

N-HFA16PB60

Nell High Power Products

FRED Ultrafast Soft Recovery Diode, 16 A

FEATURES

- Ultrafast and ultrasoft recovery
- \bullet Very low I_{RRM} and Q_{rr}
- Compliant to RoHS
- Designed and qualified for industrial level

BENEFITS

- Reduced RFI and EMI
- Reduced power loss in diode and switching transistor
- Higher frequency operation
- Reduced snubbing
- Reduced parts count

DESCRIPTION

HFA16PB60 is a state of the art ultrafast recovery diode. Employing the latest in epitaxial construction and advanced processing techniques it features a superb combination of characteristics which result in performance which is unsurpassed by any rectifier previously available. With basic ratings of 600V and 16 A continuous current, the HFA16PB60 is especially well suited for use as the companion diode for IGBTs and MOSFETs. In addition to ultrafast recovery time, the FRED product line features extremely low values of peak recovery current (IRRM) and does not exhibit any tendency to "snap-off" during the tb portion of recovery. The FRED features combine to offer designers a rectifier with lower noise and significantly lower switching losses in both the diode and the switching transistor. These FRED advantages can help to significantly reduce snubbing, component count and heatsink sizes. The FRED HFA16PB60 is ideally suited for applications in power supplies and power conversion systems (such as inverters), motor drives, and many other similar applications where high speed, high efficiency is needed.

TO-247 AC modified

PRODUCT SUMMARY	
Package	TO-247AC modified (2 pins)
I _{F(AV)}	16A
V _R	600 V
V _F at I _F	1.75 V
t _{rr} (typ.)	19 ns
T _J max.	150°C
Diode variation	Single die

ABSOLUTE MAXIMUM RATINGS							
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Cathode to anode voltage	V _R		600	V			
Maximum continuous forward current	١ _F	T _C = 100 °C	16	A			
Single pulse forward current	I _{FSM}		150				
Maximum repetitive forward current	I _{FRM}		60				
Maximum power dissipation	PD	T _C = 25 °C	74	W			
		T _C = 100 °C	29	- VV			
Operating junction and storage temperature range	T _J , T _{Stg}		- 55 to + 150	°C			

ELECTRICAL SPECIFICA	ATIONS	IS (T _J = 25 °C unless otherwise specified)				
PARAMETER	SYMBOL	TEST CONDITIONS MIN. T		TYP.	MAX.	UNITS
Cathode to anode breakdown voltage	V _{BR}	I _R = 100 μA	600	-	-	
Maximum forward voltage V _F		I _F = 16 A	-	1.60	1.75	V
	V_{FM}	I _F = 32 A	-	1.85	2.0	
		I _F = 16 A, T _J = 125 °C	-	1.45	1.65	
Maximum reverse	IRM	$V_R = V_R$ rated	-	1.0	10	
leakage current		$T_J = 125^{\circ}C, V_R = V_R rated$	-	400	1000	μA
Junction capacitance	CT	V _R = 200V	-	25	50	pF
Series inductance	L _S	Measured lead to lead 5 mm from package body	-	12	-	nH

DYNAMIC RECOVERY CHARACTERISTICS PERLEG (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS			TYP.	MAX.	UNITS
	t _{rr}	I _F = 0.5A, I _R = 1.0A, I _{RR} = 250mA (RG#1 CKT)		-	22	30	ns
Deverage and the second second		I_F = 1.0 A, dI _F /dt = -200 A/µs, V _R =30 V, T _J = 25°C		-	19	-	
Reverse recovery time	t _{rr1}	T _J = 25 °C	I _F = 16A dI _F /dt = -200 A/μs V _R = 200 V	-	42	60	- A
	t _{rr2}	T _J = 125 °C		-	74	120	
Peak recovery current	I _{RRM1}	T _J = 25 °C		-	4.0	6.0	
	I _{RRM2}	T _J = 125 °C		-	6.5	10	
Reverse recovery charge	Q _{rr1}	T _J = 25 °C		-	80	180	nC
	Q _{rr2}	T _J = 125 °C		-	220	600	
Peak rate of fall of recovery current during $t_{\rm b}$	dl _{(rec)M} /dt1	T _J = 25 °C		-	188	-	A/µs
	dl _{(rec)M} /dt2	T _J = 125 °C		-	160	-	Αγμs

THERMAL - MECHANICAL SPECIFICATIONS PER LEG							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Lead temperature	T _{lead}	0.063" from case (1.6 mm) for 10 s	-		300	°C	
Junction to case, single leg conduction	В		-	-	1.7		
Junction to case, both legs conducting	— R _{thJC}		-	-	40	K/W	
Thermal resistance, junction to ambient	R _{thJA}	Typical socket mount	_		40	r\/ V V	
Thermal resistance, case to heatsink	R _{thCS}	Mounting surface, flat, smooth and greased	-	0.25	-		
Maight			-	6.0	-	g	
Weight			-	0.21	-	oz.	
Mounting torque			6.0 (5.0)	-	12 (10)	kgf . cm (lbf . in)	
Marking device		Case style TO-247AC (JEDEC)	HFA16PA60				

Fig.1 Maximum forward voltage drop vs.

Nell High Power Products

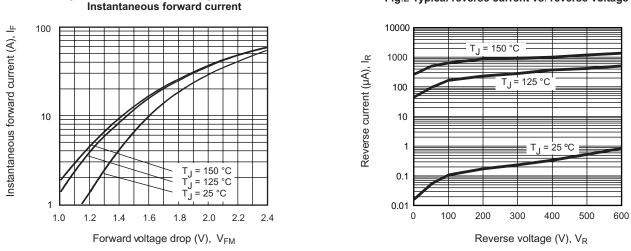


Fig.3 Typical junction capacitance vs. reverse voltage

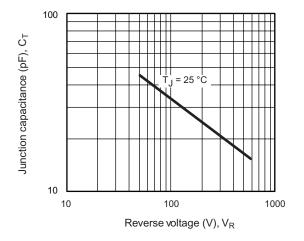
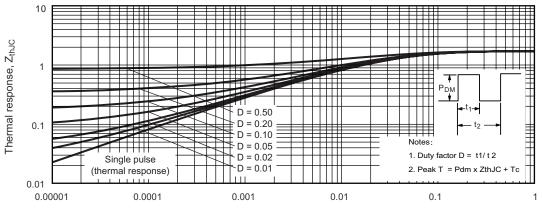



Fig.4 Maximum thermal Impedance Z_{thJC} characteristics

Rectangular pulse duration (sec), t₁

ry time vs. dl_F/dt Fig.6 Typical recovery current vs. dl_F/dt

25

20

15

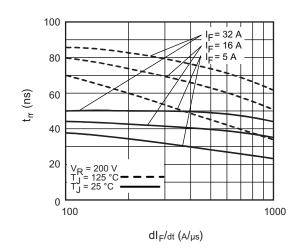
10

5

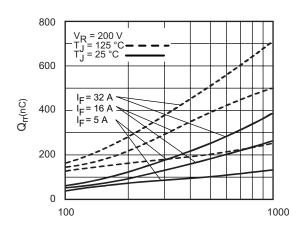
0

100

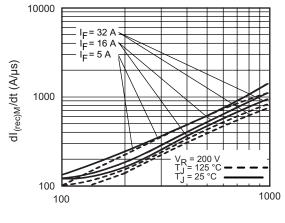
I_{rr} (A)


R = 200 V

= 125 °C

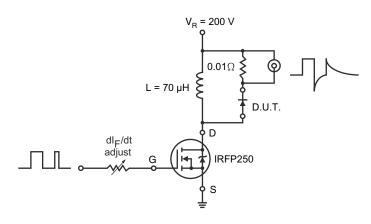

= 25 °C

I_F= 32 A = I_F= 16 A = I_F= 5 A ∖



dl_F/dt (A/µs)

Fig.8 Typical dl_{(rec)M}/dt vs. dl_F/dt


 dI_F/dt (A/µs)

1000

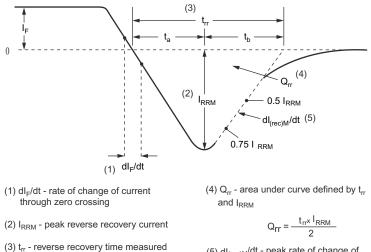

dl_F/dt (A/µs)

Fig.9 Reverse recovery parameter test circuit

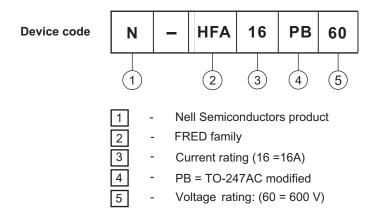
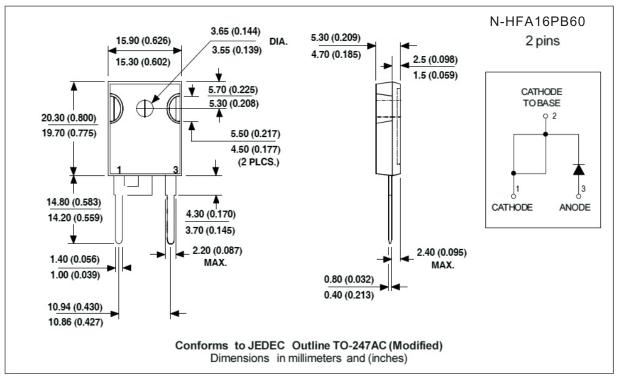


Fig.10 Reverse recovery waveform and definitions

(3) $t_{\rm fr}$ - reverse recovery time measured from zero crossing point of negative going I_F to point where a line passing through 0.75 I_{RRM} and 0.50 I_{RRM} extrapolated to zero current. (5) $dI_{(rec)M}/dt$ - peak rate of change of current during t_b portion of t_{rr}


ORDERING INFORMATION TABLE

Outine Table

