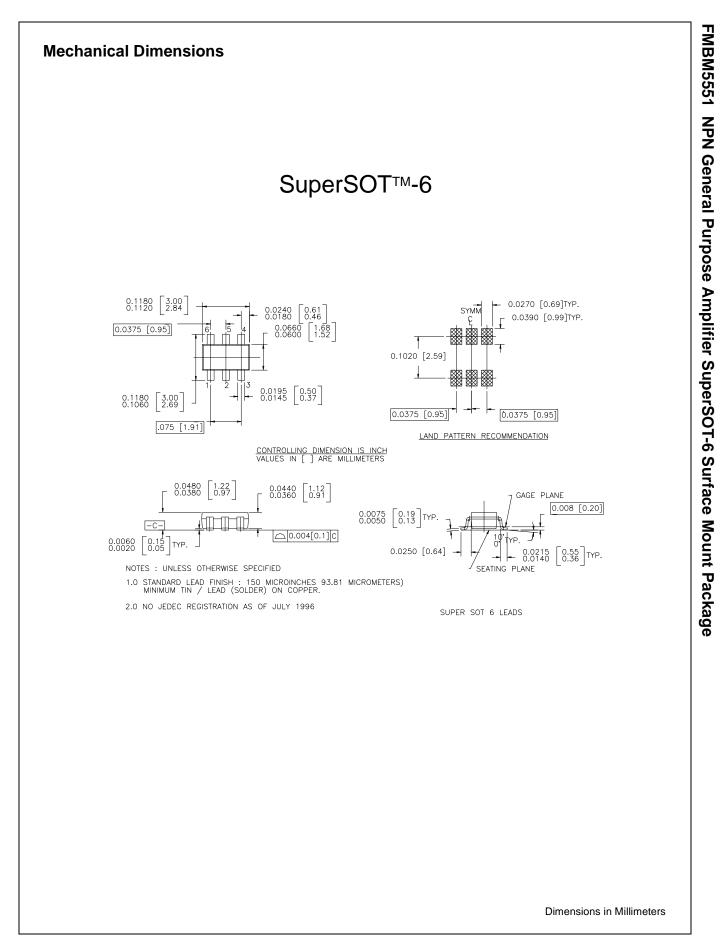


FMBM5551 NPN General Purpose Amplifier SuperSOT-6 Surface Mount Package

Features

- This device has matched dies
- Sourced from process 16.
- See MMBT5551 for characteristics

Absolute Maximum Ratings *


Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	160	V
V _{CBO}	Collector-Base Voltage	180	V
V _{EBO}	Emitter-Base Voltage	6	V
I _C	Collector Current (DC)	600	mA
P _C	Collector Dissipation ($T_C = 25^{\circ}C$)	0.7	W
Tj	Junction Temperature	150	°C
T _{STG}	Storage Temperature Range	-55 ~ 150	°C
T_{\thetaJA}	Thermal Resistance, Junction to Ambient	180	°C/W

 * Pd total, for both transistors. For each transistor, Pd = 350mW

Electrical Characteristics T_C = 25°C unless otherwise noted

Symbol	Parameter	Conditions	Min.	Max	Units
Off Charact	teristics	1	1		
BV _{CEO}	Collector-Emitter Voltage	$I_{\rm C} = 1 {\rm mA}, I_{\rm B} = 0$	160		V
BV _{CBO}	Collector-Base Voltage	$I_{\rm C} = 100 \mu A, I_{\rm E} = 0$	180		V
BV _{EBO}	Emitter-Base Voltage	$I_{\rm C} = 10\mu {\rm A}, I_{\rm C} = 0$	6		V
I _{CBO}	Collector Cut-off Current	$V_{CB} = 120V$ $V_{CB} = 120V$, $T_a = 100^{\circ}C$		50 50	nA μA
I _{EBO}	Emitter Cut-off Current	V _{EB} = 10V		50	nA
On Charact	teristics			•	
h _{FE1}	DC Current Gain	$V_{CE} = 5V, I_C = 1mA$	80		
DIVID1	Variation Ratio of h _{FE1} Between Die 1 and Die 2	h _{FE1} (Die1)/h _{FE1} (Die2)	0.9	1.1	
h _{FE2}	DC Current Gain	$V_{CE} = 5V, I_{C} = 10mA$	80	250	
DIVID2	Variation Ratio of h _{FE2} Between Die 1 and Die 2	h _{FE2} (Die1)/h _{FE2} (Die2)	0.95	1.05	

Symbol	Parameter	Conditions	Min.	Max	Units
h _{FE3}	DC Current Gain	V _{CE} = 5V, I _C = 50mA	30		
DIVID3	Variation Ratio of h _{FE3} Between Die 1 and Die 2	h _{FE3} (Die1)/h _{FE3} (Die2)	0.9	1.1	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{C} = 10$ mA, $I_{B} = 1$ mA $I_{C} = 50$ mA, $I_{B} = 5$ mA		0.15 0.2	V V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_{C} = 10$ mA, $I_{B} = 1$ mA $I_{C} = 50$ mA, $I_{B} = 5$ mA		1 1	V V
V _{BE(on)}	Base-Emitter On Voltage	$V_{CE} = 5V, I_{C} = 10mA$		1	V
DEL	Difference of $V_{BE(on)}$ Between Die1 and Die 2	V _{BE(on)} (Die1)-V _{BE(on)} (Die2)	-8	8	mV
Small Signa	al Characteristics				
C _{ob}	Output Capacitance	V _{CB} = 10V, f = 1MHz		6	pF
C _{ib}	Input Capacitance	V _{CB} = 0.5V, f = 1MHz		20	pF
f _T	Current Gain Bandwidth Product	V _{CE} = 10V, I _C = 10mA, f = 100MHz	100	300	MHz
NF	Noise Figure	$\label{eq:VCE} \begin{array}{l} V_{CE} = 5V, \ I_C = 200\muA, \ f = 1MHz, \\ R_S = 20K\Omega, \ B = 200Hz \end{array}$		8	dB
h _{fe}	Small Signal Current Gain	V _{CE} = 10V, I _C = 1.0mA, f = 1.0KHz	50	250	

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.