Gas flow sensor

Features

- Solid State reliability
- Low cost, small size
- Long-term stability (parts of a percent)
- Interchangeability (0.5%)
- Protective polymer coating
- Custom designs on request

Applications

- Flow detection
- Gas-flow measurements
- Flow control
- Absolute temperature measurement
- Fluid detection

Gas flow sensor

GFL-9722

Description

The Gas Flow Sensor GFL-9722 is a ceramic based thermal sensor. It consists of two thick-film heating resistors and a thick-film temperature sensor. Both temperature sensor and heating resistors are laser trimmed which provides a true sensor-to-sensor interchangeability. The sensitive parts of the sensor are coated with a black polymer, which protects them from harsh environments like aggressive solvents, corrosive gasses and aggressive vapors.

When the GFL-9722 is heated by the heating resistors, a gas flow passing the sensor will cool it. Because of this the output resistance will change. External temperature effects can be compensated using a second, not-heated, sensor connected in a Wheatstone bridge configuration.

Specifications (in air, ambient temperature 20 °C, 1 Atm.)

opecifications (in all, ambien	it temperature zo	$\mathbf{O}, \mathbf{T} \mathbf{A} \mathbf{U}$	1. /	
Parameter	typ	units	notes	
Dimensions	7.5 x 7.5	mm		
Operating temperature	-40 to + 70	°C		
Storage temperature	-50 to + 170	°C		
Heating resistor	50 ± 1	Ω		
Typical heating voltage	7	V		
Max. heating voltage	9	V		
Temperature sensor	2000 ± 10	Ω		
Stability	< 0.5	%		
Sensitivity	5.5 ± 0.5	Ω/ °C		
Time constant	3	sec.	depending on flow and mounting	

Xensor In	tegration by					Smart Se	nsor Devices
PO Box 3233	Distributieweg 28	Phone	+31 (0)15-2578040	Founded	18 May 1988	ABN-AMRO	60 50 40 311
2601 DE Delft	2645 EJ Delfgauw	Fax	+31 (0)15-2578050	Trade reg.	27227437	IBAN NL42AE	3NA0605040311
The Netherlands	The Netherlands	Email	info@xensor.nl	Site w	ww.xensor.nl	VAT NL 0	09122746 B01
copyright Xensor	Integration		24 Augus	t 2005			page 1 of 3

Gas flow sensor

Dimensions

Positioning the sensor

The sensor is usually positioned parallel with the gas stream:

- in the heart of the stream (a).
- protuding from the wall of the tube (b).

Example of resistence response vs flow

Measurement in windtunnel by Mierij Meteo bv in de Bilt. GFL-9722 Sensor vertical parallel to flow, connections down. Pressure: 1024 mBar, temperature: 300 K, heating voltage: 7.00 V.

Flow velocity	Temp sensor
(<i>m</i> /s)	(Ω)
0	2819
0.542	2625
1.051	2534
2.049	2455
3.099	2409
4.086	2379
5.010	2361
5.997	2343
7.089	2327
8.065	2317
9.052	2307
10.076	2292

Xensor In	tegration bv				Smart Sensor Devices
PO Box 3233	Distributieweg 28	Phone	+31 (0)15-2578040	Founded 18 May 1988	ABN-AMRO 60 50 40 311
2601 DE Delft	2645 EJ Delfgauw	Fax	+31 (0)15-2578050	Trade reg. 27227437	IBAN NL42ABNA0605040311
The Netherlands	The Netherlands	Email	info@xensor.nl	Site <u>www.xensor.nl</u>	VAT NL 009122746 B01
copyright Xensor	Integration	24 August 2005			page 2 of 3

Gas flow sensor

Application circuits: Temperature compensation

The following circuit can be used to compensate for temperature using the temperature reference chip TD5 from Honeywell. This circuit is driven by a constant voltage source and gives an analog output signal.

NB: there is a DC-offset on the output signal which must be compensated out. The temp sensor is 2000 Ω at 20°C + 2750 ppm/K.

Application circuits: Temperature compensation + read out

The following circuit can be used to read out the sensor.

Conditions: Use of sensors for industrial applications is subjected to patent rights. Xensor Integration assumes no liability arising from violation of these rights

Warranty: Xensor Integration warrants its products against defects in materials and workmanship for 12 months from date of shipment. Products not subject to misuse will be replaced or repaired. The foregoing is in lieu of all other expressed or implied warranties. Xensor Integration reserves the right to make changes to any product herein and assumes no liability arising out of the application or use of any product or circuit described or referenced herein.

Xensor In	tegration by				Smart Sensor Devices
PO Box 3233	Distributieweg 28	Phone	+31 (0)15-2578040	Founded 18 May 1988	ABN-AMRO 60 50 40 311
2601 DE Delft	2645 EJ Delfgauw	Fax	+31 (0)15-2578050	Trade reg. 27227437	IBAN NL42ABNA0605040311
The Netherlands	The Netherlands	Email	info@xensor.nl	Site <u>www.xensor.nl</u>	VAT NL 009122746 B01
copyright Xensor	Integration		24 Augus	t 2005	page 3 of 3