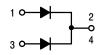
SWITCHMODE [™] **Power Rectifiers**

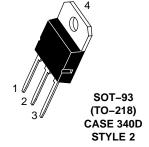
These state-of-the-art devices are designed for use in switching power supplies, inverters and as free wheeling diodes.

Features

- Ultrafast 35 and 60 Nanosecond Recovery Time
- 175°C Operating Junction Temperature
- High Voltage Capability to 600 V
- Low Forward Drop
- Low Leakage Specified @ 150°C Case Temperature
- Current Derating Specified @ Both Case and Ambient Temperatures
- Epoxy Meets UL 94 V-0 @ 0.125 in
- High Temperature Glass Passivated Junction
- Pb-Free Packages are Available*

Mechanical Characteristics:


- Case: Epoxy, Molded
- Weight: 4.3 Grams (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max for 10 Seconds
- Shipped 30 Units Per Plastic Tube


ON Semiconductor®

http://onsemi.com

ULTRAFAST RECTIFIERS 30 AMPERES, 200-600 VOLTS

MARKING DIAGRAM

A = Assembly Location

Y = Year
WW = Work Week
G = Pb-Free Package
MUR30x0PT = Device Code
x = 2, 4, or 6

ORDERING INFORMATION

Device	Package	Shipping
MUR3020PT	SOT-93	30 Units/Rail
MUR3020PTG	SOT-93 (Pb-Free)	30 Units/Rail
MUR3040PT	SOT-93	30 Units/Rail
MUR3040PTG	SOT-93 (Pb-Free)	30 Units/Rail
MUR3060PT	SOT-93	30 Units/Rail
MUR3060PTG	SOT-93 (Pb-Free)	30 Units/Rail

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MAXIMUM RATINGS (Per Leg)

Rating	Symbol	MUR3020PT	MUR3040PT	MUR3060PT	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	$egin{array}{c} V_{RRM} \ V_{RWM} \ V_{R} \end{array}$	200	400	600	V
Average Rectified Forward Current (Rated V _R) Per Leg Per Device	I _{F(AV)}	15 @ T _C = 150°C 30 @ T _C = 150°C		15 @ T _C = 30 145°C	А
Peak Rectified Forward Current, Per Leg (Rated V _R , Square Wave, 20 kHz, T _C = 150°C)	I _{FRM}	30 @ T _C = 150°C		30 @ T _C =145°C	А
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase, 60 Hz) Per Leg	I _{FSM}	200			А
Operating Junction and Storage Temperature	T _J , T _{stg}	- 65 to +175			°C

THERMAL CHARACTERISTICS (Per Diode Leg)

Maximum Thermal Resistance,			°C/W
Junction-to-CaseJunction-to-Ambient	$R_{ heta JC} \ R_{ heta JA}$	1.5 40	

ELECTRICAL CHARACTERISTICS (Per Diode Leg)

Maximum Instantaneous Forward Voltage (Note 1) (I _F = 15 Amp, T_C = 150°C) (I _F = 15 Amp, T_C = 25°C)	V _F	0.85 1.05	1.12 1.25	1.2 1.5	V
Maximum Instantaneous Reverse Current (Note 1) (Rated DC Voltage, $T_J = 150^{\circ}\text{C}$) (Rated DC Voltage, $T_J = 25^{\circ}\text{C}$)	i _R	500 10		1000 10	μА
Maximum Reverse Recovery Time (i _F = 1.0 A, di/dt = 50 A/μs)	t _{rr}	35	60		ns

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. Pulse Test: Pulse Width = 300 μs, Duty Cycle ≤ 2.0%.

MUR3020PT

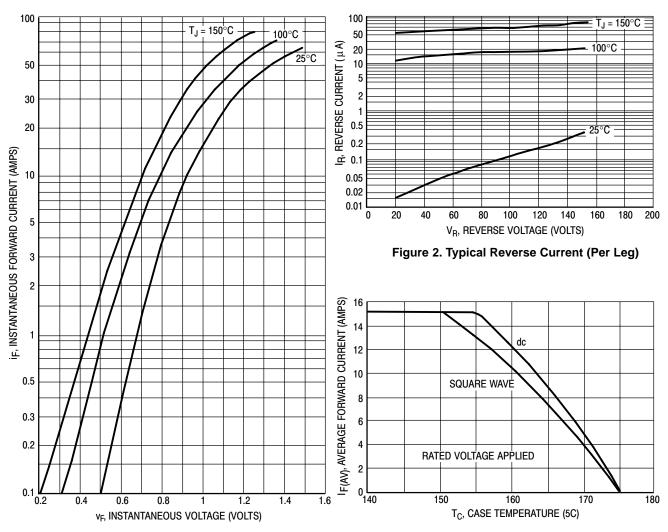


Figure 1. Typical Forward Voltage (Per Leg)

