZ-ICE, see theADSP2100 Family JTAG EZ-ICE U ser's G uide and Reference.

Figure 7. J TAG Clocktree for M ultiple ADSP-2106x Systems

ADSP-21060C- SPECIFICATIONS
 RECOMMENDED OPERATING CONDITIONS (5 V)

Parameter		Test Conditions	K Grade		Units
			Min	Max	
$V_{\text {DD }}$	Supply V oltage		4.75	5.25	V
$\mathrm{T}_{\text {CASE }}$	C ase Operating Temperature		-40	+100	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {IH1 }}$	H igh Level Input V oltage ${ }^{1}$	@ $\mathrm{V}_{\mathrm{DD}}=\mathrm{max}$	2.0	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{V}_{\mathrm{HH} 2}$	High Level Input Voltage ${ }^{2}$	@ $\mathrm{V}_{\mathrm{DD}}=\mathrm{max}$	2.2	$V_{D D}+0.5$	V
$\mathrm{V}_{\text {IL }}$	L ow Level Input V oltage ${ }^{1,2}$	@ $\mathrm{V}_{\mathrm{DD}}=\mathrm{min}$	-0.5	0.8	V

NOTES
${ }^{1}$ Applies to input and bidirectional pins: DAT A ${ }_{47-0}, \operatorname{ADDR}_{31-0}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{SW}}, \mathrm{ACK}, \overline{\mathrm{SBTS}}, \overline{\mathrm{IRQ}_{2-0}}, \mathrm{FLAG}_{3-0}, \overline{\mathrm{HBG}}, \overline{\mathrm{CS}}, \overline{\mathrm{DMAR1}}, \overline{\mathrm{DMAR}}, \overline{\mathrm{BR}} 6-1$, ID $2-0, \mathrm{RPBA}$,

${ }^{2}$ Applies to input pins: CLKIN, $\overline{\text { RESET }}, \overline{\text { TRST. }}$

ELECTRICAL CHARACTERISTICS (5 V)

Parameter		Test Conditions	Min	Max	Units
V_{OH}	High Level O utput Voltage ${ }^{1}$	@ $V_{D D}=\min , \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}^{2}$	4.1		V
$\mathrm{V}_{\text {OL }}$	L ow Level Output V oltage ${ }^{1}$	$@ V_{D D}=\min , \mathrm{I}_{O L}=4.0 \mathrm{~mA}^{2}$		0.4	V
$\underline{I_{\text {IH }}}$	High Level Input C urrent ${ }^{3,4}$	@ $\mathrm{V}_{\mathrm{DD}}=\max , \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$ max		10	$\mu \mathrm{A}$
$\mathrm{IIL}^{\text {IL }}$	Low Level Input C urrent ${ }^{3}$	@ $V_{\text {DD }}=\max , \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		10	$\mu \mathrm{A}$
$\underline{I_{\text {ILP }}}$	Low Level Input Current ${ }^{4}$	@ $\mathrm{V}_{\mathrm{DD}}=\max , \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		150	$\mu \mathrm{A}$
Iozh	T hree-State L eakage C urrent ${ }^{5,6,7,8}$	$@ V_{D D}=\max , V_{I N}=V_{D D} \max$		10	$\mu \mathrm{A}$
Iozl	T hree-State Leakage Current ${ }^{5,9}$	@ $V_{\text {DD }}=\max , \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		10	$\mu \mathrm{A}$
$\underline{\text { Iozhp }}$	T hree-State L eakage C urrent ${ }^{9}$	@ $V_{D D}=\max , V_{I N}=V_{D D} \max$		350	$\mu \mathrm{A}$
Iozlc	T hree-State L eakage C urrent ${ }^{7}$	@ $\mathrm{V}_{\mathrm{DD}}=\max , \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		1.5	mA
Iozla	T hree-State L eakage C urrent ${ }^{10}$	@ $\mathrm{V}_{\mathrm{DD}}=\max , \mathrm{V}_{\text {IN }}=1.5 \mathrm{~V}$		350	$\mu \mathrm{A}$
$\underline{\text { IozLAR }}$	T hree-State Leakage C urrent ${ }^{8}$	@ $\mathrm{V}_{\mathrm{DD}}=\mathrm{max}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		4.2	mA
lozls	T hree-State L eakage C urrent ${ }^{6}$	@ $\mathrm{V}_{\mathrm{DD}}=\max , \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		150	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Input C apacitance ${ }^{11,12}$	$\mathrm{f}_{\mathrm{IN}}=1 \mathrm{M} \mathrm{Hz}, \mathrm{T}_{\text {CASE }}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$		4.7	pF

NOTES

${ }^{1}$ Applies to output and bidirectional pins: DAT $A_{47-0}, \operatorname{ADDR}_{31-0}, \overline{\mathrm{MS}}_{3-0}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{PAGE}, \mathrm{ADRCLK}, \overline{\mathrm{SW}}, \mathrm{ACK}, \mathrm{FLAG}_{3-0}, \mathrm{TIMEXP}, \overline{\mathrm{HBG}}, \mathrm{REDY}, \overline{\mathrm{DMAG1}}$,
$\overline{\mathrm{DMAG2}}, \overline{\mathrm{BR}}_{6-1}, \overline{\mathrm{CPA}}, \mathrm{DT} 0$, DT 1, TCLK 0, TCLK 1, RCLK 0, RCLK 1, TFS0, TFS1, RFS0, RFS1, LxDAT $3-0, L x C L K, L x A C K, ~ \overline{B M S}, \mathrm{TDO}, \overline{\mathrm{EMU}}$, ICSA.
${ }^{2}$ See "O utput D rive Currents" for typical drive current capabilities.
${ }^{3}$ Applies to input pins: ACK $\overline{\text { SBTS }}, \overline{\mathrm{IRQ}}_{2-0}, \overline{\mathrm{HBR}}, \overline{\mathrm{CS}}, \overline{\mathrm{DMAR1}}, \overline{\mathrm{DMAR} 2}$, ID $2-0$, RPBA, EBOOT, LBOOT, CLKIN, $\overline{\mathrm{RESET}}, \mathrm{TCK}$.
${ }^{4}$ Applies to input pins with internal pull-ups: DRO, DR1, TRST, TM S, TDI.
${ }^{5}$ Applies to three-statable pins: DATA $47-0, \operatorname{ADDR}_{31-0}, \overline{M S}_{3-0}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{PAGE}, \mathrm{ADRCLK}, \overline{\mathrm{SW}}, \mathrm{ACK}, \mathrm{FLAG}_{3-0}$, REDY, $\overline{\mathrm{HBG}}, \overline{\mathrm{DMAG1}}, \overline{\mathrm{DMAG} 2}, \overline{\mathrm{BMS}}, \overline{\mathrm{BR}}{ }_{6-1}$,
TFS ${ }_{x}, R F S_{x}, T D O, \overline{E M U}$. (N ote that ACK is pulled up internally with $2 \mathrm{k} \Omega$ during reset in a multiprocessor system, when ID 2-0 $=001$ and another ADSP-21062 is not requesting bus mastership.)
${ }^{6}$ Applies to three-statable pins with internal pull-ups: DT0, DT1, TCLK0, TCLK 1, RCLK 0, RCLK 1.
${ }^{7}$ Applies to $\overline{\mathrm{CPA}}$ pin.
${ }^{8}$ Applies to ACK pin when pulled up. (N ote that ACK is pulled up internally with $2 \mathrm{k} \Omega$ during reset in a multiprocessor system, when $\mathrm{ID} 2-0=001$ and another ADSP-21060LC is not requesting bus mastership).
${ }^{9}$ Applies to three-statable pins with internal pull-downs: $\mathrm{LxDAT}{ }_{3-0}, \mathrm{LxCLK}, \mathrm{LxACK}$.
${ }^{10}$ Applies to ACK pin when keeper latch enabled.
${ }^{11}$ Applies to all signal pins.
${ }^{12}$ Guaranteed but not tested.
Specifications subject to change without notice.

ADSP-21060C/ADSP-21060LC

POWER DISSIPATION ADSP-21060C (5 V)

These specifications apply to the internal power portion of $V_{D D}$ only. See the Power Dissipation section of this data sheet for calculation of external supply current and total supply current. F or a complete discussion of the code used to measure power dissipation, see the technical note "SH ARC Power Dissipation M easurements."
Specifications are based on the following operating scenarios:

Operation	Peak Activity (I DDINPEAK)	High Activity (I $\mathbf{I D D I N H I G H})$	Low Activity (I
Instruction Type	M ultifunction	M ultifunction	Single Function
Instruction Fetch	Cache	Internal M emory	Internal M emory
Core Memory Access	2 per Cycle (DM and PM)	1 per C ycle (DM)	N one
Internal Memory DMA	1 per Cycle	1 per 2 Cycles	1 per 2 Cycles

To estimate power consumption for a specific application, use the following equation where $\%$ is the amount of time your program spends in that state:
$\%$ PEAK $\times I_{\text {DDINPEAK }}+\%$ HIGH $\times I_{\text {DDINHIGH }}+\%$ LOW $\times I_{\text {DDINLOW }}+\%$ IDLE $\times I_{\text {DDIDLE }}=$ power consumption

Parameter		Test Conditions	Max	Units
I DDinPEak	Supply C urrent (Internal) ${ }^{1}$	$\begin{aligned} & \mathrm{t}_{\mathrm{CK}}=30 \mathrm{~ns}, \mathrm{~V}_{\mathrm{DD}}=\max , \\ & \mathrm{t}_{\mathrm{CK}}=25 \mathrm{~ns}, \mathrm{~V}_{\mathrm{DD}}=\max , \end{aligned}$	$\begin{aligned} & 745 \\ & 850 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Iddinhigh	Supply C urrent (Internal) ${ }^{2}$	$\begin{aligned} & \mathrm{t}_{\mathrm{CK}}=30 \mathrm{~ns}, \mathrm{~V}_{\mathrm{DD}}=\max , \\ & \mathrm{t}_{\mathrm{CK}}=25 \mathrm{~ns}, \mathrm{~V}_{\mathrm{DD}}=\max , \end{aligned}$	$\begin{array}{r} 575 \\ 670 \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Iminlow	Supply C urrent (Internal) ${ }^{2}$	$\begin{aligned} & \mathrm{t}_{\mathrm{CK}}=30 \mathrm{~ns}, \mathrm{~V}_{\mathrm{DD}}=\max , \\ & \mathrm{t}_{\mathrm{CK}}=25 \mathrm{~ns}, \mathrm{~V}_{\mathrm{DD}}=\max , \end{aligned}$	$\begin{aligned} & 340 \\ & 390 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\underline{\text { I DDIDLE }}$	Supply Current (Idle) ${ }^{3}$	$V_{D D}=\max$	200	mA

NOTES
${ }^{1}$ The test program used to measure I IDINPEAK represents worst case processor operation and is not sustainable under normal application conditions. Actual internal power measurements made using typical applications are less than specified.
${ }^{2 / 2}{ }^{2}$ DINHIGH is a composite average based on a range of high activity code. IDIINLOw is a composite average based on a range of low activity code.
${ }^{3}$ Id de denotes ADSP-21060LC state during execution of IDLE instruction.

ADSP-21060LC- SPECIFICATIONS
 RECOMMENDED OPERATNG CONDITIONS (3.3 V)

Parameter		Test Conditions	K Grade		Units
			Min	Max	
$V_{\text {D }}$	Supply V oltage		3.15	3.45	V
$\mathrm{T}_{\text {CASE }}$	C ase Operating T emperature		-40	+100	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {IH1 }}$	High Level Input V oltage ${ }^{1}$	@ $\mathrm{V}_{\mathrm{DD}}=\max$	2.0	$V_{D D}+0.5$	V
$\mathrm{V}_{\mathrm{IH} 2}$	High Level Input V oltage ${ }^{2}$	@ $V_{D D}=\max$	2.2	$V_{D D}+0.5$	V
$\mathrm{V}_{\text {IL }}$	L ow Level Input Voltage ${ }^{1,2}$	@ $\mathrm{V}_{\mathrm{DD}}=\mathrm{min}$	-0.5	0.8	V

NOTES
${ }^{1}$ Applies to input and bidirectional pins: DAT A $47-0$, ADDR $_{31-0}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{SW}}, \mathrm{ACK}, \overline{\mathrm{SBTS}}, \overline{\mathrm{IRQ}}_{2-0}, \mathrm{FLAG}_{3-0}, \overline{\mathrm{HBG}}, \overline{\mathrm{CS}}, \overline{\mathrm{DMAR1}}, \overline{\mathrm{DMAR} 2}, \overline{\mathrm{BR}}_{6-1}, \mathrm{ID}_{2-0}, \mathrm{RPBA}^{2}$, $\overline{C P A}, T F S 0, T F S 1, R F S 0, R F S 1, L x D A T ~ 3-0, L x C L K, L x A C K, E B O O T, L B O O T, ~ \overline{B M S}, T M S, T D I, T C K, \overline{H B R}, ~ D R 0, D R 1, T C L K 0, T C L K 1, ~ R C L K 0, ~$ RCLK 1.
${ }^{2}$ Applies to input pins: CLKIN, $\overline{\text { RESET, }} \overline{\text { TRST }}$.

ELECTRICAL CHARACTERISTICS (3.3 V)

Parameter		Test Conditions	Min	Max	Units
$\mathrm{V}_{\text {OH }}$	H igh L evel Output Voltage ${ }^{1}$	$@ V_{D D}=\min , \mathrm{I}_{O H}=-2.0 \mathrm{~mA}^{2}$	2.4		V
$\mathrm{V}_{\text {OL }}$	L ow Level Output Voltage ${ }^{1}$	$@ V_{D D}=\min , \mathrm{I}_{0 L}=4.0 \mathrm{~mA}^{2}$		0.4	V
$\underline{\mathrm{I}_{\text {IH }}}$	High Level Input C urrent ${ }^{3,4}$	@ $V_{\text {DD }}=\max , V_{\text {IN }}=V_{\text {DD }}$ max		10	$\mu \mathrm{A}$
$\underline{\text { IL }}$	Low Level Input Current ${ }^{3}$	$@ V_{D D}=\max , V_{I N}=0 V$		10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {ILP }}$	L ow Level Input C urrent ${ }^{4}$	$@ V_{D D}=\max , V_{\text {IN }}=0 \mathrm{~V}$		150	$\mu \mathrm{A}$
$\underline{\text { IOZH }}$	T hree-State L eakage C urrent ${ }^{5}$, 6, 7, 8	@ $V_{D D}=\max , \mathrm{V}_{\text {IN }}=\mathrm{V}_{D D} \max$		10	$\mu \mathrm{A}$
Iozl	T hree-State L eakage C urrent ${ }^{5,9}$	@ $\mathrm{V}_{\mathrm{DD}}=\mathrm{max}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		10	$\mu \mathrm{A}$
IozHP	T hree-State L eakage C urrent ${ }^{9}$	@ $V_{D D}=\max , V_{I N}=V_{D D} \max$		350	$\mu \mathrm{A}$
Iozlc	T hree-State L eakage C urrent ${ }^{7}$	@ $V_{\text {DD }}=m a x, V_{\text {IN }}=0 \mathrm{~V}$		1.5	mA
$\underline{\text { lozla }}$	T hree-State L eakage C urrent ${ }^{10}$	@ $\mathrm{V}_{\mathrm{DD}}=\mathrm{max}, \mathrm{V}_{1 \mathrm{I}}=2 \mathrm{~V}$		350	$\mu \mathrm{A}$
Iozlar	T hree-State L eakage C urrent ${ }^{8}$	@ $\mathrm{V}_{\mathrm{DD}}=\mathrm{max}, \mathrm{V}_{1 \mathrm{I}}=0 \mathrm{~V}$		4.2	mA
lozls	T hree-State L eakage C urrent ${ }^{6}$	@ $\mathrm{V}_{\mathrm{DD}}=\mathrm{max}, \mathrm{V}_{1 \mathrm{I}}=0 \mathrm{~V}$		150	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Input C apacitance ${ }^{11,12}$	$\mathrm{f}_{\text {IN }}=1 \mathrm{MHz}, \mathrm{T}_{\text {CASE }}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$		4.7	pF

NOTES

 ${ }^{2}$ See "Output D rive Currents" for typical drive current capabilities.
${ }^{3}$ A pplies to input pins: ACK $\overline{\operatorname{SBTS}}, \overline{\mathrm{IRQ}}_{2-0}, \overline{\mathrm{HBR}}, \overline{\mathrm{CS}}, \overline{\mathrm{DMAR1}}, \overline{\mathrm{DMAR} 2}, \mathrm{ID}_{2-0}$, RPBA, EBOOT, LBOOT , CLKIN, $\overline{\mathrm{RESET}}, \mathrm{TCK}$.
${ }^{4}$ A pplies to input pins with internal pull-ups: DR0, DR1, TRST, TM S, TDI.
${ }^{5}$ Applies to three-statable pins: DAT A_{47-0}, ADD $_{31-0}, \overline{M S}_{3-0}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{PAGE}, \mathrm{ADRCLK}, \overline{\mathrm{SW}}, \mathrm{ACK}, \mathrm{FLAG}_{3-0}$, REDY, $\overline{\mathrm{HBG}}, \overline{\mathrm{DMAG1}}, \overline{\mathrm{DMAG} 2}, \overline{\mathrm{BMS}}, \overline{\mathrm{BR}_{6-1}}$, TFS ${ }_{x}$, RF $_{x}$, TDO, $\overline{\text { EMU. (}}$ ote that ACK is pulled up internally with $2 \mathrm{k} \Omega$ during reset in a multiprocessor system, when ID $2.0=001$ and another ADSP-21062 is not requesting bus mastership.)
${ }^{6}$ Applies to three-statable pins with internal pull-ups: DT0, DT 1, TCLK 0, TCLK 1, RCLK 0, RCLK 1.
${ }^{7}$ Applies to $\overline{\mathrm{CPA}}$ pin.
${ }^{8}$ Applies to $A C K$ pin when pulled up. (N ote that ACK is pulled up internally with $2 \mathrm{k} \Omega$ during reset in a multiprocessor system, when $I D_{2-0}=001$ and another ADSP-21060LC is not requesting bus mastership).
${ }^{9}$ Applies to three-statable pins with internal pull-downs: $\operatorname{LxDAT}_{3-0,0}$ LxCLK, LxACK.
${ }^{10}$ Applies to ACK pin when keeper latch enabled.
${ }^{11}$ Applies to all signal pins.
${ }^{12}$ G uaranteed but not tested.
Specifications subject to change without notice.

ADSP-21060C/ADSP-21060LC

POWER DISSIPATION ADSP-21060LC (3.3 V)

These specifications apply to the internal power portion of V_{DD} only. See the Power Dissipation section of this data sheet for calculation of external supply current and total supply current. For a complete discussion of the code used to measure power dissipation, see the technical note "SH ARC Power Dissipation M easurements."
Specifications are based on the following operating scenarios:

Operation	Peak Activity (I ${ }_{\text {dinfeak }}$)	High Activity (I ${ }_{\text {dDINHIGH }}$)	Low Activity (I DDInlow)
Instruction Type	M ultifunction	M ultifunction	Single F unction
Instruction Fetch	C ache	Internal M emory	Internal M emory
Core Memory Access	2 per Cycle (DM and PM)	1 per Cycle (DM)	N one
Internal Memory DMA	1 per C ycle	1 per 2 Cycles	1 per 2 Cycles

To estimate power consumption for a specific application, use the following equation where \% is the amount of time your program spends in that state:
\%PEAK $\times I_{\text {DDINPEAK }}+\% H I G H \times I_{\text {DDINHIGH }}+\% L O W \times I_{\text {DDINLOW }}+\% I D L E \times I_{\text {DDIDLE }}=$ power consumption

Parameter		Test Conditions	Max	Units
$I_{\text {din Peak }}$	Supply C urrent (Internal) ${ }^{1}$	$\begin{aligned} & \mathrm{t}_{\mathrm{CK}}=30 \mathrm{~ns}, \mathrm{~V}_{\mathrm{DD}}=\max , \\ & \mathrm{t}_{\mathrm{CK}}=25 \mathrm{~ns}, \mathrm{~V}_{\mathrm{DD}}=\max , \end{aligned}$	$\begin{aligned} & 540 \\ & 600 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Imdinhigh	Supply C urrent (Internal) ${ }^{2}$	$\begin{aligned} & \mathrm{t}_{\mathrm{CK}}=30 \mathrm{~ns}, \mathrm{~V}_{\mathrm{DD}}=\max , \\ & \mathrm{t}_{\mathrm{CK}}=25 \mathrm{~ns}, \mathrm{~V}_{\mathrm{DD}}=\max , \end{aligned}$	$\begin{aligned} & 425 \\ & 475 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
I DDINLOW	Supply C urrent (Internal) ${ }^{2}$	$\begin{aligned} & \mathrm{t}_{\mathrm{CK}}=30 \mathrm{~ns}, \mathrm{~V}_{\mathrm{DD}}=\max , \\ & \mathrm{t}_{\mathrm{CK}}=25 \mathrm{~ns}, \mathrm{~V}_{\mathrm{DD}}=\max , \end{aligned}$	$\begin{aligned} & 250 \\ & 275 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
IDDIDLE	Supply Current (Idle) ${ }^{3}$	$V_{D D}=\max$	180	mA

NOTES
${ }^{1}$ The test program used to measure $I_{\text {DDINPEAK }}$ represents worst case processor operation and is not sustainable under normal application conditions. Actual internal power measurements made using typical applications are less than specified.
${ }^{2}{ }^{2}$ DDINHIGH is a composite average based on a range of high activity code. I DDINLOW is a composite average based on a range of low activity code.
${ }^{3}$ Id le denotes AD SP-21060LC state during execution of IDLE instruction.

ABSOLUTE MAXIMUM RATINGS (5V)*

Supply Voltage . - 0.3 V to +7 V
Input Voltage . -0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Output Voltage Swing -0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Load Capacitance . 200 pF
Junction Temperature U nder Bias $130^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (5 seconds) $+280^{\circ} \mathrm{C}$
*Stresses greater than those listed above may cause permanent damage to the device. T hese are stress ratings only, and functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ABSOLUTE MAXIMUM RATINGS (3.3V)*

Supply Voltage . -0.3 V to +4.6 V
Input Voltage . -0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
O utput Voltage Swing -0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
L oad Capacitance 200 pF
Junction Temperature U nder Bias $130^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (5 seconds) $+280^{\circ} \mathrm{C}$
*Stresses greater than those listed above may cause permanent damage to the device. T hese are stress ratings only, and functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD SENSITIVITY

The ADSP-2106x processors are ESD (electrostatic discharge) sensitive devices. Electrostatic charges readily accumulate on the human body and equipment and can discharge without detection. Permanent damage may occur to devices subjected to high energy electrostatic discharges.
The ADSP-2106x processors include proprietary ESD protection circuitry to dissipate high energy discharges. Per method 3015 of M IL-ST D-883, the AD SP-2106x processors have been classified as a Class 2 device.

Proper ESD precautions are recommended to avoid performance degradation or loss of functionality. U nused devices must be stored in conductive foam or shunts, and the foam should be discharged to the destination socket before devices are removed.

TIMING SPECIFICATIONS

T wo speed grades of the ADSP-21060C are offered, 40 M H z and 33.3 M H z . The specifications shown are based on a CLKIN frequency of 40 MHz ($\mathrm{t}_{\mathrm{CK}}=25 \mathrm{~ns}$). The DT derating allows specifications at other CLKIN frequencies (within the min-max range of the $t_{c k}$ specification; see Clock Input below). DT is the difference between the actual CLKIN period and a CLKIN period of 25 ns :

$$
\mathrm{DT}=\mathrm{t}_{\mathrm{ck}}-25 \mathrm{~ns}
$$

U se the exact timing information given. Do not attempt to derive parameters from the addition or subtraction of others. While addition or subtraction would yield meaningful results for an individual device, the values given in this data sheet reflect statistical variations and worst cases. C onsequently, you cannot meaningfully add parameters to derive longer times.

See Figure 28 under T est C onditions for voltage reference levels.

Switching C haracteristics specify how the processor changes its signals. Y ou have no control over this timing-circuitry external to the processor must be designed for compatibility with these signal characteristics. Switching characteristics tell you what the processor will do in a given circumstance. You can also use switching characteristics to ensure that any timing requirement of a device connected to the processor (such as memory) is satisfied.
Timing R equirements apply to signals that are controlled by circuitry external to the processor, such as the data input for a read operation. T iming requirements guarantee that the processor operates correctly with other devices.
(O/D) = Open Drain
(A/D) = Active D rive

Figure 8. Clock Input

	ADSP-21060C		ADSP-21060LC	
Parameter	Min	Max	Min	Max

NOTES
${ }^{1}$ Applies after the power-up sequence is complete. At power-up, the processor's internal phase-locked loop requires no more than 2000 CLKIN cycles while RESET is low, assuming stable $V_{D D}$ and CLKIN (not including start-up time of external clock oscillator).
${ }^{2}$ Only required if multiple ADSP-2106xs must come out of reset synchronous to CLKIN with program counters (PC) equal (i.e., for a SIM D system). N ot required for multiple ADSP-2106xs communicating over the shared bus (through the external port), because the bus arbitration logic synchronizes itself automatically after reset.

Figure 9. Reset

Parameter	ADSP-21060C		ADSP-21060LC		Units
	Min	Max	Min	Max	
Interrupts					
Timing Requirements:					
$\mathrm{t}_{\text {SIR }} \quad \overline{\text { IRQ2-0 }}$ Setup before CLK IN High ${ }^{1}$	$18+3 \mathrm{DT} / 4$		$18+3 \mathrm{DT} / 4$		ns
$\mathrm{t}_{\text {IIR }} \quad \overline{\text { IRQ2-0 }}$ H old before CLKIN High ${ }^{1}$		$12+3 \mathrm{DT} / 4$		$12+3 \mathrm{DT} / 4$	ns
$\mathrm{t}_{\text {IPW }} \quad \overline{\text { IRQ2-0 }}$ Pulsewidth ${ }^{2}$	$2+t_{\text {ck }}$		$2+t_{\text {ck }}$		ns

NOTES
${ }^{1}$ Only required for $\overline{\overline{I R Q x}}$ recognition in the following cycle.
${ }^{2}$ Applies only if $\mathrm{t}_{\text {SIR }}$ and $\mathrm{t}_{\text {HIR }}$ requirements are not met.
clkin

Figure 10. Interrupts

Parameter	ADSP-21060C	ADSP-21060LC	
Max	Min	Max	Units
Timer			
Switching Characteristic: $t_{\text {DTEX }} \quad$ CLKIN High to TIM EXP			

Figure 11. Timer

Parameter		$\underset{\operatorname{Min}}{A I}$	$\begin{aligned} & \text { LO60C } \\ & \text { Max } \end{aligned}$	$\underset{\text { Min }}{\mathbf{A L}}$	$\begin{aligned} & \text { LO60LC } \\ & \text { Max } \end{aligned}$	Units
Flags						
T iming R equirements:						
$\mathrm{t}_{\text {SFI }}$	FLAG 3-0 $0_{\text {IN }}$ Setup before CLKIN High ${ }^{1}$	$\begin{aligned} & 8+5 \\ & 0-51 \end{aligned}$		$8+5 \mathrm{DT} / 16$		ns
$\mathrm{t}_{\mathrm{HFI}}$	FLAG 3-0 ${ }_{\text {IN }}$ H old after CLKIN H igh ${ }^{1}$			$0-5 D T / 16$		ns
$\mathrm{t}_{\text {DWRFI }}$	FLAG 3-0 $0_{\text {IN }}$ D elay after $\overline{\mathrm{RD}} / \overline{\mathrm{WR}} \mathrm{L}$ ow ${ }^{1}$		$5+$		$5+7 \mathrm{DT} / 16$	ns
$\mathrm{t}_{\text {HFIWR }}$	FLAG 3-0 IN $^{\text {H }}$ H old after $\overline{\mathrm{RD}} / \overline{\mathrm{WR}} \mathrm{D}^{\text {easserted }}{ }^{1}$			0		ns
Switching C haracteristics:						
$\mathrm{t}_{\text {DFO }}$	FLAG 3-00ut D elay after CLK IN High		16		16	ns
$\mathrm{t}_{\mathrm{HFO}}$	FLAG3-00ut H old after CLKIN High	4		4		ns
$t_{\text {DFOE }}$	CLKIN High to FLAG3-00ut Enable	3		3		ns
$\mathrm{t}_{\text {DFOD }}$	CLKIN High to FLAG3-0 OUt D isable		14		14	ns

NOTE
${ }^{1}$ Flag inputs meeting these setup and hold times will affect conditional instructions in the following instruction cycle.

Figure 12. Flags

ADSP-21060C/ADSP-21060LC

Memory Read-Bus Master

U se these specifications for asynchronous interfacing to memories (and memory-mapped peripherals) without reference to CLKIN. These specifications apply when the ADSP-2106x is the bus master accessing external memory space. T hese switching
characteristics also apply for bus master synchronous read/write timing (see Synchronous R ead/W rite - Bus M aster below). If these timing requirements are met, the synchronous read/write timing can be ignored (and vice versa).

Parameter	ADSP-21060C		ADSP-21060LC		Units
	Min	Max	Min	Max	
Timing Requirements:					
$t_{\text {DAD }} \quad$ Address, Selects D elay to D ata Valid ${ }^{1,2}$		$18+\mathrm{DT}+\mathrm{W}$		$18+\mathrm{DT}+\mathrm{W}$	ns
$\mathrm{t}_{\text {DRLD }} \quad \overline{\mathrm{RD}}$ Low to D ata Valid ${ }^{1}$		$12+5 \mathrm{~T} / 8+\mathrm{W}$		$12+5 \mathrm{DT} / 8+\mathrm{W}$	ns
$t_{\text {HDA }} \quad$ D ata H old from Address, Selects ${ }^{3}$	0.5		0.5		ns
$\mathrm{t}_{\text {HDRH }} \quad$ Data H old from $\overline{\mathrm{RD}} \mathrm{H} \mathrm{igh}^{3}$	2.0		2.0		ns
$t_{\text {DAAK }} \quad$ ACK D elay from Address, Selects ${ }^{2,4}$		$14+7 \mathrm{~T} / 8+\mathrm{W}$		$14+7 \mathrm{DT} / 8+\mathrm{W}$	ns
$\mathrm{t}_{\text {DSAK }} \quad$ ACK D elay from $\overline{\mathrm{RD}}$ Low ${ }^{4}$		$8+\mathrm{DT} / 2+W$		$8+\mathrm{DT} / 2+W$	ns
Switching Characteristics:					
$\mathrm{t}_{\text {DRHA }}$ Address, Selects Hold after $\overline{\mathrm{RD}} \mathrm{H}$ igh	$0+\mathrm{H}$		$0+\mathrm{H}$		ns
$\mathrm{t}_{\text {DARL }} \quad$ Address, Selects to $\overline{\mathrm{RD}}$ Low ${ }^{2}$	$2+3 \mathrm{DT} / 8$		$2+3 \mathrm{D}$		ns
$\mathrm{t}_{\mathrm{RW}} \quad \overline{\mathrm{RD}}$ Pulsewidth	$12.5+5 \mathrm{DT} / 8+\mathrm{W}$		$12.5+$		ns
$\mathrm{t}_{\mathrm{RWR}} \quad \overline{\mathrm{RD}}$ High to $\overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \overline{\text { DMAG }}$ L Low	$8+3 \mathrm{DT} / 8+\mathrm{HI}$		$8+3 \mathrm{D}$		ns
$\mathrm{t}_{\text {SADADC }}$ Address, Selects Setup before ADRCLK High ${ }^{2}$	0 + DT/4		$0+D$		ns

$\mathrm{W}=$ (number of wait states specified in WAIT register) $\times \mathrm{t}_{\mathrm{ck}}$.
$\mathrm{HI}=\mathrm{t}_{\mathrm{CK}}$ (if an address hold cycle or bus idle cycle occurs, as specified in WAIT register; otherwise $\mathrm{HI}=0$).
$\mathrm{H}=\mathrm{t}_{\mathrm{CK}}$ (if an address hold cycle occurs as specified in WAIT register; otherwise $\mathrm{H}=0$).

NOTES

${ }^{1}$ D ata D elay/Setup: U ser must meet $t_{\text {DAD }}$ or $t_{\text {DRLD }}$ or synchronous spec $t_{\text {SSDAT1 }}$.
${ }^{2}$ T he falling edge of $\overline{\mathrm{MS}} x, \overline{\mathrm{SW}}, \overline{\mathrm{BMS}}$ is referenced.
${ }^{3}$ D ata Hold: U ser must meet $t_{\text {HDA }}$ or $t_{\text {HDRH }}$ or synchronous spec $\mathrm{t}_{\text {HSDATI }}$. See System Hold Time Calculation under T est Conditions for the calculation of hold times given capacitive and dc loads.
${ }^{4}$ ACK D elay/Setup: U ser must meet $t_{\text {DAAK }}$ or $t_{\text {DSAK }}$ or synchronous specification $t_{\text {SACKC }}$ for deassertion of ACK (Low), all three specifications must be met for assertion of ACK (High).

Figure 13. Memory Read-Bus Master

Memory Write-Bus Master

U se these specifications for asynchronous interfacing to memories (and memory-mapped peripherals) without reference to CLKIN. These specifications apply when the AD SP-2106x is the bus master accessing external memory space. These switching
characteristics also apply for bus master synchronous read/write timing (see Synchronous Read/W rite-B us M aster). If these timing requirements are met, the synchronous read/write timing can be ignored (and vice versa).

Parameter	ADSP-21060C		ADSP-21060LC		Units
	Min	Max	Min	Max	
Timing R equirements:					
$t_{\text {DAAK }} \quad$ ACK D elay from Address, Selects ${ }^{1,2}$		$14+7 \mathrm{DT} / 8+\mathrm{W}$		$14+7 \mathrm{DT} / 8+\mathrm{W}$	ns
$\mathrm{t}_{\text {DSAK }} \quad$ ACK D elay from $\overline{\mathrm{WR}} \mathrm{Low}^{1}$		$8+\mathrm{DT} / 2+W$		$8+\mathrm{DT} / 2+W$	ns
Switching Characteristics:					
$\mathrm{t}_{\text {Dawh }} \quad$ Address, Selects to $\overline{\mathrm{WR}}$ D easserted ${ }^{2}$	$17+$		$17+$		ns
$t_{\text {daw }} \quad$ Address, Selects to $\overline{\mathrm{WR}} \mathrm{L}$ ow ${ }^{2}$	$3+3$		$3+3$		ns
$\mathrm{t}_{\text {ww }}$ / $\overline{\mathrm{WR}}$ Pulsewidth	$12+$		$12+$		ns
$\mathrm{t}_{\text {DDWH }} \quad$ D ata Setup before $\overline{\mathrm{WR}} \mathrm{High}$	7 + D		$7+$ D		ns
$\mathrm{t}_{\text {DWHA }}$ Address H old after $\overline{\text { WR }}$ D easserted	$0.5+$		$0.5+$		ns
$\mathrm{t}_{\text {DAtRWH }}$ D ata Disable after $\overline{\mathrm{WR}} \mathrm{D}^{\text {d }}$ easserted ${ }^{3}$	$1+$ D	$6+\mathrm{DT} / 16+\mathrm{H}$	$1+$ D	$6+\mathrm{DT} / 16+\mathrm{H}$	ns
$\mathrm{t}_{\text {wwr }} \quad \overline{\mathrm{WR}} \mathrm{High}$ to $\overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \overline{\mathrm{DMAG}} \mathrm{L}$ L ow	$8+7$		$8+7$		ns
$\mathrm{t}_{\text {DDWR }} \quad$ D ata D isable before $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}} \mathrm{L}$ ow	$5+3$		$5+3$		ns
$t_{\text {wde }} \quad \overline{\mathrm{WR}}$ Low to D ata E nabled	-1 +		-1+		ns
$\mathrm{t}_{\text {SADADC }}$ Address, Selects to ADRCLK High ${ }^{2}$	$0+$ D		$0+$ D		ns

W = (number of wait states specified in WAIT register) $\times \mathrm{t}_{\mathrm{CK}}$.
$\mathrm{H}=\mathrm{t}_{\mathrm{CK}}$ (if an address hold cycle occurs, as specified in WAIT register; otherwise $\mathrm{H}=0$).
$\mathrm{I}=\mathrm{t}_{\mathrm{CK}}$ (if a bus idle cycle occurs, as specified in WAIT register; otherwise $\mathrm{I}=0$).
NOTES
${ }^{1}$ ACK Delay/Setup: U ser must meet $t_{D A A K}$ or $t_{D S A K}$ or synchronous specification $t_{S A C K C}$ for deassertion of ACK (Low), all three specifications must be met for assertion of ACK (High).
${ }^{2} \mathrm{~T}$ he falling edge of $\overline{\mathrm{MS}} \mathrm{x}, \overline{\mathrm{SW}}, \overline{\mathrm{BMS}}$ is referenced.
${ }^{3}$ See System H old Time C alculation under Test Conditions for calculation of hold times given capacitive and dc loads.

Figure 14. Memory Write—Bus Master

ADSP-21060C/ADSP-21060LC

Synchronous Read/Write-Bus Master

U se these specifications for interfacing to external memory systems that require CLK IN - relative timing or for accessing a slave AD SP-2106x (in multiprocessor memory space). These synchronous switching characteristics are also valid during asynchronous memory reads and writes (see M emory Read-Bus M aster and M emory W rite- Bus M aster).

When accessing a slave AD SP-2106x, these switching characteristics must meet the slave's timing requirements for synchronous read/writes (see Synchronous Read/W rite-Bus Slave). The slave AD SP-2106x must also meet these (bus master) timing requirements for data and acknowledge setup and hold times.

$\mathrm{W}=$ (number of Wait states specified in WAIT register) $\times \mathrm{t}_{\mathrm{CK}}$.

NOTES

${ }^{1}$ The falling edge of $\overline{\mathrm{MS}} \mathrm{x}, \overline{\mathrm{SW}}, \overline{\mathrm{BMS}}$ is referenced.
${ }^{2}$ ACK Delay/Setup: User must meet $t_{\text {DAAK }}$ or $\mathrm{t}_{\text {DSAK }}$ or synchronous specification $\mathrm{t}_{\text {SACKC }}$ for deassertion of ACK (Low), all three specifications must be met for assertion of ACK (High).
${ }^{3}$ See System Hold Time Calculation under T est Conditions for calculation of hold times given capacitive and dc loads.

Figure 15. Synchronous Read/Write—Bus Master

ADSP-21060C/ADSP-21060LC

Synchronous Read/Write-Bus Slave
U se these specifications for AD SP-2106x bus master accesses of a slave's IOP registers or internal memory (in multiprocessor
memory space). The bus master must meet these (bus slave) timing requirements.

Parameter	ADSP-21060C		ADSP-21060LC		Units
	Min	Max	Min	Max	
Timing Requirements:					
$\mathrm{t}_{\text {SADRI }}$ Address, $\overline{\text { SW }}$ Setup before CLKIN	$15+$ DT/2		$15+\mathrm{DT} / 2$		ns
$\mathrm{t}_{\text {HADRI }}$ Address, $\overline{\text { SW }}$ H old before CLKIN		$5+\mathrm{DT} / 2$		$5+\mathrm{DT} / 2$	ns
$\mathrm{t}_{\text {SRWLI }} \quad \overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ Low Setup before CLKIN ${ }^{1}$	$9.5+5 \mathrm{DT} / 16$		$9.5+5 \mathrm{DT} / 16$		ns
$\mathrm{t}_{\text {HRWLI }} \overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ Low H old after CLKIN	-4-5DT/16	$8+7 \mathrm{DT} / 16$	-4-5DT/16	$8+7 \mathrm{DT} / 16$	ns
$\mathrm{t}_{\text {RWHPI }} \quad \overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ Pulse High	3		3		ns
$\mathrm{t}_{\text {SDATWH }}$ D ata Setup before $\overline{\mathrm{WR}} \mathrm{H}$ igh	5		5		ns
$\mathrm{t}_{\text {HDATwh }}$ Data Hold after $\overline{\text { WR }}$ High	1		1		ns
Switching C haracteristics:					
$\mathrm{t}_{\text {SDDATO }}$ Data D elay after CLKIN		$19+5 \mathrm{DT} / 16$		$19+5 \mathrm{DT} / 16$	ns
$t_{\text {DATTR }} \quad$ Data D isable after CLKIN ${ }^{2}$	0-DT/8	7 - DT/8	0-DT/8	7 - DT/8	ns
$\mathrm{t}_{\text {DACKAD }}$ ACK D elay after Address, $\overline{S W}^{3}$		9		9	ns
$\mathrm{t}_{\text {ACKTR }} \quad$ ACK Disable after CLKIN ${ }^{3}$	-1-DT/8	6-DT/8	-1-DT/8	6-DT/8	ns

NOTES
${ }^{1}{ }^{\text {SRWLI }}(\mathrm{min})=9.5+5 D T / 16$ when M ultiprocessor M emory Space Wait State (M M SWS bit in W AIT register) is disabled; when M M SWS is enabled, $\mathrm{t}_{\text {SRwLI }}$ (min) $=4+\mathrm{DT} / 8$.
${ }^{2}$ See System H old Time Calculation under T est Conditions for calculation of hold times given capacitive and dc loads.
${ }^{3} \mathrm{t}_{\text {DACKAD }}$ is true only if the address and $\overline{\text { SW }}$ inputs have setup times (before CLKIN) greater than $10+\mathrm{DT} / 8$ and less than $19+3 \mathrm{DT} / 4$. If the address and $\overline{\mathrm{SW}}$ inputs have setup times greater than $19+3 D T / 4$, then ACK is valid $14+\mathrm{DT} / 4$ (max) after CLKIN. A slave that sees an address with an M field match will respond with ACK regardless of the state of M M SWS or strobes. A slave will three-state ACK every cycle with $\mathrm{t}_{\mathrm{ACKTR}}$.

Figure 16. Synchronous Read/Write—Bus Slave

Multiprocessor Bus Request and Host Bus Request

U se these specifications for passing of bus mastership between
multiprocessing AD SP-2106xs ($\overline{\mathrm{BR}} \mathrm{x}$) or a host processor
($\overline{\mathrm{HBR}}, \overline{\mathrm{HBG}})$.

NOTES
${ }^{1}$ F or first asynchronous access after $\overline{\mathrm{HBR}}$ and $\overline{\mathrm{CS}}$ asserted, ADDR Bl_{31-0} must be a non-M M S value $1 / 2 \mathrm{t}_{\mathrm{CK}}$ before $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ goes low or by $\mathrm{t}_{\text {HBGRCSv }}$ after $\overline{\mathrm{HBG}}$ goes low. This is easily accomplished by driving an upper address signal high when $\overline{H B G}$ is asserted. See the "H ost Processor Control of the AD SP-2106x" section in the ADSP-2106x SH ARC U ser's M anual, Second Edition.
${ }^{2}$ Only required for recognition in the current cycle.
${ }^{3} \overline{\mathrm{CPA}}$ assertion must meet the setup to CLKIN ; deassertion does not need to meet the setup to CLKIN.
${ }^{4}(0 / D)=$ open drain, $(A / D)=$ active drive.

ADSP-21060C/ADSP-21060LC

Figure 17. Multiprocessor Bus Request and Host Bus Request

Asynchronous Read/Write-H ost to ADSP-2106x

U se these specifications for asynchronous host processor accesses of an ADSP-2106x, after the host has asserted $\overline{\mathrm{CS}}$ and $\overline{\mathrm{HBR}}$ (low). After $\overline{\mathrm{HBG}}$ is returned by the AD SP-2106x, the host can
drive the $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ pins to access the ADSP-2106x's internal memory or IOP registers. $\overline{\mathrm{HBR}}$ and $\overline{\mathrm{HBG}}$ are assumed low for this timing.

Parameter		ADSP-21060C		ADSP-21060LC		Units
		Min	Max	Min	Max	
Read Cycle						
Timing R equirements:						
$\mathrm{t}_{\text {SADRDL }}$	Address Setup/[CS Low before $\overline{\mathrm{RD}} \mathrm{L}$ ow ${ }^{1}$	0		0		ns
$\mathrm{t}_{\text {HADRD }}$	Address H old/ $\overline{\mathrm{CS}}$ H old L ow after $\overline{\mathrm{RD}}$	0		0		ns
$\mathrm{t}_{\text {WRWH }}$	$\overline{\mathrm{RD}} / \overline{\mathrm{WR}} \mathrm{H}$ igh W idth	6		6		ns
$t_{\text {DRDHRDY }}$	$\overline{\mathrm{RD}}$ H igh D elay after REDY (O/D) D isable	0		0		ns
$t_{\text {DRD }}$ (RDY	$\overline{\mathrm{RD}}$ H igh D elay after REDY (A/D) D isable	0		0		ns
Switching C haracteristics:						
tsdatrdy	D ata Valid before REDY D isable from Low	2		2		ns
$t_{\text {DRDYRDL }}$	REDY (O/D) or (A/D) Low Delay after $\overline{\mathrm{RD}} \mathrm{L}$ ow		10		10.5	ns
$\mathrm{t}_{\text {RDYPRD }}$	REDY (O/D) or (A/D) Low Pulsewidth for Read	$45+2$		$45+21 \mathrm{DT} / 16$		ns
$t_{\text {HDARWH }}$	D ata D isable after $\overline{\mathrm{RD}}$ High		8	2	8.5	ns
Write Cycle						
Timing R equirements:						
$\mathrm{t}_{\text {SCSWRL }}$	$\overline{\mathrm{CS}}$ Low Setup before $\overline{\mathrm{WR}}$ Low	0		0		ns
$\mathrm{t}_{\text {HCswrh }}$	$\overline{\mathrm{CS}}$ L ow H old after WR High			0		ns
$t_{\text {SADWRH }}$	Address Setup before $\overline{\mathrm{WR}}$ High	5		5		ns
$\mathrm{t}_{\text {HADWR }}$	Address H old after $\overline{\mathrm{WR}}$ High	2		2		ns
$\mathrm{t}_{\text {WWRL }}$	WR Low Width	7		7		ns
$\mathrm{t}_{\text {WRWH }}$	$\overline{\mathrm{RD}} / \overline{\mathrm{WR}} \mathrm{H}$ igh Width	6		6		ns
$\mathrm{t}_{\text {DWRHRDY }}$	WR High D elay after REDY (O/D) or (A/D) Disable			0		ns
$\mathrm{t}_{\text {SDATWH }}$	D ata Setup before $\overline{\mathrm{WR}} \mathrm{H}$ igh	5		5		ns
$\mathrm{t}_{\text {HDATWH }}$	D ata H old after $\overline{\mathrm{WR}} \mathrm{H}$ igh			1		ns
Switching Characteristics:						
$t_{\text {DRDYWRL }}$	REDY (O/D) or (A/D) Low Delay after $\overline{\mathrm{WR}} / \overline{\mathrm{CS}}$ Low		10		10.5	ns
$t_{\text {RDYPWR }}$	REDY (O/D) or (A/D) Low Pulsewidth for W rite	$15+7$		$15+7 \mathrm{DT} / 16$		ns
$\mathrm{t}_{\text {SRDYCK }}$	REDY (O/D) or (A/D) D isable to CLK IN	$1+7 \mathrm{D}$	$8+7$	$1+7 \mathrm{DT} / 16$	$8+7 \mathrm{DT} / 16$	ns

NOTE
${ }^{1} \mathrm{~N}$ ot required if $\overline{\mathrm{RD}}$ and address are valid $\mathrm{t}_{\text {HBGRCsv }}$ after $\overline{\mathrm{HBG}}$ goes low. For first access after $\overline{\mathrm{HBR}}$ asserted, $\operatorname{ADDR} \mathrm{R}_{31-0}$ must be a non-M MS value $1 / 2 \mathrm{t}_{\mathrm{CLK}}$ before $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ goes low or by $\mathrm{t}_{\mathrm{HBGRCsv}}$ after HBG goes low. This is easily accomplished by driving an upper address signal high when $\overline{\mathrm{HBG}}$ is asserted. See the "H ost Processor C ontrol of the ADSP-2106x" section in the ADSP-2106x SH ARC U ser's M anual, Second Edition.

