Revised Date : Page No. : 1/8

H234

Description

The H234 is a highly integrated solution for a constant voltage/constant current mode SMPS application.

The H234 contains one 1.21V voltage reference with ± 0.5% accuracy, one current sensing circuit and two operational amplifiers. Combining the voltage reference with one operational amplifier makes H234 an ideal voltage controller for use in adapters and battery chargers. The other low voltage reference combined with the other

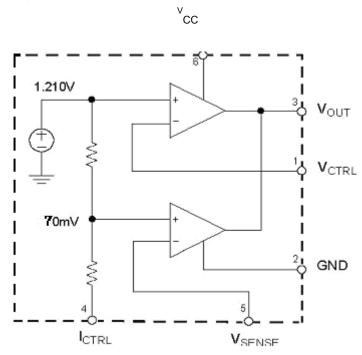
operational amplifier makes it an ideal current limiter for output low side current sensing.

The H234 is available in SOT-23-6L(TSOP-6) package.

Features

- · Constant Voltage and Constant Current Control
- · Precision Internal Voltage Reference
- · Few External Components
- · Easy Compensation
- · Low Supply Current
- · Operating Temperature Range: -40 to 105°C

Applications


- · Adapters
- · Battery Chargers

Pin Configuration

		Pin Number Pin Name		Function		
		1	VCTRL	Input pin of the voltage control loop		
V _{CTRL} _ 1	6 V _{CC}	2	GND	Ground		
GND 2	5 V _{SENSE}	3	Vout	Output pin. Sinking current only		
V _{OUT} 3	4 ICTRL	4	ICTRL	Input pin of the current control loop		
		5	VSENSE	Input pin of the current control loop		
		6	Vcc	Power supply		

Revised Date : Page No. : 2/8

Functional Block Diagram

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit	
Power Supply Voltage	Vcc	20	V	
Input Voltage	VIN	-0.3 to Vcc	V	
Junction Temperature	TJ	150	$^{\circ}\!\mathbb{C}$	
Storage Temperature	Тѕтс	-65 to 150	$^{\circ}\!\mathbb{C}$	
Package Thermal Resistance (Junction to Case)	Rejc	92	°C/W	

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit	
Power Supply Voltage	Vcc	2.5	18	V	
Operating Temperature Range	TA	-40	105	$^{\circ}$ C	

Revised Date : Page No. : 3/8

Electrical Characteristics

(V $_{\rm cc}$ =5V, T $_{\!\scriptscriptstyle A}$ =25 $^\circ\!\!{\rm C}$, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Туре	Max	Unit	
TOTAL CURRENT CONSUMPTION							
Total Supply Current Not Including	Icc	TA=25°℃		0.9	1.3	- mA	
the Output Sinking Current		-40℃ <ta<105℃< td=""><td></td><td>1.0</td><td></td></ta<105℃<>		1.0			
VOLTAGE CONTROL LOOP							
Transconduction Gain (VCTRL). Sink Current Only	Gmv	TA=25℃	1	3.5		- mA/mV	
		-40°C <ta< 105°c<="" td=""><td></td><td>2.5</td><td></td></ta<>		2.5			
Voltage Control Loop Reference	VREF	Ta=25°℃	1.204	1.21	1.216	V	
Voltage Control Ecop Reference		-40°C <ta< 105°c<="" td=""><td>1.186</td><td></td><td>1.234</td></ta<>	1.186		1.234		
Invest Direct Occurrent (Marry)	libv	TA=25℃		50		- nA	
Input Bias Current (VCTRL)		-40°C <ta< 105°c<="" td=""><td></td><td>100</td><td></td></ta<>		100			
CURRENT CONTROL LOOP				•			
Transconduction Gain (ICTRL). Sink Current Only	Gmi	Ta=25℃	1.5	7		mA/mV	
	Vsense	IOUT=2.5mA, Ta=25°ℂ	67	70	73	>/	
Current Control Loop Reference		IOUT=2.5mA, -40°C <ta< 105°c<="" td=""><td>66</td><td>70</td><td>74</td><td>- mV</td></ta<>	66	70	74	- mV	
Current Out of Pin ICTRL at 200mV	Іві	TA=25℃		25			
		-40°C <ta< 105°c<="" td=""><td></td><td>50</td><td></td><td>μA</td></ta<>		50		μA	
OUTPUT STAGE				•			
Low Output Voltage at 10mA Sinking Current	Vol	Ta=25℃		200		mV	
Output Short Circuit Current. Output	los	TA=25℃		27	50	mA	
to Vcc, Sink Current Only		-40℃ <ta< 105℃<="" td=""><td></td><td>35</td><td></td></ta<>		35			