Figure 3. Current Derating, Case (Per Leg)

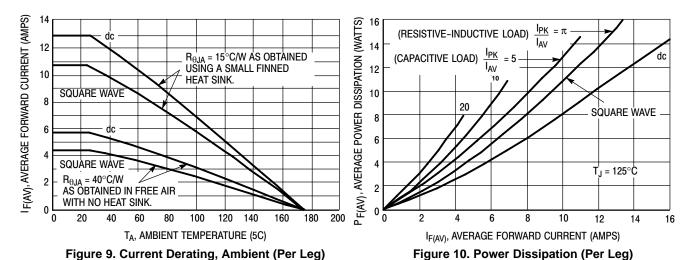


Figure 4. Current Derating, Ambient (Per Leg)

Figure 5. Power Dissipation (Per Leg)

MUR3040PT

MUR3060PT

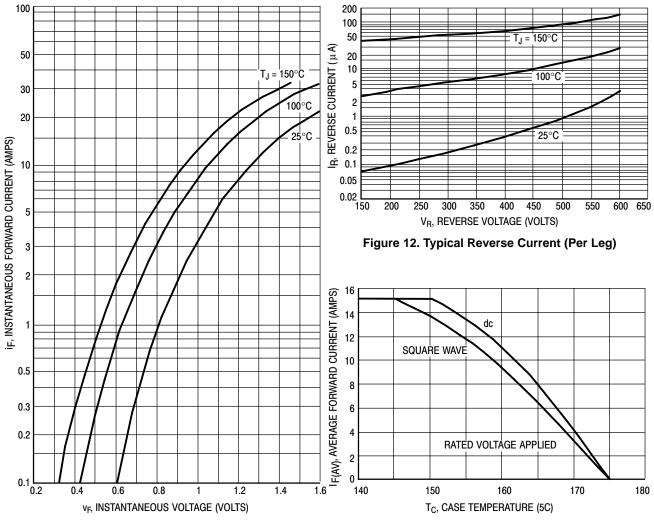


Figure 11. Typical Forward Voltage (Per Leg)

Figure 13. Current Derating, Case (Per Leg)

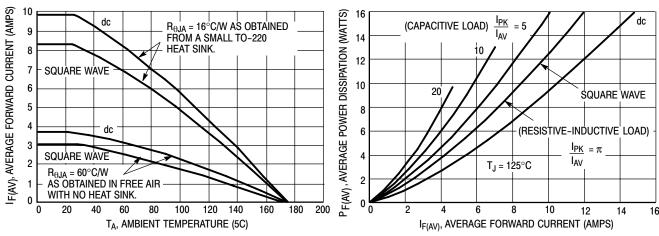
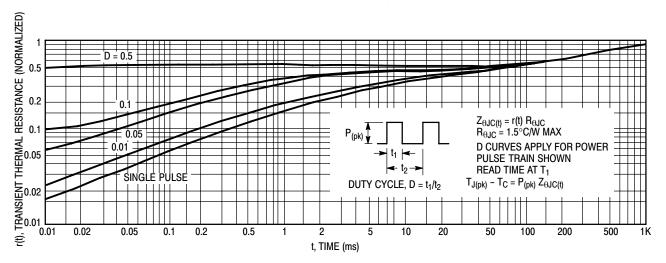


Figure 14. Current Derating, Ambient (Per Leg)

Figure 15. Power Dissipation (Per Leg)



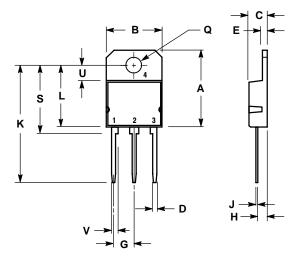

Figure 16. Thermal Response

Figure 17. Typical Capacitance (Per Leg)

PACKAGE DIMENSIONS

SOT-93 (TO-218) CASE 340D-02

- 1. DIMENSIONING AND TOLERANCING PER ANSI
- 2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α		20.35		0.801	
В	14.70	15.20	0.579	0.598	
C	4.70	4.90	0.185	0.193	
D	1.10	1.30	0.043	0.051	
E	1.17	1.37	0.046	0.054	
G	5.40	5.55	0.213	0.219	
Н	2.00	3.00	0.079	0.118	
J	0.50	0.78	0.020	0.031	
K	31.00	REF	1.220 REF		
L		16.20		0.638	
Q	4.00	4.10	0.158	0.161	
S	17.80	18.20	0.701	0.717	
U	4.00 REF		0.157 REF		
٧	1.75 REF		0.069		

STYLE 2: PIN 1. ANODE 1

 CATHODE(S)
 ANODE 2 4. CATHODE(S)

SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative