

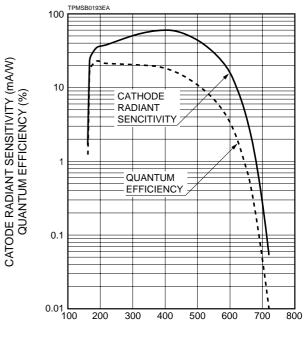
PHOTOMULTIPLIER TUBES R7446 R7446P (For Photon Counting)

High Cathode Sensitivity with Low Noise Photocathode

FEATURES

60 to 680 nm
60 μA/Im
60 mA/W
400 A/Im
$1.0 imes 10^5$ A/W
0.1 nA
10 cps

APPLICATIONS


- Environmental Monitoring
- Atomic Emission Spectrometer
- Atomic Absorption Spectrometer

GENERAL

Parameter	Description/Vaiue	Unit
Spectral Response	160 to 680	nm
Wavelength of Maximum Response	400	nm
Photocathode Material Minimum Effective Area	Low noise bialkali 8 × 24	— mm
Window Material	Fused Silica	_
Dynode Secondary Emitting Surface Structure Number of Stages	Low noise bialkali Circular-cage 9	
Direct Interelectrode Capacitances Anode to Last Dynode Anode to All Other Electrodes	4	pF pF
Base	11-pin base JEDEC No. B11-88	_
Weight	45	g
Suitable Socket	E678–11A (option)	—
Suitable Socket Assembly	E717-63 (option)	—

Figure 1: Typical Spectral Response

WAVELENGTH (nm)

Subject to local technical requirements and regulations, availability of products included in this promotional material may vary. Please consult with our sales office. Information furnished by HAMAMATSU is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omissions. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein. ©1999 Hamamatsu Photonics K.K

PHOTOMULTIPLIER TUBES R7446, R7446P (For Photon Counting)

MAXIMUM RATINGS (Absolute Maximum Values)

Parameter	Value	Unit
Supply Voltage		
Between Anode and Cathode	1250	Vdc
Between Anode and Last Dynode	250	Vdc
Average Anode Current	0.1	mA
Ambient Temperature	-80 to +50	°C

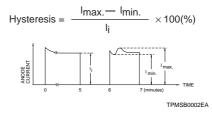
CHARACTERISTICS (at 25 °C)

for G	R7446 Seneral Pur	pose	for P			
Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
_	20	_	_	20	_	%
40	60	—	40	60	—	μA/Im
	60	—	-	60	—	mA/W
—	6.4	_	—	6.4	—	µA/Im-b
200	400	_	200	400	_	A/Im
_	$4.0 imes10^5$	_	—	$4.0 imes10^5$	—	A/W
—	$6.7 imes10^{6}$	—	—	$6.7 imes10^{6}$	—	
_	0.1	2.0	_	0.1	0.5	nA
_	_	_		10	50	cps
	3.7 × 10 ⁻¹⁷	_	_	3.7 × 10 ⁻¹⁷	_	W
_	2.2	—	_	2.2	—	ns
_	22	—	_	22	—	ns
-	1.2	—	—	1.2	—	ns
_	0.1	_	_	0.1	—	%
-	1.0	_	_	1.0	_	%
	Min. 	for General Pur Min. Typ. $-$ 20 40 60 $-$ 6.4 200 400 $-$ 6.4 200 400 $-$ 6.7 × 10 ⁶ $-$ 0.1 $ -$	for General Purpose Min. Typ. Max. $-$ 20 $-$ 40 60 $ -$ 60 $ 60$ $ 6.4$ $ 200$ 400 $ 6.4$ $ 200$ 400 $ 6.7 \times 10^5$ $ 0.1$ 2.0 $ 0.1$ 2.0 $ 3.7 \times 10^{-17}$ $ 2.2$ $ 2.2$ $ 1.2$ $-$	for General Purpose for P Min. Typ. Max. Min. $ 20$ $ 40$ $ 60$ $ 40$ $ 60$ $ 40$ $ 60$ $ 200$ 400 $ 200$ $ 6.4$ $ 200$ 400 $ 200$ $ 6.7 \times 10^6$ $ 0.1$ 2.0 $ 0.1$ 2.0 $ 0.1$ 2.0 $ 0.1$ 2.0 $ 0.1$ 2.0 $ 0.1$ 2.0 $ 2.2$ $ 2.2$ $ 2.2$ $ -$ <	for General Purpose for Photon Cou Min. Typ. Max. Min. Typ. $ 20$ $ 20$ 40 60 $ 40$ 60 $ 60$ $ 40$ 60 $ 6.4$ $ 6.4$ 200 400 $ 200$ 400 $ 6.4$ $ 6.4$ 200 400 $ 200$ 400 $ 6.7 \times 10^6$ $ 6.7 \times 10^6$ $ 0.1$ 2.0 $ 0.1$ $ 0.1$ 2.0 $ 0.1$ $ 0.1$ $ 0.1$ 2.0 $ 0.1$ $ 0.1$ $ 0.1$ $ 2.2$ $ 2.2$ $ 1.2$ $ 2.2$	for General Purpose for Photon Counting Min. Typ. Max. Min. Typ. Max. $ 20$ $ 20$ $ 40$ 60 $ 40$ 60 $ 60$ $ 40$ 60 $ 6.4$ $ 6.4$ $ 200$ 400 $ 200$ 400 $ 6.7 \times 10^6$ $ 6.7 \times 10^6$ $ 0.1$ 2.0 $ 0.1$ 0.5 $ 0.1$ 2.0 $ 0.1$ 0.5 $ 0.1$ 2.0 $ 0.1$ 0.5 $ 0.1$ 2.0 $ 0.1$ 0.5 $ 2.2$ $ 2.2$ $ 2.2$ $ -$