Figure 18a. Synchronous REDY Timing

ADSP-21060C/ADSP-21060LC

Figure 18b. Asynchronous Read/Write-Host to ADSP-2106x

Three-State Timing-Bus Master, Bus Slave, $\overline{\mathbf{H B R}, \overline{S B T S}}$
These specifications show how the memory interface is disabled (stops driving) or enabled (resumes driving) relative to CLKIN
and the $\overline{\text { SBTS }}$ pin. This timing is applicable to bus master transition cycles (BT C) and host transition cycles (HTC) as well as the $\overline{\text { SBTS }}$ pin.

NOTES

${ }^{1}$ Strobes $=\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{SW}}$, PAGE,$\overline{\mathrm{DMAG}}$.
${ }^{2}$ In addition to bus master transition cycles, these specs also apply to bus master and bus slave synchronous read/write.
${ }^{3}$ M emory Interface $=$ Address, $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{MS}} \mathrm{x}, \overline{\mathrm{SW}}, \overline{\mathrm{HBG}}, \mathrm{PAGE}, \overline{\mathrm{DMAG}} \mathrm{x}, \overline{\mathrm{BMS}}$ (in EPROM boot mode).

Figure 19a. Three-State Timing (Bus Transition Cycle, $\overline{\text { SBTS }}$ Assertion)

MEMORY INTERFACE = ADDRESS, $\overline{\operatorname{RD}, \overline{W R}, \overline{M S} x, \overline{S W}, \text { PAGE, } \overline{\text { DMAGx. }} \overline{\mathrm{BMS}} \text { (IN EPROM BOOT MODE) }}$
Figure 19b. Three-State Timing (Host Transition Cycle)

ADSP-21060C/ADSP-21060LC

DMA Handshake

T hese specifications describe the three D M A handshake modes. In all three modes DM AR is used to initiate transfers. F or handshake mode, DMAG controls the latching or enabling of data externally. For external handshake mode, the data transfer is controlled by the ADDR $31-0, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{SW}}, \mathrm{PAGE}, \overline{\mathrm{MS}}_{3-0}$, ACK, and $\overline{\text { DMAG }}$ signals. F or Paced M aster mode, the data

Parameter	ADSP-21060C		ADSP-21060LC		Units
	Min	Max	Min	Max	
Timing R equirements:					
$\mathrm{t}_{\text {SDRLC }} \quad \overline{\text { DMAR }} \times$ L ow Setup before CLKIN ${ }^{1}$	5		5		ns
$\mathrm{t}_{\text {SDRHC }} \quad \overline{\text { DMAR }}$ x High Setup before CLKIN ${ }^{1}$	5		5		ns
$\begin{array}{ll}t_{\text {WDR }} & \overline{\text { DMARx Width L ow }} \\ \text { (N onsynchronous) }\end{array}$	6		6		ns
$t_{\text {SDATDGL }}$ D ata Setup after $\overline{\text { DMAG }} \times$ L ow ${ }^{2}$		$10+5 \mathrm{DT} / 8$		$10+5 \mathrm{DT} / 8$	ns
$\mathrm{t}_{\text {HDATIDG }}$ D ata Hold after $\overline{\text { DMAG }} \times \mathrm{H}$ igh	2		2		ns
$\mathrm{t}_{\text {DATDR }} \quad$ D ata Valid after $\overline{\text { DMAR }} \mathrm{XHigh}{ }^{2}$		$16+7 \mathrm{DT} / 8$		$16+7 \mathrm{DT} / 8$	ns
$t_{\text {DMARLL }}$ DMARx Low Edge to Low Edge	$23+7 \mathrm{DT} / 8$		$23+$		ns
$\mathrm{t}_{\text {DMARH }} \quad \overline{\text { DMAR }}$ x Width High	6		6		ns
Switching Characteristics:					
$t_{\text {DDGL }} \quad \overline{\text { DMAG }} \times$ Low Delay after CLKIN	$9+\mathrm{DT} / 4$	$15+$ DT/4	$9+$	$15+\mathrm{DT} / 4$	ns
$t_{\text {WDGH }}$ DMAGx High Width	$6+3 \mathrm{DT} / 8$		$6+3 \mathrm{D}$		ns
$t_{\text {WDGL }}$ DMAGx L ow Width	$12+5 \mathrm{DT} / 8$		$12+5$		ns
$t_{\text {HDGC }} \quad \overline{\text { DMAG }} \times$ High D elay after CLKIN	-2-DT/8	6 - DT /8	-2-D	6-DT/8	ns
$\mathrm{t}_{\text {VDAtDG }}$ D ata Valid before $\overline{\text { DMAG }} \times \mathrm{High}^{3}$	8 +9DT/16		$8+$		ns
$\mathrm{t}_{\text {DATRDG }}$ D ata D isable after $\overline{\text { DMAG }}$ x $\mathrm{H}_{\text {igh }}{ }^{4}$		7	0	7	ns
$t_{\text {DGWRL }} \overline{\text { WR L }}$ OW before $\overline{\text { DMAG }}$ L Low		2	0	2	ns
$t_{\text {DGWR }} \quad \overline{\text { DMAG }}$ (Low before $\overline{\text { WR }}$ High	$10+5 \mathrm{DT} / 8+$		$10+5$		ns
$t_{\text {DGWRR }} \quad \overline{\text { WR }}$ High before $\overline{\text { DMAG }} \times$ High	$1+\mathrm{DT} / 16$	$3+$ DT/16	$1+\mathrm{D}$	$3+\mathrm{DT} / 16$	ns
$t_{\text {DGRDL }} \quad \overline{\mathrm{RD}}$ L ow before $\overline{\text { DMAG }} \times$ L ow		2	0	2	ns
$\mathrm{t}_{\text {DRDGH }} \quad \overline{\mathrm{RD}}$ Low before $\overline{\text { DMAG }} \times$ High	$11+9 D T / 16$		$11+9$		ns
$t_{\text {DGRDR }} \quad \overline{R D} \mathrm{H}$ igh before $\overline{\mathrm{DMAG}} \mathrm{x} \mathrm{H}$ igh		3		3	ns
$t_{\text {DGWR }}$DMAG x High to $\overline{W R}, \overline{R D}, \overline{\text { DMAG }} x$	$5+3 \mathrm{DT} / 8+$		$5+3 \mathrm{D}$		ns
$t_{\text {DADGH }} \quad$ Address/Select Valid to $\overline{\text { DMAG }} \times$ High	17 + DT		$17+$		ns
$\mathrm{t}_{\text {DDGHA }} \begin{aligned} & \text { Address/Select H old after } \overline{\text { DMAG }} \mathrm{X} \\ & \mathrm{H} \text { igh }\end{aligned}$	-0.5		-0.5		ns

[^0]$\mathrm{HI}=\mathrm{t}_{\mathrm{CK}}$ (if an address hold cycle or bus idle cycle occurs, as specified in WAIT register; otherwise $\mathrm{HI}=0$).
NOTES
${ }^{1}$ Only required for recognition in the current cycle.
${ }^{2}{ }^{\text {SDAATDGL }}$ is the data setup requirement if $\overline{\mathrm{DMAR}} \mathrm{x}$ is not being used to hold off completion of a write. Otherwise, if $\overline{\mathrm{DMAR}} \mathrm{x}$ low holds off completion of the write, the data can be driven $\mathrm{t}_{\text {DATDRH }}$ after $\overline{\overline{\mathrm{DMAR}} x}$ is brought high.
${ }^{3} \mathrm{t}_{\text {vDATDGH }}$ is valid if $\overline{\mathrm{DMAR}} \mathrm{x}$ is not being used to hold off completion of a read. If $\overline{\mathrm{DMAR}} \mathrm{x}$ is used to prolong the read, then $\mathrm{t}_{\text {vDAtDGH }}=8+9 \mathrm{DT} / 16+\left(\mathrm{n} \times \mathrm{t}_{\mathrm{CK}}\right)$ where n equals the number of extra cycles that the access is prolonged.
${ }^{4}$ See System Hold Time Calculation under Test C onditions for calculation of hold times given capacitive and dc loads.

* MEMORY READ - BUS MASTER, MEMORY WRITE - BUS MASTER, AND SYNCHRONOUS READ/WRITE - BUS MASTER TIMING SPECIFICATIONS FOR ADDR ${ }_{31-0}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{SW}}, \overline{\mathrm{MS}}_{3-0}$ AND ACK ALSO APPLY HERE.

Figure 20. DMA Handshake Timing

ADSP-21060C/ADSP-21060LC

Link Ports: $1 \times$ CLK Speed Operation

Parameter		ADSP-21060C		ADSP-21060LC		Units
		Min	Max	Min	Max	
Receive						
Timing Requirements:						
$\mathrm{t}_{\text {SLDCL }}$	D ata Setup before LCLK Low	3.5		3		ns
$\mathrm{t}_{\text {HLDCL }}$	D ata H old after LCLK Low	3		3		ns
tLCLKIW	LCLK Period ($1 \times$ Operation)	t_{CK}		t_{ck}		ns
t LCLKrwi	LCLK Width Low	6		6		ns
thclerwh	LCLK Width High	5		5		ns
Switching C haracteristics:						
$t_{\text {DLAHC }}$	LACK High Delay after CLK IN High	$18+$ DT/2	28.5 + DT/2	$18+\mathrm{DT} / 2$	28.5 + DT/2	ns
$t_{\text {dLaLC }}$	LACK Low Delay after LCLK High ${ }^{1}$	-3	13	-3	13	ns
$\mathrm{t}_{\text {ENDLK }}$	LACK Enable from CLK IN	$5+\mathrm{DT} / 2$		$5+\mathrm{DT} / 2$		ns
$\mathrm{t}_{\text {TDLK }}$	LACK Disable from CLKIN		20 + DT/2		$20+$ T / 2	ns
Transmit						
Timing Requirements:						
$\mathrm{t}_{\text {SLACH }}$	LACK Setup before LCLK High	18				ns
$\mathrm{t}_{\mathrm{HLACH}}$	LACK Hold after LCLK High	-7		-7		ns
Switching C haracteristics:						
$t_{\text {DLCLK }}$	LCLK Delay after CLKIN ($1 \times$ operation)		15.5		16.5	ns
$\mathrm{t}_{\text {DLDCH }}$	D ata D elay after LCLK High				2.5	ns
$\mathrm{t}_{\text {HLDCH }}$	D ata H old after LCLK High	-3				ns
ticlktwl	LCLK Width Low	$\left(\mathrm{t}_{\mathrm{CK}} / 2\right)-2$	$\left(t_{C K} / 2\right)+2$	$\left(\mathrm{t}_{\mathrm{CK}} / 2\right)-1$	$\left(\mathrm{t}_{\mathrm{CK}} / 2\right)+1.25$	ns
t lclekwh	LCLK Width High	($\mathrm{t}_{\text {ck }} / 2$) - 2	$\left(t_{c k} / 2\right)+2$	$\left(\mathrm{t}_{\mathrm{CK}} / 2\right)-1.25$	$\left(\mathrm{t}_{\mathrm{ck}} / 2\right)+1.0$	ns
$\mathrm{t}_{\text {DLACLK }}$	LCLK Low D elay after LACK High	$\left(t_{c k} / 2\right)+8.5$	$\left(3 \times t_{C K} / 2\right)+$	$\left(t_{C K} / 2\right)+8.0$	$\left(3 \times t_{C K} / 2\right)+17.5$	ns
$\mathrm{t}_{\text {ENDLK }}$	LDAT, LCLK Enable after CLKIN	$5+\mathrm{DT} / 2$		$5+\mathrm{DT} / 2$		ns
$\mathrm{t}_{\text {TDLK }}$	LDAT, LCLK Disable after CLKIN		$20+$ DT/2		$20+$ T / 2	ns
Link Port Service Request Interrupts: $1 \times$ and						
$\mathbf{2} \times$ Speed Operations						
Timing Requirements:						
$\mathrm{t}_{\text {sLCK }}$	LACK/LCLK Setup before CLKIN Low ${ }^{2}$	10		10		ns
$\mathrm{t}_{\text {HLCK }}$	LACK/LCLK Hold after CLKIN Low ${ }^{2}$	2		2		ns

[^1]
ADSP-21060C/ADSP-21060LC

Link Ports: $2 \times$ CLK Speed Operation

Calculation of link receiver data setup and hold relative to link clock is required to determine the maximum allowable skew that can be introduced in the transmission path between LDATA and LCLK. Setup skew is the maximum delay that can be introduced in LDATA relative to LCLK, (setup skew $=\mathrm{t}_{\mathrm{LCLKTwH}} \min -\mathrm{t}_{D L D C H}-\mathrm{t}_{S L D C L}$). H old skew is the maximum delay that can be introduced in LCLK relative to LDATA, (hold skew $=\mathrm{t}_{\text {LCLKTwL }} \min -\mathrm{t}_{\text {HLDCH }}-\mathrm{t}_{\text {HLDCL }}$). Calculations made directly from $2 \times$ speed specifications will result in unrealistically small skew times because they include multiple tester guardbands. The setup and hold skew times shown below are calculated to include only one tester guardband.

