											RE	VISK	ONS	}												
LTR								DESC	RIPT	ION									DAT	E (YR	-MO-I	DA)	A	PPRO	WED	
А	Chang to fi chang	qur	e 4	, a	nd r	aran	ensio	on f	or o	ase of	out tab	tlin le I	e 1e	tte	r Y ori	. (Chan	ge	199	0 JI	JN C)1	W.	Q,	J.	1
																			. •			· *				
REV																										
SHEET		\Box															<u> </u>					<u> </u>				
REV		4			<u> </u>							<u> </u>								_	_	<u> </u>	<u> </u>			_
SHEET		$oldsymbol{\perp}$			L		Щ										ļ			<u> </u>	_	₩	<u> </u>	<u> </u>	_	_
REV ST		-	RE			Α	Α	Α		А	Α	Α		Α	Α	A	Α	Α	А	Α	L	╀	-			
PMIC N	PMIC N/A PREPARED BY STANDARDIZED CHECKED BY CHECK					E ELI DA	13 14 15 ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444																			
l .	MICROCIRCUITS.			rs, I IC R	, MEMORY, DIGITAL, CMOS C RAM, MONOLITHIC SILICON																					
FOR USE AND	BY ALL I	AWING IS AVAILABLE BY ALL DEPARTMENTS AGENCIES OF THE BY ALL DEPARTMENTS AGENCIES OF THE BY ALL DEPARTMENTS BY BY BY ALL DEPARTMENTS BY B			5000					Ю																
AMSC						nc v	ISION	• LEV	CL.	Α					5	SHE	ET		1							

« U.S. GOVERNMENT PRINTING OFFICE: 1987 — 748-129/60911

5962-E1463

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

SCOPE

1.1 Scope. This drawing describes device requirements for class B microcircuits in accordance with 1. $\overline{2.1}$ of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices".

1.2 Part number. The complete part number shall be as shown in the following example:

1.2.1 Device types. The device types shall identify the circuit function as follows:

Device type	Generic number	Circuit function	Access time
01	(See 6.6)	2K X 8 low power CMOS SRAM	35 ns
02	(See 6.6)	2K X 8 low power CMOS SRAM	25 ns

1.2.2 Case outlines. The case outlines shall be as designated in appendix C of MIL-M-38510, and as follows:

Outline letter	Case outline
J	D-3 (24-lead, 1.290" x .610" x .225"), dual-in-line package
K	F-6 (24-lead, .640" x .420" x .090"), flat package
L	D-9 (24-Lead, 1.280" x .310" x .200"), dual-in-line package
X	C-12 (32-terminal, .560" x .458" x .120"), rectangular chip carrier package
Υ	Figure 1 (24-lead, .308" x .408" x .120"), rectangular chip carrier package
3	C-4 (28-terminal, .460" x .460" x .100"), square chip carrier package

1.3 Absolute maximum ratings. 1/

-0.5 V dc to 7 V dc 0.5 V dc to Vcc + 0.5 V dc -0.5 V dc to 7 V dc Output voltage range in high impedance state - - - -20 mA -65°C to +150°C 1 W +275°C +175°C Thermal resistance, junction-to-case (θ_{JC}) - - - - -See MIL-M-38510, appendix C

1.4 Recommended operating conditions.

Supply voltage range (V_{CC}) - - - - - - - - - -4.5 V dc minimum to 5.5 V dc maximum 2.2 V dc minimum to V_{CC} + 0.5 V dc High level input voltage (V_{TH}) - - - - - - - - maximum

All voltages are with respect to GND.

 v_{IL} (minimum) of -3 V dc for short pulse durations of 20 ns or less. Prolonged operation at VII levels below -1 V dc will result in excessive currents that may damage the device.

STANDARDIZED MILITARY DRAWING	SIZE A		5962	-88740
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVE	SF A	1EET 2

DESC FORM 193A SEP 87

U. S. GOVERNMENT PRINTING OFFICE 1989-749-033

2. APPLICABLE DOCUMENTS

2.1 Government specification, standard, and bulletin. Unless otherwise specified, the following specification, standard, and bulleting of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510 - Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883 - Test Methods and Procedures for Microelectronics.

Bulletin

MIL ITARY

MIL-BUL-103 - List of Standardized Military Drwaings (SMD's).

(Copies of the specification, standard, and bulletin required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.

REQUIREMENTS

- 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 5.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
- 3.2.1 Terminal connections. The terminal connections shall be as specified on figure 2.
- 3.2.2 Truth table. The truth table shall be as specified on figure 3.
- 3.2.3 Case outlines. The case outlines shall be in accordance with 1.2.2 herein.
- 3.2.4 Load circuit and switching waveforms. The load circuit and switching waveforms shall be as specified on figure 4.
- 3.2.5 Die overcoat. Polyimide and silicone coatings are allowable as an overcoat on the die for alpha particle protection provided that each coated microcircuit inspection lot (see MIL-M-38510, inspection lot class B paragraph) shall be subjected to and pass the internal water vapor test (method 1018 of MIL-STD-883), the frequency of the internal water vapor testing may not be decreased unless approved by the preparing activity.
- 3.3 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I and shall apply over the full case operating temperature range.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-88740
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 3

DESC FORM 193A SEP 87

± U. S. GOVERNMENT PRINTING OFFICE: 1989—749-033

Test	Symbol	Conditions 1/2/	Group A		Lin	Unit	
	 	$-55^{\circ}C < T_C < +125^{\circ}C$ $4.5 \text{ V} \leq \text{V}_{CC} < 5.5 \text{ V}$ $\text{V}_{SS} = 0 \text{ V}$ unless otherwise specified	subgroups 	types	Min	 Max 	
Operating supply current	I _{CC1}	tavay = tayay (minimum),	1, 2, 3	01		105	 mA
] } }	V _{CC} = 5.5 V, CE = V _{IL} , all other inputs at V _{IL}	} 	02		1115	
Standby power supply current TTL	I _{CC2}	CE > VIH, all other imputs CVIL or > VIH, VCC = 5.5 V	1, 2, 3	01		30	l mA
Current IIL		T = 0 MHz	İ	02	<u> </u>	40	<u> </u>
Standby power supply current CMOS	I _{CC3}	$ \begin{tabular}{ll} \begin{tabular}{ll$	1, 2, 3	 A11 	 	0.9	mA l
Data retention current	Icc4	$ \begin{array}{l} \ \ $	1, 2, 3	A11 		 300 	 μΑ
Input leakage current, any imput	I ILK	Y _{CC} = 5.5 Y,	1, 2, 3	A11	 -10 	10	 μΑ
Off-state output leakage current	IOLK	YCC = 5.5 Y, YIN = 0 Y to 5.5 Y	1, 2, 3	A11	-10	10	 μΑ
Output high voltage	I V _{OH}	$I_{IOUT} = -4.0 \text{ mA}, V_{CC} = 4.5 \text{ V}, V_{IL} = 0.8 \text{ V}, V_{IH} = 2.2 \text{ V}$	1, 2, 3	A11 	2.4] 	V
Output low voltage	V _{OL}	$I_{10UT} = 8.0 \text{ mA}, V_{CC} = 4.5 \text{ V}, V_{IL} = 0.8 \text{ V}, V_{IH} = 2.2 \text{ V}$	1, 2, 3	 A11 		0.4	V
Input capacitance 3/	CIN		4	 All 		 8.0 	 pF
Output capacitance 3/	COUT	V _{OUT} = 0 V f = 1.0 MHz, T _A = +25°C, See 4.3.1c	4	 A11 		 8.0 	 pF
See footnotes at end of t	able.						

DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

DESC FORM 193A
SEP 87

MILITARY DRAWING

5962-88740

SHEET

REVISION LEVEL

TABLE I. Electrical performance characteristics - Continued. $\begin{array}{c} \text{Conditions} & 1/2/\\ v_{SS} = 0 \text{ V, } 4.5 \text{ V} \leq \sqrt{c_C} \leq 5.5 \text{ V} \\ -55 \text{ C} \leq T_C \leq \frac{+125}{C} \end{array}$ Limits Unit Test Symbol 3 |Group A Device Isubgroupsl types Min | Max unless otherwise specified 35 4/ 5/ 9,10,11 01 ns Read cycle time **tavav** 02 25 9,10,11 01 35 Address access ns **tavqv** time 25 02 Output hold after address|tAVOX 9,10,11 01 0 ns change 3/ 02 0 Output enable to output 9,10,11 01 0 ns toLQX active 3/ 02 0 9,10,11 01 20 | Output enable access time toLQV ns 02 16 9,10,11 01 0 Chip enable to output กร tELOX active 35 Chip enable access time lt_{ELQV} 9,10,11 01 ns 02 25 Chip enable to output in high-Z $\frac{3}{}$ 9,10,11 01 20 ns ^tEHQZ 15 02 Write recovery time 9,10,11 01 0 ns **tWHAV** 02 0 9,10,11 01 30 Chip enable to end-ofns tELWH write 20 02 30 Address valid to end-of-ItAVWH 9,10,11 01 ns write 02 20 Address to WE setup time |taywL 9,10,11 01 0 ns 02 0 Address to CE setup time |taveL 9,10,11 01, 02 0 ns See footnotes at end of table. SIZE **STANDARDIZED** Α 5962-88740 MILITARY DRAWING **DEFENSE ELECTRONICS SUPPLY CENTER REVISION LEVEL** SHEET DAYTON, OHIO 45444

DESC FORM 193A SEP 87

☆ U. S. GOVERNMENT PRINTING OFFICE: 1989—749-033

TABLE	I. Elec	ctrical performance characteristi	<u>ics</u> - Conti	nued.			
Test	Symbol	Conditions 1/2/	 Group A	Device	 _Limits		 Unit
	 	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	subgroups 	l types	 Min 	Max	
Output enable to output	 t _{OHQZ}	4/ 5/	9,10,11	 01		20	 ns
in high Z <u>3</u> /				02	<u> </u>	16	<u> </u>
Write enable pulse width	i İtwewh	!	9,10,11	l 01	25	<u> </u>	 ns
	<u> </u>	<u> </u>		02	20		!
Data setup to	tDVWH		9,10,11	01	20	<u> </u>	 ns
end-of-write		<u>!</u>		02	1 15		!
Data hold after	twHDX	!	9,10,11	01	0	<u> </u>	 ns
end-of-write	<u> </u>	1		02	0		
Chip-enable pulse width	teleh		9,10,11	01	30		 ns
during write		 		02	20	1	
Write enable pulse setup	i t _{WLEH}		9,10,11	01	25	 	 ns
time			1	l l 02	20	<u> </u>	

- 1/ All voltages referenced to V_{SS} .
- 2/ Negative undershoots to a minimum of -0.3 V are allowed with a maximum of 50 ns pulse width.
- 3/ Tested initially, and after any design or process change which could affect these parameters, and therefore shall be guaranteed to the limits specified in table I.
- 4/ AC measurements assume transition time ≤ 5 ns and input levels are from V_{SS} to 3.0 V. Output load is specified on figure 4. Reference timing levels are at 1.5 V.
- 5/ For timing waveforms, see figure 4.
- $3.5\,$ Marking. Marking shall be in accordance with MIL-STD-883 (see $3.1\,$ herein). The part shall be marked with the part number listed in $1.2\,$ herein. In addition, the manufacturer's part number may also be marked as listed in MIL-BUL-103 (6.6 herein).
- 3.6 Certificate of compliance. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-BUL-103 (see 6.6 herein). The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.7 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.

STANDARDIZED MILITARY DRAWING	SIZE A		5	962-88740	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	A	SHEET 6	

₩ U. S. GOVERNMENT PRINTING OFFICE: 1989-749-033

ratus, government printing office: 1987 - 748-129-60913

Device types	0	1 and 02		<u> </u>						
Case outlines	J,K,L,Y	X	3	1						
Terminal Number	Term	inal syml	001	 						
1 4	A7	 A7	NC	- 						
2	A 6	A6	NC	1						
3	A5	A5	NC	i						
4	A 4	A4	A7	1						
5	A 3	A3	A6	į						
6	A2	A2	A 5	1						
7	A1	NC I	A 4	į						
8	AO	NC	A 3							
9	1/0 0	A1	A2	İ						
10	I/O 1	l AO	A1							
11	I/O 2	1/0 1	A0							
12	V _{SS}	I/O 2	NC	i						
13	1/0 3	1/0 3	1/0 0	1						
14	I/O 4	VSS	I/O 1	1						
15	I/O 5	1/0 4	1/0 2	!						
16	I/O 6	1/0 5	¥ss							
17	I/O 7	1/0 6	NC	1						
18	CE	I/0 7	1/0 3	1						
19	A10	1/0 8	I/O 4	1						
20	0E	CE	1/0 5	į						
21	WE	I NC	I/0 6							
22	A9	NC	1/0 7	į						
23	A8	A10	CE	l						
24	V _{CC}	OE WE	A10	ļ						
25 26		l A9	WE	¦						
26 27		A8	I NC		ı -			· · · · · ·		
28		VCC	A9	ļ	Input	S	1/0	i	Mode	Power
29		•cc 	A8		CE WE	Œ	1/0 0 - 1/	0 7¦		
30		į	NC NC	İ	нх	Х	HI-Z	Ť	Standby	Standby
31	 	 	NC	1	LH	L	Data Outp	ut	Read	Active
32		i	VCC	1	LH	X	HI-Z Data Inpu	t ¦	Read Write	Active Active
FIGURE 2.	Terminal	connect		- '	•	F	IGURE 3. Tr	uth 1	table.	
_	ARDIZE			SIZE A		"		F.(962-88740	
MILITARY	DRAW		-				SION LEVEL	J.	SHE	

★ U. S. GOVERNMENT PRINTING OFFICE: 1989—749-033

★ U. S. GOVERNMENT PRINTING OFFICE: 1989—749-033

- 3.8 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.9 Verification and review. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
 - 4. OUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 Screening. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition C or D using the circuit submitted with the certificate of compliance (see 3.6 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 5 and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroup 4 (C_{IN} and C_{OUT} measurements) shall be measured for the initial characterization and after any process or design changes which may affect capacitance. Sample size is fifteen devices with no failures, and all input and output terminals tested.
 - d. Subgroups 7 and 8 tests sufficient to verify the truth table.
 - 4.3.2 Groups C and D inspections.
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition C or D using the circuit submitted with the certificate of compliance (see 3.6 herein).
 - (2) $T_A = +125$ °C, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

STANDARDIZED MILITARY DRAWING	SIZE A			5962 -88740
DEFENSE ELECTRONICS SUPPLY CENTER		F	REVISION LEVEL	SHEET
DAYTON, OHIO 45444			A	12

SEP 87

TABLE	II.	Electrical	test	requirements.

MIL-STD-883 test requirements	Subgroups (per method 5005, table I)
Interim electrical parameters (method 5004)	
Final electrical test parameters (method 5004)	1*, 2, 3, 7*, 8, 9, 10, 11
Group A test requirements (method 5005)	1, 2, 3, 4**, 7, 8, 9, 10, 11
Groups C and D end-point electrical parameters (method 5005)	2, 3, 7, 8

 $[\]star$ PDA applies to subgroups 1 and 7.

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.

6. NOTES

- 6.1 Intended use. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
- 6.2 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 Configuration control of SMD's. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-481 using DD Form 1693, Engineering Change Proposal (Short Form).
- 6.4 Record of users. Military and industrial users shall inform the Defense Electronics Supply Center when a system application requires configuration control and the applicable SMD. DESC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DESC-ECS, telephone (513) 296-6022.
- 6.5 Comments. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone (513) 296-5375.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-88740
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET

DESC FORM 193A SEP 87

± U. S. GOVERNMENT PRINTING OFFICE: 1989—749-033

^{**} See 4.3.1c.

6.6 Approved sources of supply. Approved sources of supply are listed in MIL-BUL-103. Additional sources will be added to MIL-BUL-103 as they become available. The vendors listed in MIL-BUL-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DESC-ECS. The approved sources of supply listed below are for information purposes only and are current only to the date of the last action of this document.

Military drawing part number	Vendor CAGE number	Vendor similar part number <u>1</u> /
5962-8874001JX	 61772 	6116LA35DB
5962-8874001KX	61772	6116LA35EB
5962-887 4 001LX	01295 61772	SMJ68CE16L-35JD 6116LA35TBD
5962-8874001XX	01295 61772	SMJ68CE16L-35FG 6116LA35L32B
5962-8874001YX	61772	6116LA35L24B
5962-88740013X	61772	6116LA35L28B
5962-8874002JX	61772	6116LA25DB
5962-8874002KX	61772	6116LA25EB
5962 -88740 02LX	01295 61772	SMJ68CE16L-25JD 6116LA25TBD
5962 -88740 02XX	01295 61772	SMJ68CE16L-25FG 6116LA25L32B
5962-8874002YX	61772	6116LA25L24B
5962-88740023X	61772	6116LA25L28B

^{1/} Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE
A
5962-88740

REVISION LEVEL
SHEET
14

DESC FORM 193A SEP 87

Vendor CAGE Vendor name and address number Texas Instruments, Incorporated 13500 North Central Expressway P.O. Box 655303 Dallas, TX 75265 Point of contact: I-20 at FM 1788 Midland, TX 79711-0448 01295 61772 Integrated Device Technology, Incorporated 1566 Moffett Boulevard Salinas, CA 93905 Point of contact: 3236 Scott Boulevard Santa Clara, CA 95054 SIZE **STANDARDIZED** Α 5962-88740 **MILITARY DRAWING** DEFENSE ELECTRONICS SUPPLY CENTER **REVISION LEVEL** SHEET DAYTON, OHIO 45444

DESC FORM 193A SEP 87