D7440

NOTES

A: Averaged over any interval of 30 seconds maximum.


- B: The light source is a tungsten filament lamp operated at a distribution temperature of 2856K. Supply voltage is 150 volts between the cathode and all other electrodes connected together as anode.
- C: The value is cathode output current when a blue filter(Corning CS-5-58 polished to 1/2 stock thickness) is interposed between the light source and the tube under the same condition as Note B.
- D: Measured with the same light source as Note B and with the anode-tocathode supply voltage and voltage distribution ratio shown in Table 1 below.
- E: Measured with the same supply voltage and voltage distribution ratio as Note D after removal of light.
- F: Measured at the voltage producing the gain of 1×10^6 .
- G:ENI is an indication of the photon-limited signal-to-noise ratio. It refers to the amount of light in watts to produce a signal-to-noise ratio of unity in the output of a photomultiplier tube.

$$\mathsf{ENI} = \frac{\sqrt{2q} \cdot \mathsf{Idb} \cdot \mathbf{G} \cdot \mathbf{f}}{\mathsf{S}}$$

where q = Electronic charge (1.60 × 10⁻¹⁹ coulomb).

- ldb = Anode dark current(after 30 minute storage) in amperes. G = Gain.
 - f = Bandwidth of the system in hertz. 1 hertz is used.
 - S = Anode radiant sensitivity in amperes per watt at the wavelength of peak response.
- H: The rise time is the time for the output pulse to rise from 10% to 90% of the peak amplitude when the entire photocathode is illuminated by a delta function light pulse.
- J: The electron transit time is the interval between the arrival of delta function light pulse at the entrance window of the tube and the time when the anode output reaches the peak amplitube. In measurement, the whole photocathode is illuminated.

- K: Also called transit time jitter. This is the fluctuation in electron transit time between individual pulses in the signal photoelectron mode, and may be defined as the FWHM of the frequency distribution of electron transit times.
- L: Hysteresis is temporary instability in anode current after light and voltage are applied.

D7440D

(1)Current Hysteresis

The tube is operated at 750 volts with an anode current of 1 micro-ampere for 5 minutes. The light is then removed from the tube for a minute. The tube is then re-illuminated by the previous light level for a minute to measure the variation.

(2)Voltage Hysteresis

The tube is operated at 300 volts with an anode current of 0.1 micro-ampere for 5 minutes. The light is then removed from the tube and the supply voltage is quickly increased to 800 volts. After a minute, the supply voltage is then reduced to the previous value and the tube is re-illuminated for a minute to measure the variation.

Table 1:Voltage Distribution Ratio

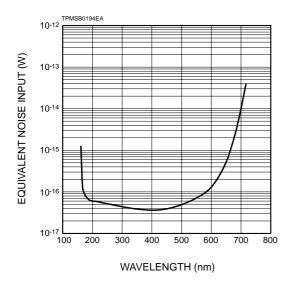
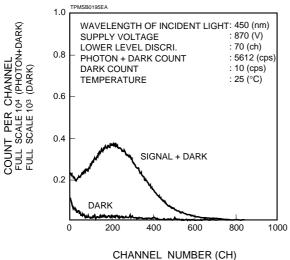
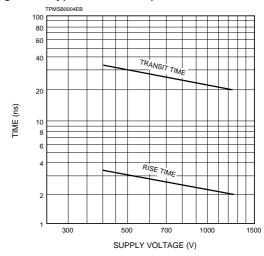
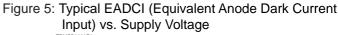
								-												
E	lectrode	К	D	y1	Dy	/2	Dy3	D	y4	Dy	/5	Dy	'6 D	y7	D	y8	D	y9		Ρ
	Distribution Ratio		1		1	1		1		1	1		1	Γ	1		1		1	

Supply Voltage : 1000Vdc

K: Cathode, Dy: Dynode, P: Anode

Figure 2: Typical Gain and Anode Dark Current TDMCDOOOCE 10-5 108 10⁷ 10-6 ANODE DARK CURRENT (A) 10⁶ 10-7 10⁻⁸ 105 GAIN 10⁻⁹ 104 10³ 10-10 10-11 102 1500 10-12 300 400 500 600 800 1000 SUPPLY VOLTAGE (V)

Figure 4: Typical ENI vs. Wavelength

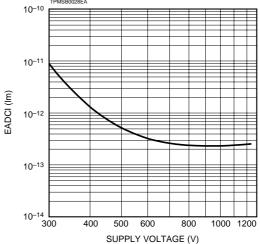
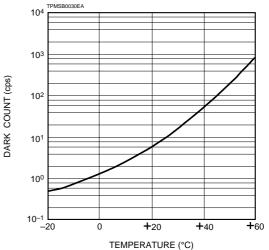
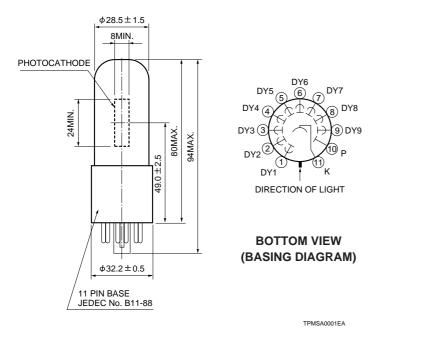

Figure 6: Typical Single Photon Height Distribution for R7446P

Figure 3: Typical Time Response

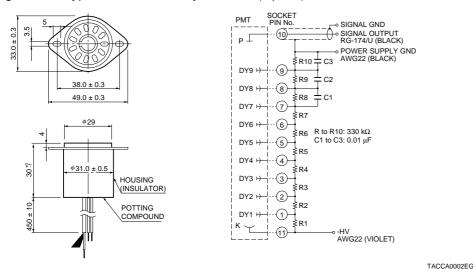


Data shown here, which is given from a relation among supply voltage, anode sensitivity and dark current, serves as a good reference in order to determine the most suitable supply voltage or its range.

Figure 7: Typical Temperature Characteristics of Dark Count for R7446P



PHOTOMULTIPLIER TUBES R7446, R7446P (For Photon Counting)


Figure 8: Dimensional Outline and Basing Diagram(Unit: mm)

TACCA0064EA

Figure 9: D Type Socket Assembly E717-63 (Option)

* Hamamatsu also provides C4900 series compact high voltage power supplies and C6270 series DP type socket assemblies which incorporate a DC to DC converter type high voltage power supply.

Warning–Personal Safety Hazards

Electrical Shock–Operating voltages applied to this device present a shock hazard.

HAMAMATSL

HOMEPAGE URL http://www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Electron Tube Center 314-5, Shimokanzo, Toyooka-village, Iwata-gun, Shizuoka-ken, 438-0193, Japan, Telephone: (81)539/62-5248, Fax: (81)539/62-2205 U.S.A.: Hamamatsu Corporation: 360 Foothill Road, P. O. Box 6910, Bridgewater, N.J. 08807-0910, U.S.A., Telephone: (1)908-231-0806, Tex: (1)908-231-2168 Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching an Ammersee, Germany, Telephone: (49)8152-375-0, Fax: (49)8152-2658 France: Hamamatsu Photonics France S.A.R.L:: 8, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: (43)1 69 53 71 00, Fax: (33)1 69 53 71 10 United Kingdom: Hamamatsu Photonics UK Limited: Lough Point, 2 Gladbeck Way, Windmill Hill, Enfield, Middlesex EN2 7JA, United Kingdom, Telephone: 44(20)8-367-3560, Fax: 44(20

TPMS1068E01 OCT. 1999