ADSP-21060C Setup Skew	$=1.93 \mathrm{~ns} \max$
AD SP-21060C H old Skew	$=2.95 \mathrm{~ns} \max$
AD SP-21060L C Setup Skew	$=1.87 \mathrm{~ns} \max$
AD SP-21060LC H old Skew	$=1.69 \mathrm{~ns} \max$

Parameter		ADSP-21060C		ADSP-21060LC		Units
		Min	Max	Min	Max	
Receive						
T iming R equirements:						
$\mathrm{t}_{\text {SLDCL }}$	D ata Setup before LCLK Low	2.5		2.25		ns
$\mathrm{t}_{\text {HLDCL }}$	D ata H old after LCLK Low	2.25		2.25		ns
tlcleiw	LCLK Period (2×0 peration)	$\mathrm{t}_{\mathrm{CK}} / 2$		$\mathrm{t}_{\mathrm{ck}} / 2$		ns
tlclkrwl	LCLK Width Low	4.5		5.0		ns
tlclerwh	LCLK Width High	4.25		4.0		ns
Switching Characteristics:						
$t_{\text {DLAHC }}$	LACK High D elay after CLK IN High	$18+$ DT $/ 2$	$28.5+$ DT/2	$18+\mathrm{DT} / 2$	29.5 + DT/2	ns
$t_{\text {DLALC }}$	LACK Low D elay after LCLK High ${ }^{1}$	6	16	6	18	ns
Transmit						
T iming Requirements:						
$\mathrm{t}_{\text {SLaCH }}$	LACK Setup before LCLK High	19		19		ns
$\mathrm{t}_{\text {HLACH }}$	LACK H old after LCLK High	-6.75		-6.5		ns
Switching Characteristics:						
$\mathrm{t}_{\text {DLCLK }}$	LCLK Delay after CLK IN		8		8	ns
$\mathrm{t}_{\text {DLDCH }}$	D ata D elay after LCLK High				2.25	ns
$\mathrm{t}_{\text {HLDCH }}$	D ata H old after LCLK High	-2.0		-2.0		ns
tlclktwl	LCLK Width Low	($\mathrm{t}_{\mathrm{CK}} / 4$) - 1	$\left(t_{C K} / 4\right)+1$	$\left(\mathrm{t}_{\text {CK }} / 4\right)-0.75$	$\left(\mathrm{t}_{\text {CK }} / 4\right)+1.5$	ns
tlcletwh	LCLK Width High	$\left(\mathrm{t}_{\text {ck }} / 4\right)-1$	$\left(\mathrm{t}_{\text {ck }} / 4\right)+1$	$\left(\mathrm{t}_{\text {ck }} / 4\right)-1.5$	$\left(t_{c k} / 4\right)+1$	ns
$\mathrm{t}_{\text {DLACLK }}$	LCLK Low Delay after LACK High	$\left(t_{C K} / 4\right)+9$	$\left(3 * \mathrm{t}_{\mathrm{CK}} / 4\right)+16.5$	$\left(\mathrm{t}_{\mathrm{ck}} / 4\right)+9$	$\left(3 * t_{C K} / 4\right)+16.5$	ns

NOTE

${ }^{1}$ LACK will go low with $\mathrm{t}_{\text {DLALC }}$ relative to rising edge of LCLK after first nibble is received. LACK will not go low if the receiver's link buffer is not about to fill.

ADSP-21060C/ADSP-21060LC

TRANSMIT

RECEIVE

LINK PORT ENABLE/THREE-STATE DELAY FROM INSTRUCTION

Link port enable or three-state takes effect 2 cycles after a write to a link port control register.

LINK PORT INTERRUPT SETUP TIME

Figure 21. Link Ports

Serial Ports

Parameter		Min ADSP-21060C		ADSP-21060LC		Units
		Min	Max	Min	Max	
External Clock						
T iming R equirements:						
$\mathrm{t}_{\text {SFSE }}$	TFS/RFS Setup before TCLK/RCLK ${ }^{1}$	3.5		3.5		ns
$\mathrm{t}_{\text {HFSE }}$	TFS/RFS H old after TCLK/RCLK ${ }^{1,2}$	4		4		ns
$\mathrm{t}_{\text {SDRE }}$	Receive D ata Setup before RCLK ${ }^{1}$	1.5		1.5		ns
$\mathrm{t}_{\text {HDRE }}$	Receive D ata H old after RCLK ${ }^{1}$	4		4		ns
$\mathrm{t}_{\text {sclkw }}$	TCLK/RCLK Width	9.5		9.0		ns
$\mathrm{t}_{\text {SCLK }}$	TCLK/RCLK Period	t_{ck}		t_{CK}		ns
Internal Clock						
T iming R equirements:						
$\mathrm{t}_{\text {SFSI }}$	TFS Setup before TCLK ${ }^{1}$; RFS Setup before RCLK ${ }^{1}$	8		8		ns
$\mathrm{t}_{\text {HFSI }}$	TFS/RFS H old after TCLK/RCLK ${ }^{1,2}$	1		1		ns
$\mathrm{t}_{\text {SDRI }}$	Receive D ata Setup before RCLK ${ }^{1}$	3		3		ns
$\mathrm{t}_{\text {HDRI }}$	Receive D ata H old after RCLK ${ }^{1}$	3		3		ns
External or Internal Clock						
Switching C haracteristics:						
$t_{\text {DFSE }}$	RFS D elay after RCLK (Internally Generated RFS) ${ }^{3}$		13		13	ns
$\mathrm{t}_{\text {HOFSE }}$	RFS H old after RCLK (Internally Generated RFS) ${ }^{3}$	3		3		ns
External Clock						
Switching C haracteristics:						
$\mathrm{t}_{\mathrm{DFSE}}$	TFS Delay after TCLK (Internally G enerated TFS) ${ }^{3}$		13		13	ns
$t_{\text {HOFSE }}$	TFS H old after TCLK (Internally Generated TFS) ${ }^{3}$	3		3		ns
$t_{\text {DDTE }}$	T ransmit D ata D elay after TCLK ${ }^{3}$		16		16	ns
$\mathrm{t}_{\text {Hodte }}$	T ransmit D ata H old after TCLK ${ }^{3}$			5		ns
Internal Clock						
Switching C haracteristics:						
$\mathrm{t}_{\text {DFSI }}$	TFS Delay after TCLK (Internally G enerated TFS) ${ }^{3}$		4.5		4.5	ns
$\mathrm{t}_{\text {HOFSI }}$	TFS H old after TCLK (Internally G enerated TFS) ${ }^{3}$	-1.5		-1.5		ns
$t_{\text {DDTI }}$	T ransmit D ata D elay after T CLK ${ }^{3}$		7.5		7.5	ns
$\mathrm{t}_{\text {HDTI }}$	Transmit D ata H old after T C LK ${ }^{3}$	0		0		ns
$\mathrm{t}_{\text {scLKIW }}$	TCLK/RCLK Width	($\mathrm{t}_{\text {SCLK }}$	$\left(\mathrm{t}_{\mathrm{SCLK}} / 2\right)+2$	$\left(\mathrm{t}_{\text {SCLK }} / 2\right)-2.5$	$\left(\mathrm{t}_{\text {SCLK }} / 2\right)+2.5$	ns
E nable and Three-State						
Switching Characteristics:						
$t_{\text {ddten }}$	D ata E nable from External T CLK ${ }^{3}$	3.5		4.0		ns
$\mathrm{t}_{\text {DDTte }}$	D ata D isable from External T CLK ${ }^{3}$		10.5		10.5	ns
$\mathrm{t}_{\text {DDTIN }}$	D ata Enable from Internal TCLK ${ }^{3}$	0		0		ns
$t_{\text {DDTTI }}$	D ata D isable from Internal TCLK ${ }^{3}$		3		3	ns
$\mathrm{t}_{\text {DCLK }}$	TCLK/RCLK Delay from CLKIN		$22+3 \mathrm{DT} / 8$		$22+3 \mathrm{DT} / 8$	ns
$t_{\text {DPTR }}$	SPORT Disable after CLKIN		17		17	ns
Gated SCLK with External TFS (Mesh Multiprocessing) ${ }^{4}$						
T iming R equirements:						
$\mathrm{t}_{\text {ST FSCK }}$	TFS Setup before CLK IN	5		5		ns
$t_{\text {HTFSCK }}$	TFS H old after CLK IN	$\mathrm{t}_{\mathrm{ck}} / 2$		$\mathrm{t}_{\mathrm{ck}} / 2$		ns
External Late Frame Sync						
Switching C haracteristics:						
$\mathrm{t}_{\text {DDTLFSE }}$	D ata D elay from L ate External TFS or External RFS with MCE $=1, \mathrm{MFD}=0^{5}$		12		12.8	ns
$t_{\text {ddtenfs }}$	D ata E nable from late $F S$ or $M C E=1$, MFD $=0^{5}$	3		3.5		ns

[^2]
ADSP-21060C/ADSP-21060LC

NOTES
${ }^{1}$ R eferenced to sample edge
${ }^{2} R F S$ hold after RCK when MCE $=1, M F D=0$ is 0 ns minimum from drive edge. TFS hold after TCK for late external TFS is 0 ns minimum from drive edge ${ }^{3}$ R eferenced to drive edge.
${ }^{4}$ Applies only to gated serial clock mode used for serial port system I/O in mesh multiprocessing systems.
${ }^{5}$ M CE $=1$, TFS enable and TFS valid follow $t_{\text {DDTLFSE }}$ and $t_{\text {DDTENFS }}$.

NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK, TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.

NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK, TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.

NOTE: APPLIES ONLY TO GATED SERIAL CLOCK MODE WITH EXTERNAL TFS, AS USED IN THE SERIAL PORT SYSTEM I/O FOR MESH MULTIPROCESSING.