Revised Date: Page No.: 4/8

Characteristics Curve

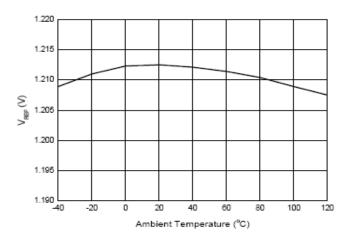


Figure 1. V_{REF} vs. Ambient Temperature

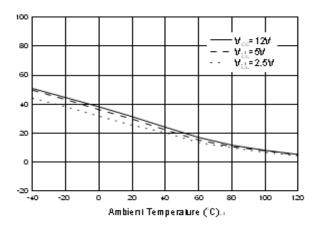


Figure 3. I_{IBV} vs. Ambient Temperature

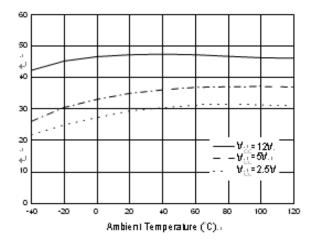


Figure 5. Output Short Circuit Current vs.

Ambient Temperature

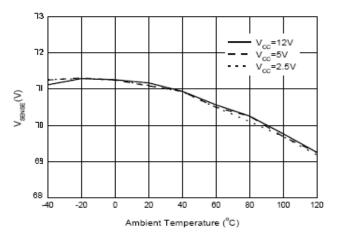


Figure 2. V_{SENSE} vs. Ambient Temperature

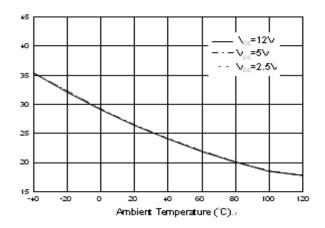


Figure 4. I_{IBI} vs. Ambient Temperature

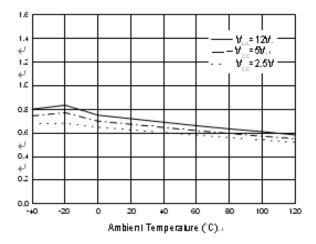


Figure 6. Supply Current vs. Ambient Temperature

Revised Date: Page No.: 5/8

Typical Application

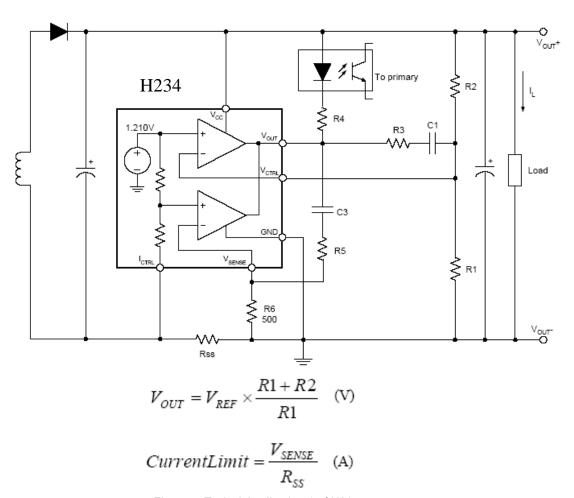
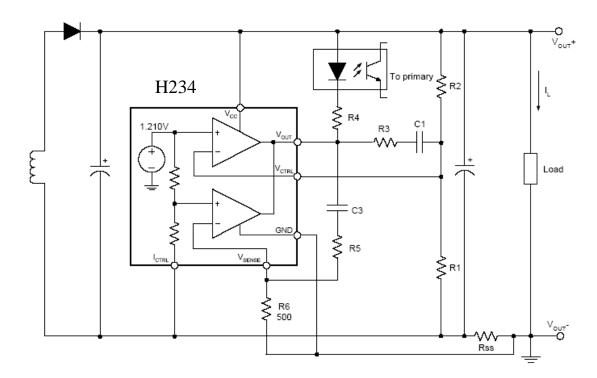
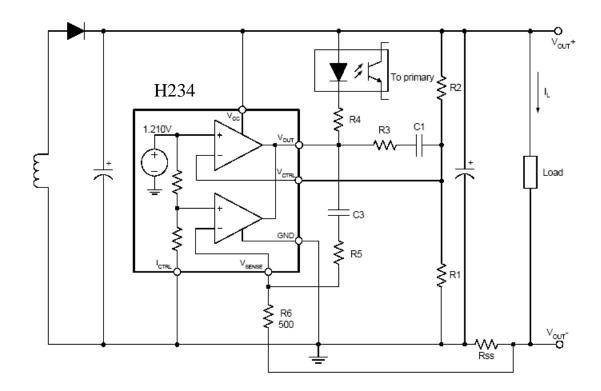



Figure 7. Typical Application 1 of H234

Revised Date: Page No.: 6/8

Typical Application

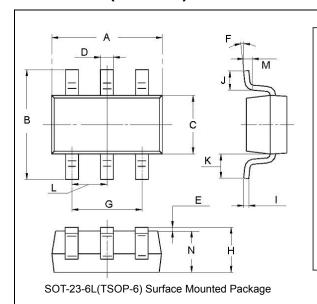


$$\begin{split} V_{OUT} = & [V_{REF} + (I_L \times R_{SS})] \times \frac{R1 + R2}{R1} - (I_L \times R_{SS}) \quad \text{(V)} \\ & CurrentLimit = \frac{V_{SENSE}}{R_{SS}} \quad \text{(A)} \end{split}$$

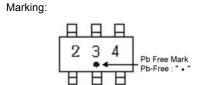
Figure 8. Typical Application 2 of H234

Revised Date: Page No.: 7/8

Typical Application


$$V_{OUT} = V_{REF} \times \frac{R1 + R2}{R1} - (I_L \times R_{SS}) \quad (V)$$

$$CurrentLimit = \frac{V_{SENSE} \times V_{REF}}{\left(V_{SENSE} + V_{REF}\right) \times R_{SS}} \quad (A)$$


Figure 9. Typical Application 3 of H234

Revised Date : Page No. : 8/8

SOT-23-6L (TSOP-6) Dimension

HSMC Package Code: N

Pin Style: 1. Vctrl 2. GND 3. Vout 4.lctrl 5. Vsense 6. Vcc

Material:

- Lead solder plating: Pure-Tin (Pb-free)
- Mold Compound: Epoxy resin family, flammability solid burning class: UL94V-0

DIM	Min.	Max.		
Α	2.70	3.12		
В	2.60	3.00		
С	1.40	1.80		
D	0.30	0.55		
Е	0.00	0.10		
F	0°	10°		
G	1.80	2.00		
Τ	-	1.30		
_	0.10	0.21		
J	0.30	0.60		
K	0.6*			
Г	0.95*			
М	0.25*			
N	1.00	1.20		

*: Typical, Unit: mm

Important Notice:

- All rights are reserved. Reproduction in whole or in part is prohibited without the prior written approval of AVANTIC.
- HSMC reserves the right to make changes to its products without notice.
- HSMC semiconductor products are not warranted to be suitable for use in Life-Support Applications, or systems.
- HSMC assumes no liability for any consequence of customer product design, infringement of patents, or application assistance.

Head Office:

- Head Office (Hi-Sincerity Microelectronics Corp.): 10F.,No. 61, Sec. 2, Chung-Shan N. Rd. Taipei Taiwan R.O.C. Tel: 886-2-25212056 Fax: 886-2-25632712, 25368454
- AVANTICS Microelectronics Corp: No. 255, Cai Lun Rd. Zhangjiang Technology Industrial Park Pudong, Shanghai, China Tel: 86-021-58955599 FH: 86-021-58558038

H234