Figure 22. Serial Ports

EXTERNAL RFS with MCE $=1$, MFD $=0$

LATE EXTERNAL TFS

TCLK

TFS

DT

Figure 23. External Late Frame Sync

ADSP-21060C/ADSP-21060LC

JTAG Test Access Port and Emulation

Parameter	$\begin{array}{cc} \hline \text { ADSP-21060C } \\ \text { Min } & \text { Max } \end{array}$		ADSP-21060LCMin \quad Max		Units
Timing R equirements:					
$\mathrm{t}_{\text {TCK }}$ TCK Period	t_{CK}		t_{CK}		ns
$\mathrm{t}_{\text {STAP }} \quad$ TDI, TM S Setup before T CK High	5		5		ns
$\mathrm{t}_{\text {HTAP }} \quad$ TDI, TMS H old after TCK High	6		6		ns
$\mathrm{t}_{\text {SSY }} \quad$ System Inputs Setup before TCK Low ${ }^{1}$	7		7		ns
$\mathrm{t}_{\text {HSYS }} \quad$ System Inputs H old after TCK Low ${ }^{1}$	18		18.5		ns
$\mathrm{t}_{\text {TRSTW }} \quad$ TRST Pulsewidth	$4 t_{\text {ck }}$		$4 \mathrm{t}_{\mathrm{CK}}$		ns
Switching Characteristics:					
t ${ }_{\text {TDO }} \quad$ TDO Delay from TCK Low		13		13	ns
$\mathrm{t}_{\text {DSYS }} \quad$ System Outputs D elay after TCK Low ${ }^{2}$		18.5		18.5	ns

NOTES
${ }^{1}$ System Inputs $=\mathrm{DAT} \mathrm{A}_{47-0}$, ADD R $_{31-0}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{ACK}, \overline{\mathrm{SBTS}}, \overline{\mathrm{SW}}, \overline{\mathrm{HBR}}, \overline{\mathrm{HBG}}, \overline{\mathrm{CS}}, \overline{\mathrm{DMAR} 1}, \overline{\mathrm{DMAR} 2}, \overline{\mathrm{BR}}_{6-1}, \mathrm{ID}_{2-0}, \mathrm{RPBA}, \overline{\mathrm{IRQ}}_{2-0}, \mathrm{FLAG}_{3-0}, \mathrm{DR} 0, \mathrm{DR} 1$,
TCLK 0, TCLK 1, RCLK 0, RCLK1, TFS0, TFS1, RFS0, RFS1, LXDAT $3-0, L x C L K, L x A C K, E B O O T, L B O O T, ~ B M S, ~ C L K I N, ~ R E S E T . ~$
${ }^{2}$ System Outputs $=$ DAT $_{47-0}$, AD DR $_{31-0}, \overline{M S}_{3-0}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{ACK}, \mathrm{PAGE}, \mathrm{ADRCLK}, \overline{\mathrm{SW}}, \overline{\mathrm{HBG}}, \mathrm{REDY}, \overline{\mathrm{DMAG1}}, \overline{\mathrm{DMAG} 2}, \overline{\mathrm{BR}} 6-1, \overline{\mathrm{CPA}}, \mathrm{FLAG} 3-0, \mathrm{TIMEXP}, \mathrm{DT} 0$,
DT1, TCLK 0, TCLK1, RCLK 0, RCLK 1, TFS0, TFS1, RFS0, RFS1, LxDAT $3-0, L x C L K, L x A C K, \overline{B M S}$.

Figure 24. IEEE 11499.1J TAG Test Access Port

OUTPUT DRIVE CURRENTS

Figure 28 shows typical I-V characteristics for the output drivers of the AD SP-2106x. The curves represent the current drive capability of the output drivers as a function of output voltage.

POWER DISSIPATION

T otal power dissipation has two components, one due to internal circuitry and one due to the switching of external output drivers. Internal power dissipation is dependent on the instruction execution sequence and the data operands involved. Internal power dissipation is calculated in the following way:

$$
P_{I N T}=I_{D D I N} \times V_{D D}
$$

The external component of total power dissipation is caused by the switching of output pins. Its magnitude depends on:

- the number of output pins that switch during each cycle (0)
- the maximum frequency at which they can switch (f)
- their load capacitance (C)
- their voltage swing (V_{DD})
and is calculated by:

$$
P_{E X T}=0 \times C \times V_{D D^{2}}^{2} \times f
$$

The load capacitance should include the processor's package capacitance ($\mathrm{C}_{\text {IN }}$). The switching frequency includes driving the load high and then back low. Address and data pins can drive high and low at a maximum rate of $1 /\left(2 \mathrm{t}_{\mathrm{CK}}\right)$. The write strobe can switch every cycle at a frequency of $1 / \mathrm{t}_{c_{k}}$. Select pins switch at $1 /\left(2 t_{c k}\right)$, but selects can switch on each cycle.

Example:

Estimate $\mathrm{P}_{\mathrm{EXT}}$ with the following assumptions:
-A system with one bank of external data memory RAM (32-bit) -F our $128 \mathrm{~K} \times 8$ RAM chips are used, each with a load of 10 pF -External data memory writes occur every other cycle, a rate of $1 /\left(4 \mathrm{t}_{\mathrm{ck}}\right)$, with 50% of the pins switching
-T he instruction cycle rate is 40 M Hz ($\left.\mathrm{t}_{\mathrm{CK}}=25 \mathrm{~ns}\right)$.
The $P_{\text {EXT }}$ equation is calculated for each class of pins that can drive:

Table II. External Power Calculations (5V Device)

Table III. External Power Calculations (3.3 V Device)

| Pin
 Type | \# of
 Pins | \%
 Switching | $\times \mathbf{C}$ | $\times \mathbf{f}$ | $\times \mathbf{V}_{\text {DD }}{ }^{\mathbf{2}}=\mathbf{P}_{\text {EXT }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Address | 15 | 50 | $\times 44.7 \mathrm{pF}$ | $\times 10 \mathrm{M} \mathrm{Hz}$ | $\times 10.9 \mathrm{~V}=0.037 \mathrm{~W}$ |
| $\overline{\mathrm{MS} 0}$ | 1 | 0 | $\times 44.7 \mathrm{pF}$ | $\times 10 \mathrm{M} \mathrm{Hz}$ | $\times 10.9 \mathrm{~V}=0.000 \mathrm{~W}$ |
| $\overline{\mathrm{WR}}$ | 1 | - | $\times 44.7 \mathrm{pF}$ | $\times 20 \mathrm{M} \mathrm{Hz}$ | $\times 10.9 \mathrm{~V}=0.010 \mathrm{~W}$ |
| D ata | 32 | 50 | $\times 14.7 \mathrm{pF}$ | $\times 10 \mathrm{M} \mathrm{Hz}$ | $\times 10.9 \mathrm{~V}=0.026 \mathrm{~W}$ |
| ADDRCLK | 1 | - | $\times 4.7 \mathrm{pF}$ | $\times 20 \mathrm{M} \mathrm{Hz}$ | $\times 10.9 \mathrm{~V}=0.001 \mathrm{~W}$ |

A typical power consumption can now be calculated for these conditions by adding a typical internal power dissipation:

$$
\mathrm{P}_{\text {TOTAL }}=\mathrm{P}_{\mathrm{EXT}}+\left(\mathrm{I}_{\text {DDIN } 2} \times 5.0 \mathrm{~V}\right)
$$

N ote that the conditions causing a worst-case $P_{\text {EXT }}$ are different from those causing a worst-case $\mathrm{P}_{\text {INT }} . \mathrm{M}$ aximum $\mathrm{P}_{\text {INT }}$ cannot occur while 100% of the output pins are switching from all ones to all zeros. N ote also that it is not common for an application to have 100% or even 50% of the outputs switching simultaneously.

TEST CONDITIONS

Output Disable Time

Output pins are considered to be disabled when they stop driving, go into a high impedance state, and start to decay from their output high or low voltage. The time for the voltage on the bus to decay by $\Delta \mathrm{V}$ is dependent on the capacitive load, C_{L} and the load current, I_{L}. This decay time can be approximated by the following equation:

$$
t_{\text {DECAY }}=\frac{C_{L} \Delta V}{I_{L}}
$$

The output disable time $t_{\text {DIS }}$ is the difference between $t_{\text {MEASURED }}$ and $t_{\text {DECAY }}$ as shown in Figure 25. The time $t_{\text {measured }}$ is the interval from when the reference signal switches to when the output voltage decays $\Delta \mathrm{V}$ from the measured output high or output low voltage. $t_{\text {DECAY }}$ is calculated with test loads C_{L} and I_{L}, and with $\Delta \mathrm{V}$ equal to 0.5 V .

Output Enable Time

Output pins are considered to be enabled when they have made a transition from a high impedance state to when they start driving. T he output enable time $t_{E N A}$ is the interval from when a reference signal reaches a high or low voltage level to when the output has reached a specified high or low trip point, as shown in the Output Enable/D isable diagram (Figure 25). If multiple pins (such as the data bus) are enabled, the measurement value is that of the first pin to start driving.

ADSP-21060C/ADSP-21060LC

Example System Hold Time Calculation

T o determine the data output hold time in a particular system, first calculate $t_{\text {decay }}$ using the equation given above. Choose $\Delta \mathrm{V}$ to be the difference between the ADSP-2106x's output voltage and the input threshold for the device requiring the hold time. A typical $\Delta \mathrm{V}$ will be $0.4 \mathrm{~V} . \mathrm{C}_{\mathrm{L}}$ is the total bus capacitance (per data line), and I_{L} is the total leakage or three-state current (per data line). T he hold time will be $t_{\text {DECAY }}$ plus the minimum disable time (i.e., $\mathrm{t}_{\text {DATRWH }}$ for the write cycle).

Figure 25. Output Enable/Disable

Figure 26. Equivalent Device Loading for AC Measurements (Includes All Fixtures)

Figure 27. Voltage Reference Levels for AC Measurements (Except Output Enable/Disable)

Capacitive Loading

O utput delays and holds are based on standard capacitive loads: 50 pF on all pins (see Figure 26). The delay and hold specifications given should be derated by a factor of $1.5 \mathrm{~ns} / 50 \mathrm{pF}$ for loads other than the nominal value of 50 pF . Figures 29-30, 33-34 show how output rise time varies with capacitance. Figures 31,35 show graphically how output delays and holds vary with load capacitance. (N ote that this graph or derating does not apply to output disable delays; see the previous section O utput Disable Time under T est C onditions.) The graphs of Figures 29, 30 and 31 may not be linear outside the ranges shown.

Figure 28. ADSP-2106x Typical Drive Currents ($V_{D D}=5 \mathrm{~V}$)

Figure 29. Typical Output Rise Time ($10 \%-90 \% V_{D D}$) vs. Load Capacitance ($V_{D D}=5 \mathrm{~V}$)

Figure 30. Typical Output Rise Time ($0.8 \mathrm{~V}-2.0 \mathrm{~V}$) vs. Load Capacitance ($V_{D D}=5 \mathrm{~V}$)

Figure 31. Typical Output Delay or Hold vs. Load Capacitance (at Maximum Case Temperature) ($V_{D D}=5 \mathrm{~V}$)

Figure 32. ADSP-2106x Typical Drive Currents ($V_{D D}=3.3 \mathrm{~V}$)

Figure 33. Typical Output Rise Time ($10 \%-90 \% V_{D D}$) vs. Load Capacitance ($V_{D D}=3.3 \mathrm{~V}$)

Figure 34. Typical Output Rise Time ($0.8 \mathrm{~V}-2.0 \mathrm{~V}$) vs. Load Capacitance ($V_{D D}=3.3 \mathrm{~V}$)

ENVIRONMENTAL CONDITIONS

Thermal Characteristics

The ADSP-2106x is packaged in a 240 -lead thermally enhanced ceramic QFP (CQFP). There are two package versions, one with a copper/tungsten heat slug on top of the package (CZ) for air cooling, and one with the heat slug on the bottom (CW) for cooling through the board. The ADSP-2106x is specified for a case temperature ($\mathrm{T}_{\text {CASE }}$). To ensure that the $\mathrm{T}_{\text {CASE }}$ data sheet specification is not exceeded, a heatsink and/or an air flow source may be used. A heatsink should be attached with a thermal adhesive.

$$
T_{\text {CASE }}=T_{A M B}+\left(P D \times \theta_{C A}\right)
$$

$T_{\text {CASE }}=C$ ase temperature (measured on the heat slug surface) PD $=\quad$ Power dissipation in W (this value depends upon the specific application; a method for calculating PD is shown under Power Dissipation).
$\theta_{C A}=$ Value from the following table.

Figure 35. Typical Output Delay or Hold vs. Load Capacitance (at Maximum Case Temperature) ($V_{D D}=3.3 \mathrm{~V}$)

Airflow (Linear Ft./Min.)	$\mathbf{0}$	$\mathbf{2 0 0}$	$\mathbf{4 0 0}$
$\theta_{\mathrm{CA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	18	13	11

NOTES
This represents thermal resistance at total power of 5 W . With air flow, no variance is seen in $\theta_{C A}$ with power. $\theta_{\mathrm{j}} \mathrm{C}=0.2^{\circ} \mathrm{C} / \mathrm{W}$.

240-LEAD METRIC CQFP PIN CONFIGURATIONS
HEAT SLUG UP VERSION (CZ)

THE 240-LEAD PACKAGE CONTAINS A COPPER/TUNGSTON HEAT SLUG ON ITS TOP SURFACE.

Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	$\begin{aligned} & \text { Pir } \\ & \text { No } \end{aligned}$	Pin Name
1	TDI	41	ADDR20	81	TCLK0	121	DATA41	161	DATA14	201	L2DAT0
2	TRST	42	ADDR21	82	TFSO	122	DATA40	162	DATA 13	202	L2CLK
3	VDD	43	GND	83	DR0	123	DATA39	163	DATA12	203	L2ACK
4	TDO	44	ADDR22	84	RCLK 0	124	VDD	164	GND	204	NC
5	TIMEXP	45	ADDR23	85	RFSO	125	DATA38	165	DATA11	205	VDD
6	EMU	46	ADDR24	86	VDD	126	DATA37	166	DATA10	206	L3DAT 3
7	ICSA	47	VDD	87	VDD	127	DATA36	167	DATA9	207	L3DAT 2
8	FLAG3	48	GND	88	GND	128	GND	168	VDD	208	L3DAT1
9	FLAG2	49	VDD	89	ADRCLK	129	NC	169	DATA8	209	L3DAT0
10	FLAG1	50	ADDR25	90	REDY	130	DATA35	170	DATA7	210	L3CLK
11	FLAG0	51	ADDR26	91	- HBG	131	DATA34	171	DATA6	211	L3ACK
12	GND	52	ADDR27	92	$\overline{\mathrm{CS}}$	132	dATA33	172	GND	212	GND
13	ADDR0	53	GND	93	$\overline{\mathrm{RD}}$	133	VDD	173	DATA5	213	L4DAT 3
14	ADDR1	54	MS3	94	$\overline{\mathrm{WR}}$	134	VDD	174	DATA4	214	L4DAT 2
15	VDD	55	MS2	95	GND	135	GND	175	DATA3	215	L4DAT 1
16	ADDR2	56	MS1	96	VDD	136	DATA32	176	VDD	216	L4DAT 0
17	ADDR3	57	$\overline{\text { MS } 0}$	97	GND	137	DATA31	177	DATA2	217	L4CLK
18	ADDR4	58	SW	98	CLKIN	138	data30	178	DATA1	218	L4ACK
19	GND	59	$\overline{\text { BMS }}$	99	ACK	139	GND	179	DATA0	219	VDD
20	ADDR5	60	ADDR28	100	$\overline{\text { DMAG2 }}$	140	DATA29	180	GND	220	GND
21	ADDR6	61	GND	101	DMAG1	141	DATA28	181	GND	221	VDD
22	ADDR 7	62	VDD	102	PAGE	142	DATA27	182	LODAT 3	222	L5DAT 3
23	VDD	63	VDD	103	VDD	143	VDD	183	LODAT 2	223	L5DAT 2
24	ADDR8	64	ADDR29	104	BR6	144	VDD	184	LODAT 1	224	L5DAT1
25	ADDR9	65	ADDR30	105	BR5	145	DATA26	185	LODAT0	225	L5DAT0
26	ADDR10	66	ADDR31	106	$\overline{\text { BR4 }}$	146	DATA25	186	LOCLK	226	L5CLK
27	GND	67	GND	107	BR3	147	DATA24	187	LOACK	227	L5ACK
28	ADDR11	68	SBTS	108	$\overline{\text { BR2 }}$	148	GND	188	VDD	228	GND
29	ADDR12	69	DMAR2	109	$\overline{\text { BR1 }}$	149	DATA23	189	LIDAT 3	229	ID 2
30	ADDR13	70	DMAR1	110	GND	150	DATA22	190	L1DAT 2	230	ID 1
31	VDD	71	$\overline{\mathrm{HBR}}$	111	VDD	151	DATA21	191	LIDAT 1	231	ID 0
32	ADDR14	72	DT 1	112	GND	152	VDD	192	LIDAT0	232	LBOOT
33	ADDR15	73	TCLK1	113	DATA47	153	DATA20	193	L1CLK	233	RPBA
34	GND	74	TFS1	114	DATA46	154	DATA19	194	L1ACK	234	RESET
35	ADDR16	75	DR1	115	DATA45	155	DATA18	195	GND	235	EBOOT
36	ADDR17	76	RCLK 1	116	VDD	156	GND	196	GND	236	IRQ2
37	ADDR18	77	RFS1	117	DATA44	157	DATA17	197	VDD	237	$\overline{\text { IRQ1 }}$
38	VDD	78	GND	118	DATA43	158	DATA16	198	L2DAT 3	238	$\overline{\text { IRQ0 }}$
39	VDD	79	CPA	119	DATA42	159	DATA15	199	L2DAT 2	239	TCK
40	ADDR19	80	DT0	120	GND	160	VDD	200	L2DAT 1	240	TMS

240-LEAD METRIC CQFP PIN CONFIGURATIONS HEAT SLUG DOWN VERSION (CW)

THE 240-LEAD PACKAGE CONTAINS A COPPER/TUNGSTON HEAT SLUG ON ITS BOTTOM SURFACE.

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Pin Name	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	$\begin{aligned} & \text { Pir } \\ & \text { No } \end{aligned}$	Pin Name
1	GND	41	DATA29	81	$\overline{\text { DMAG2 }}$	121	ADDR28	161	ADDR5	201	GND
2	DATA0	42	GND	82	ACK	122	BMS	162	GND	202	VDD
3	DATA1	43	DATA30	83	CLKIN	123	SW	163	ADDR4	203	L4ACK
4	DATA2	44	DATA31	84	GND	124	MS0	164	ADDR3	204	L4CLK
5	VDD	45	DATA32	85	VDD	125	MS1	165	ADDR2	205	L4DAT0
6	DATA3	46	GND	86	GND	126	MS2	166	VDD	206	L4DAT 1
7	DATA4	47	VDD	87	WR	127	MS3	167	ADDR1	207	L4DAT2
8	DATA5	48	VDD	88	RD	128	GND	168	ADDR0	208	L4DAT3
9	GND	49	DATA33	89	$\overline{\text { CS }}$	129	ADDR27	169	GND	209	GND
10	DATA6	50	DATA34	90	HBG	130	ADDR26	170	FLAG0	210	L3ACK
11	DATA7	51	DATA35	91	REDY	131	ADDR25	171	FLAG1	211	L3CLK
12	DATA8	52	NC	92	ADRCLK	132	VDD	172	FLAG2	212	L3DAT0
13	VDD	53	GND	93	GND	133	GND	173	FLAG3	213	L3DAT1
14	DATA9	54	DATA36	94	VDD	134	VDD	174	ICSA	214	L3DAT2
15	DATA10	55	DATA37	95	VDD	135	ADDR24	175	EMU	215	L3DAT3
16	DATA11	56	DATA38	96	RFS0	136	ADDR23	176	TIMEXP	216	VDD
17	GND	57	VDD	97	RCLK 0	137	ADDR22	177	TDO	217	NC
18	DATA12	58	DATA39	98	DR0	138	GND	178	VDD	218	L2ACK
19	DATA13	59	DATA40	99	TFSO	139	ADDR21	179	TRST	219	L2CLK
20	DATA14	60	DATA41	100	TCLK 0	140	ADDR20	180	TDI	220	L2DAT0
21	VDD	61	GND	101	DT0	141	ADDR19	181	TMS	221	L2DAT1
22	DATA15	62	DATA42	102	$\overline{\mathrm{CPA}}$	142	VDD	182	TCK	222	L2DAT2
23	DATA16	63	DATA43	103	GND	143	VDD	183	IRQ0	223	L2DAT3
24	DATA17	64	DATA44	104	RFS1	144	ADDR18	184	$\overline{\text { IRQ1 }}$	224	VDD
25	GND	65	VDD	105	RCLK 1	145	ADDR17	185	$\overline{\mathrm{IRQ}}{ }^{2}$	225	GND
26	DATA18	66	DATA45	106	DR1	146	ADDR16	186	EBOOT	226	GND
27	DATA19	67	DATA46	107	TFS1	147	GND	187	RESET	227	LIACK
28	DATA20	68	DATA47	108	TCLK 1	148	ADDR15	188	RPBA	228	L1CLK
29	VDD	69	GND	109	DT 1	149	ADDR14	189	LBOOT	229	L1DAT0
30	DATA21	70	VDD	110	HBR	150	VDD	190	ID0	230	LIDAT1
31	DATA22	71	GND	111	$\overline{\text { DMAR1 }}$	151	ADDR13	191	ID1	231	L1DAT2
32	DATA23	72	BR1	112	DMAR2	152	ADDR12	192	ID2	232	L1DAT3
33	GND	73	$\overline{\text { BR2 }}$	113	SBTS	153	ADDR11	193	GND	233	VDD
34	DATA24	74	$\overline{\text { BR3 }}$	114	GND	154	GND	194	L5ACK	234	LOACK
35	DATA25	75	$\overline{\text { BR4 }}$	115	ADDR31	155	ADDR10	195	L5CLK	235	LOCLK
36	DATA26	76	BR5	116	ADDR30	156	ADDR9	196	L5DAT0	236	LODAT0
37	VDD	77	$\overline{\text { BR6 }}$	117	ADDR29	157	ADDR8	197	L5DAT 1	237	LODAT 1
38	VDD	78	VDD	118	VDD	158	VDD	198	L5DAT 2	238	LODAT2
39	DATA27	79	PAGE	119	VDD	159	ADDR7	199	L5DAT 3	239	LODAT3
40	DATA28	80	$\overline{\text { DMAG1 }}$	120	GND	160	ADDR6	200	VDD	240	GND

OUTLINE DIMENSIONS

Dimensions shown in inches and (millimeters).
240-Lead CQFP with Heat Slug Up and Formed Leads (QS-240)

ADSP-21060C/ADSP-21060LC

OUTLINE DIMENSIONS
Dimensions shown in inches and (millimeters).
240-Lead Metric CQFP with Heat Slug Up and Unformed Leads (QS-240)

OUTLINE DIMENSIONS

Dimensions shown in inches and (millimeters).

240-Lead Metric CQFP with Heat Slug Down and Formed Leads (QS-240A)

ADSP-21060C/ADSP-21060LC

OUTLINE DIMENSIONS
Dimensions shown in inches and (millimeters).
240-Lead Metric CQFP with Heat Slug Down and Unformed Leads (QS-240A)

ORDERING GUIDE

Part Number	Case Temperature Range	Heat Slug Orientation	Instruction Rate	Operating Voltage
ADSP-21060C Z-133	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	Heat Slug Up	33 M Hz	5 V
AD SP-21060CZ-160	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	Heat Slug Up	40 M Hz	5 V
AD SP-21060CW -133	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	Heat Slug D own	33 M Hz	5 V
ADSP-21060CW -160	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	Heat Slug D own	40 M Hz	5 V
AD SP-21060LCW-133	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	Heat Slug D own	33 M Hz	3.3 V
AD SP-21060LCW-160	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	Heat Slug D own	40 M Hz	3.3 V

[^0]: W = (number of wait states specified in WAIT register) $\times \mathrm{t}_{\mathrm{ck}}$.

[^1]: NOTES
 ${ }^{1}$ LACK will go low with $t_{\text {DLALC }}$ relative to rising edge of LCLK after first nibble is received. LACK will not go low if the receiver's link buffer is not about to fill. ${ }^{2}$ Only required for interrupt recognition in the current cycle.

[^2]: T o determine whether communication is possible between two devices at clock speed n, the following specifications must be confirmed: 1) frame sync delay \& frame sync setup and hold, 2) data delay \& data setup and hold, and 3) SCLK width.

